Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Вариационный принцип для сплошных сред, обладающих памятью формы, при изменяющихся внешних силах и температуре
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 541-555В рамках феноменологической механики сплошной среды без анализа микрофизики явления рассматривается квазистатическая задача деформирования сплавов с памятью формы. Феноменологический подход основан на сопоставлении двух диаграмм деформирования материалов. Первая диаграмма отвечает активному пропорциональному нагружению, когда сплав ведет себя как идеальный упругопластический материал; после снятия нагрузки фиксируется остаточная деформация. Вторая диаграмма наблюдается, если деформированный образец нагреть до определенной для каждого сплава температуры. Происходит восстановление первоначальной формы: обратная деформация совпадает с точностью до знака с деформациями первой диаграммы. Поскольку первый этап деформирования может быть описан с по- мощью вариационного принципа, для которого доказывается существование обобщенных решений при произвольном нагружении, становится ясным, как объяснить обратную деформацию в рамках слегка видоизмененной теории пластичности. Нужно односвязную поверхность нагружения заменить двусвязной и, кроме того, вариационный принцип дополнить двумя законами термодинамики и принципом ортогональности термодинамических сил и потоков. Доказательство существования решений и в этом случае не встречает затруднений. Успешное применение теории пластичности при постоянной температуре порождает потребность получить аналогичный результат в более общем случае изменяющихся внешних сил и температуры. В работе изучается идеальная упругопластическая модель Мизеса при линейных скоростях деформаций. Учет упрочнения и использование произвольной поверхности нагружения не вызывают дополнительных трудностей.
Формулируется расширенный вариационный принцип типа Рейсснера, который вместе с законами термопластичности позволяет доказать существование обобщенных решений для трехмерных тел, изготовленных из материалов, обладающих памятью формы. Основная трудность, которую приходится преодолевать, состоит в выборе функционального пространства для скоростей и деформаций точек континуума. Для этой цели в статье используется пространство ограниченных деформаций — основной инструмент математической теории пластичности. Процесс доказательства показывает, что принятый в работе выбор функциональных пространств не является единственным. Изучение других возможных расширенных постановок вариационной задачи, наряду с выяснением регулярности обобщенных решений, представляется интересной задачей для будущих исследований.
-
Применение искусственных нейронных сетей для подбора состава смесевого хладагента с заданной кривой кипения
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 593-608В работе представлен метод подбора состава смесевого хладагента (СХА) с заданной изобарной кривой кипения с помощью искусственной нейронной сети (ИНС). Данный метод основан на использовании 1D-слоев сверточной нейронной сети. Для обучения нейронной сети была применена термодинамическая модель простого теплообменника в программе UniSim design с использованием уравнения состояния Пенга–Робинсона. С помощью термодинамической модели была создана синтетическая база данных по изобарным кривым кипения СХА разного состава. Для записи базы данных был разработан алгоритм на языке программирования Python, и с помощью COM интерфейса была выгружена информация по изобарным кривым кипения для 1 049 500 вариантов состава СХА. Генерация составов СХА была проведена с помощью метода Монте-Карло с равномерным распределением псевдослучайного числа. Авторами разработана архитектура искусственной нейронной сети, которая позволяет подбирать состав СХА. Для обучения ИНС была применена методика циклически изменяемого коэффициента обучения. В результате применения обученной ИНС был подобран состав СХА с минимальным температурным напором 3 К, а максимальным — не более 10 К между горячим и холодным потоками в теплообменнике. Было проведено сравнение предложенного метода с методом поиска наилучшего совпадения в исходной выборке по методу $k$-ближних соседей, а также со стандартным методом оптимизации SQP в программе UniSim design. Показано, что искусственная нейронная сеть может быть использована для подбора оптимального состава хладагента при анализе кривой охлаждения природного газа. Разработанный метод может помочь инженерам подбирать состав СХА в режиме реального времени, что позволит сократить энергетические затраты на сжижение природного газа.
Ключевые слова: сжиженный природный газ, СПГ, оптимизация производства СПГ, смесевой хладагент, СХА, нейронные сети, искусственный интеллект. -
Численное исследование динамики движения тела квадратной формы в сверхзвуковом потоке за ударной волной
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 755-766В ряде фундаментальных и прикладных задач возникает необходимость описания динамики движения частиц сложной формы в высокоскоростном потоке газа. В качестве примера можно привести движение угольных частиц за фронтом сильной ударной волныв о время взрыва в угольной шахте. Статья посвящена численному моделированию динамики поступательного и вращательного движения тела квадратной формык ак модельного примера частицы более сложной, чем круглая, формы, в сверхзвуковом потоке за проходящей ударной волной. Постановка задачи приближенно соответствует натурным экспериментам В. М. Бойко и С. В. Поплавского (ИТПМ СО РАН).
Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием разработанного ранее и верифицированного метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величиныш ага, расчет динамики движения тела (определение силыи момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. Для расчета численного потока через ребра ячеек, пересекаемых границами тела, используется двухволновое приближение при решении задачи Римана и схема Стигера – Уорминга.
Движение квадрата со стороной 6 мм инициировалось прохождением ударной волныс числом Маха 3,0, распространяющейся в плоском канале длиной 800 мм и шириной 60 мм. Канал был заполнен воздухом при пониженном давлении. Рассматривалась различная начальная ориентация квадрата относительно оси канала. Обнаружено, что начальное положение квадрата стороной поперек потока является менее устойчивым при его движении, чем начальное положение диагональю поперек потока. В этом расчетные результаты качественно соответствуют экспериментальным наблюдениям. Для промежуточных начальных положений квадрата описан типичный режим его движения, состоящий из колебаний, близких к гармоническим, переходящих во вращение с постоянной средней угловой скоростью. В процессе движения квадрата наблюдается в среднем монотонное уменьшение расстояния между центром масс и центром давления до нуля.
Ключевые слова: ударная волна, метод декартовых сеток, уравнения Эйлера, сверхзвуковой поток, тело квадратной формы, вращение. -
Разработка методического подхода и численное моделирование теплогидравлических процессов в промежуточном теплообменнике реактора БН
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 877-894В работе представлены результаты трехмерного численного моделирования теплогидравлических процессов в промежуточном теплообменнике перспективного реактора на быстрых нейтронах с натриевым теплоносителем (БН) с учетом разработанного методического подхода.
Промежуточный теплообменник (ПТО) размещен в корпусе реактора и предназначен для передачи тепла от натрия первого контура, циркулирующего в межтрубном пространстве, натрию второго контура, циркулирующему внутри труб. Перед входными окнами ПТО при интегральной компоновке оборудования первого контура в реакторе БН имеет место температурное расслоение теплоносителя из-за неполного перемешивания разнотемпературных потоков на выходе из активной зоны. Внутри ПТО в районе входных и выходных окон теплообменника также реализуется сложное продольно-поперечное течение теплоносителя, которое приводит к неравномерному распределению расхода теплоносителя в межтрубном пространстве и, как следствие, к неравномерному распределению температуры и эффективности теплообмена по высоте и радиусу трубного пучка.
С целью подтверждения заложенных в проекте теплогидравлических параметров ПТО перспективного реактора БН был разработан методический подход для трехмерного численного моделирования теплообменника, размещенного в корпусе реактора, учитывающий трехмерную картину течения натрия на входе и внутри ПТО, а также обосновывающий рекомендации для упрощения геометрии расчетной модели ПТО. Численное моделирование теплогидравлических процессов в ПТО перспективного реактора БН проводилось с использованием программного комплекса FlowVision со стандартной $k-\varepsilon$-моделью турбулентности и моделью турбулентного теплопереноса LMS. Для повышения представительности численного моделирования трубного пучка ПТО выполнены верификационные расчеты однотрубного и многотрубного теплообменников «натрий – натрий» с соответствующими конструкции ПТО геометрическими характеристиками. Для определения входных граничных условий в модели ПТО выполнен дополнительный трехмерный расчет с учетом неравномерной картины течения в верхней смесительной камере реактора. Расчетная модель ПТО была оптимизирована за счет упрощения дистанционирующих поясов и выбора секторной модели. В результате численного моделирования ПТО получены распределения скорости натрия первого контура, температуры натрия первого и второго контуров. Удовлетворительное согласование результатов расчета с проектными данными по интегральным параметрам подтвердило принятые проектные теплогидравлические характеристики ПТО перспективного реактора БН.
-
Численное исследование высокоскоростных слоев смешения на основе двухжидкостной модели турбулентности
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1125-1142Данная работа посвящена численному исследованию высокоскоростных слоев смешения сжимаемых потоков. Рассматриваемая задача имеет широкий спектр применения в практических задачах и, несмотря на кажущуюся простоту, является достаточно сложной в плане моделирования, потому что в слое смешения в результате неустойчивости тангенциального разрыва скоростей поток от ламинарного течения переходит к турбулентному режиму. Поэтому полученные численные результаты рассмотренной задачи сильно зависят от адекватности используемых моделей турбулентности. В представленной работе данная задача исследуется на основе двухжидкостного подхода к проблеме турбулентности. Данный подход возник сравнительно недавно и достаточно быстро развивается. Главное преимущество двухжидкостного подхода — в том, что он ведет к замкнутой системе уравнений, тогда как известно, что давний подход Рейнольдса ведет к незамкнутой системе. В работе представлены суть двухжидкостного подхода для моделирования турбулентной сжимаемой среды и методика численной реализации предлагаемой модели. Для получения стационарного решения поставленной задачи применен метод установления и использована теория пограничного слоя Прандтля, которая ведет к упрощенной системе уравнений. В рассматриваемой задаче происходит смешение высокоскоростных потоков. Следовательно, необходимо моделировать также перенос тепла и давление нельзя считать постоянным, как это делается для несжимаемых потоков. При численной реализации конвективные члены в гидродинамических уравнениях аппроксимировались против потока вторым порядка точности в явном виде, а диффузионные члены в правых частях уравнений аппроксимировались центральной разностью в неявном виде. Для реализации полученных уравнений использовался метод прогонки. Для коррекции скорости через давления использован метод SIMPLE. В работе проведено исследование двухжидкостной модели турбулентности при различных начальных возмущениях потока. Полученные численные результаты показали, что хорошее соответствие с известными опытными данными наблюдается при интенсивности турбулентности на входе $0,1 < I < 1 \%$. Для демонстрации эффективности предлагаемой модели турбулентности представлены также данные известных экспериментов, а также результаты моделей $k − kL + J$ и LES. Показано, что двухжидкостная модель по точности не уступает известным современным моделям, а по затрате вычислительных ресурсов является более экономичной.
Ключевые слова: высокоскоростное смешивание слоев, число Маха, уравнения Навье – Стокса, двухжидкостная модель, метод SIMPLE. -
Моделирование теплового поля неподвижных симметричных тел в разреженной низкотемпературной плазме
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 73-91В работе исследуется процесс самосогласованной релаксации области возмущений, созданных в разреженной бинарной низкотемпературной плазме неподвижным заряженным шаром или цилиндром с абсорбирующей поверхностью. Особенностью подобных задач является их самосогласованный кинетический характер, при котором нельзя отделить процессы переноса в фазовом пространстве и формирования электромагнитного поля. Представлена математическая модель, позволяющая описывать и анализировать состояние газа, электрическое и тепловое поле в окрестности тела. Многомерность кинетической формулировки создает определенные проблемы при численном решении, поэтому для задачи подобрана криволинейная система неголономных координат, которая минимизирует ее фазовое пространство, что способствует повышению эффективности численных методов. Для таких координат обоснована и проанализирована форма кинетического уравнения Власова. Для его решения использован вариант метода крупных частиц с постоянным форм-фактором. В расчетах применялась подвижная сетка, отслеживающая смещение в фазовом пространстве носителя функции распределения, что дополнительно уменьшило объем контролируемой области фазового пространства. Раскрыты ключевые детали модели и численного метода. Модель и метод реализованы в виде кода на языке Matlab. На примере решения задачи для шара показано наличие в возмущенной зоне существенного неравновесия и анизотропии в распределении частиц по скорости. По результатам расчетов представлены картины эволюции структуры функции распределения частиц, профилей основных макроскопических характеристик газа — концентрации, тока, температуры и теплового потока, характеристик электрического поля в возмущенной области. Установлен механизм разогрева притягивающихся частиц в возмущенной зоне и показаны некоторые важные особенности процесса формирования теплового потока. Получены результаты, хорошо объяснимые с физической точки зрения, что подтверждает адекватность модели и корректность работы программного инструмента. Отмечаются создание и апробация основы для разработки в перспективе инструментов решения и более сложных задач моделирования поведения ионизированных газов вблизи заряженных тел.
Работа будет полезной специалистам в области математического моделирования, процессов тепло- и массообмена, физики низкотемпературной плазмы, аспирантам и студентам старших курсов, специализирующимся в указанных направлениях.
-
Математическая модель для оценки зоны интенсивного испарения газового конденсата при выбросах на мелководных скважинах
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 243-259Безопасное проведение аварийно-восстановительных работ на аварийных морских газоконденсатных скважинах возможно при учете опасных факторов, препятствующих проведению противофонтанных мероприятий. Одним из таких факторов является загазованность района работ вследствие выхода из водной толщи большого количества легкого, по сравнению с воздухом, природного газа, а также паров более тяжелых компонентов газового конденсата (ГК). Для оценки распределения взрывоопасных концентраций паров нефтепродукта в приводном слое атмосферы необходимо определить характеристики источника загазованности. На основании анализа теоретических работ, посвященных формированию поля скорости в верхнем слое моря вследствие выхода на поверхность большого количества газа, предложена аналитическая модель для расчета размеров области, в которой происходит испарение значительного количества поступающего на поверхность ГК при авариях на мелководных скважинах. Рассматривается стационарный режим истечения пластового продукта при открытом фонтанировании газонефтяных скважин морского базирования при подводном расположении их устья. Построена малопараметрическая модель испарения нефтепродуктов из пленок различной толщины. Показано, что размер зоны интенсивного испарения ГК при подводном выбросе на мелководных скважинах определяется объемным потоком жидкой фракции ГК, его фракционным составом и выбранным порогом для оценки потока паров нефтепродукта в атмосферу. В контексте данной работы мелководными называются скважины при дебите газа от 1 до 20 млн м3 на глубинах порядка 50–200 метров. В этом случае струя пластового флюида из устья скважины на морском дне трансформируется в пузырьковый шлейф, типичная для летне-осеннего периода стратификация водной толщи не ограничивает выход шлейфа на поверхность моря, а скорость подъема пузырьков позволяет не принимать во внимание процесс растворения газа. Проведенный анализ был ограничен условиями близкими к штилевым. Такие условия благоприятны для проведения морских операций, однако неблагоприятны с точки зрения рассеяния высоких концентраций паров нефтепродуктов в приводном слое атмосферы над морем. В результате проведенной работы предложено аналитическое соотношение для приближенной оценки зоны интенсивного испарения ГК.
-
Сверхзвуковое обтекание системы тел
Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 969-980Просмотров за год: 1. Цитирований: 19 (РИНЦ).Работа посвящена аэродинамическим свойствам системы тел, обтекаемой сверхзвуковым потоком. Рассматривается вопрос об уменьшении взаимного влияния с увеличением размера, характеризующего разлет элементов системы. Для моделирования течения применен метод построения сетки из набора сеток. Одна из сеток, регулярная с прямоугольными ячейками, отвечает за интерференцию между телами и служит для описания внешнего невязкого течения. Другие сетки связаны с поверхностями обтекаемых тел и позволяют описать вязкие слои около обтекаемых тел. Эти сетки накладываются на первую, без совмещения каких-либо узлов. Граничные условия реализуются через интерполяцию функций на границах с одной сетки на другую.
-
Стехиометрический синтез метаболических путей
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1241-1267Просмотров за год: 6. Цитирований: 3 (РИНЦ).Описан векторно-матричный подход для теоретического конструирования метаболических путей, превращающих химические соединения, а именно заданные субстраты, в желаемые продукты. Это математическая основа для генерирования альтернативных наборов биохимических реакций, выполняющих заданное превращение «субстрат–продукт». Эти пути получаются из применяемой базы данных по биохимическим реакциям и используют стехиометрию и ограничения, основанные на необратимости некоторых реакций. Показано, что число ограничений может быть заметно снижено благодаря существованию семейств параллельных ограничительных плоскостей в пространстве потоков через реакции. Совпадающие плоскости с противоположными направлениями ограничений приводят к существованию фиксированных значений потоков через реакции. Рассмотрена также задача исключения так называемых футильных циклов. Использование этих факторов позволяет существенно снизить сложность задачи и необходимые вычислительные ресурсы. Приведен пример альтернативных биохимических путей превращения глюкозы и глицерина в янтарную кислоту. Обнаружено, что для заданной пары «субстрат–продукт» многие пути имеют один и тот же баланс макроэргических связей.
-
Численное моделирование воздушного охлаждения емкости для десублимации компонентов газовой смеси
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 521-529Просмотров за год: 3. Цитирований: 1 (РИНЦ).В химической технологии для получения очищенного конечного продукта часто используется процесс десублимации. Для этого используются охлаждаемые жидким азотом или холодным воздухом емкости. Смесь газов протекает внутри емкости и охлаждается до температуры конденсации или десублимации некоторых компонентов газовой смеси. Конденсированные компоненты оседают на стенках емкости. В статье представлена математическая модель для расчета охлаждения емкостей для десублимации паров охлажденным воздухом. Математическая модель основана на уравнениях газовой динамики и описывает течение охлажденного воздуха в трубопроводе и воздушном теплообменнике с учетом теплообмена и трения. Теплота фазового перехода учитывается в граничном условии для уравнения теплопроводности путем задания потока тепла. Перенос тепла в теплоизолированных стенках трубопровода и в стенках емкости описывается нестационарными уравнениями теплопроводности. Решение системы уравнений проводится численно. Уравнения газовой динамики решаются методом С. К. Годунова. Уравнения теплопроводности решаются по неявной разностной схеме. В статье приведены результаты расчетов охлаждения двух последовательно установленных емкостей. Начальная температура емкостей равна 298 К. Холодный воздух течет по трубопроводу, через теплообменник первой емкости, затем по трубопроводу в теплообменник второй емкости. За 20 минут емкости остывают до рабочей температуры. Температура стенок емкостей отличается от температуры воздуха на величину не более чем 1 градус. Поток охлажденного воздуха позволяет поддерживать изотермичность стенок емкости в процессе десублимации компонентов из газовой смеси. Приведены результаты аналитической оценки времени охлаждения емкости и разности температуры между стенками емкости и воздухом в режиме десублимации паров. Аналитическая оценка основана на определении времени термической релаксации температуры стенок емкости. Результаты аналитических оценок удовлетворительно совпадают с результатами расчетов по представленной модели. Предложенный подход позволяет проводить расчет охлаждения емкостей потоком холодного воздуха, подаваемого по трубопроводной системе.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"