Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Стехиометрический синтез метаболических путей
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1241-1267Просмотров за год: 6. Цитирований: 3 (РИНЦ).Описан векторно-матричный подход для теоретического конструирования метаболических путей, превращающих химические соединения, а именно заданные субстраты, в желаемые продукты. Это математическая основа для генерирования альтернативных наборов биохимических реакций, выполняющих заданное превращение «субстрат–продукт». Эти пути получаются из применяемой базы данных по биохимическим реакциям и используют стехиометрию и ограничения, основанные на необратимости некоторых реакций. Показано, что число ограничений может быть заметно снижено благодаря существованию семейств параллельных ограничительных плоскостей в пространстве потоков через реакции. Совпадающие плоскости с противоположными направлениями ограничений приводят к существованию фиксированных значений потоков через реакции. Рассмотрена также задача исключения так называемых футильных циклов. Использование этих факторов позволяет существенно снизить сложность задачи и необходимые вычислительные ресурсы. Приведен пример альтернативных биохимических путей превращения глюкозы и глицерина в янтарную кислоту. Обнаружено, что для заданной пары «субстрат–продукт» многие пути имеют один и тот же баланс макроэргических связей.
-
Численное моделирование воздушного охлаждения емкости для десублимации компонентов газовой смеси
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 521-529Просмотров за год: 3. Цитирований: 1 (РИНЦ).В химической технологии для получения очищенного конечного продукта часто используется процесс десублимации. Для этого используются охлаждаемые жидким азотом или холодным воздухом емкости. Смесь газов протекает внутри емкости и охлаждается до температуры конденсации или десублимации некоторых компонентов газовой смеси. Конденсированные компоненты оседают на стенках емкости. В статье представлена математическая модель для расчета охлаждения емкостей для десублимации паров охлажденным воздухом. Математическая модель основана на уравнениях газовой динамики и описывает течение охлажденного воздуха в трубопроводе и воздушном теплообменнике с учетом теплообмена и трения. Теплота фазового перехода учитывается в граничном условии для уравнения теплопроводности путем задания потока тепла. Перенос тепла в теплоизолированных стенках трубопровода и в стенках емкости описывается нестационарными уравнениями теплопроводности. Решение системы уравнений проводится численно. Уравнения газовой динамики решаются методом С. К. Годунова. Уравнения теплопроводности решаются по неявной разностной схеме. В статье приведены результаты расчетов охлаждения двух последовательно установленных емкостей. Начальная температура емкостей равна 298 К. Холодный воздух течет по трубопроводу, через теплообменник первой емкости, затем по трубопроводу в теплообменник второй емкости. За 20 минут емкости остывают до рабочей температуры. Температура стенок емкостей отличается от температуры воздуха на величину не более чем 1 градус. Поток охлажденного воздуха позволяет поддерживать изотермичность стенок емкости в процессе десублимации компонентов из газовой смеси. Приведены результаты аналитической оценки времени охлаждения емкости и разности температуры между стенками емкости и воздухом в режиме десублимации паров. Аналитическая оценка основана на определении времени термической релаксации температуры стенок емкости. Результаты аналитических оценок удовлетворительно совпадают с результатами расчетов по представленной модели. Предложенный подход позволяет проводить расчет охлаждения емкостей потоком холодного воздуха, подаваемого по трубопроводной системе.
-
Дискретная форма уравнений в теории переключающегося воспроизводства с различными вариантами финансовых потоков
Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 803-815Просмотров за год: 1. Цитирований: 4 (РИНЦ).Разные варианты моделей переключающегося режима воспроизводства описывают совокупность взаимодействующих друг с другом макроэкономических производственных подсистем, каждой из которых соответствует свое домашнее хозяйство. Эти подсистемы различаются между собой по возрасту используемого ими основного капитала, поскольку они по очереди останавливают производство продукции для его обновления собственными силами (для ремонта оборудования и для привнесения инноваций, увеличивающих эффективность производства). Это принципиально отличает данный тип моделей от моделей, описывающих режим совместного воспроизводства, при котором обновление основного капитала и производство продукта происходят одновременно. Модели переключающегося режима воспроизводства позволяют наглядно описать механизмы таких явлений, как денежные кругообороты и амортизация, а также описывать различные виды монетарной политики, позволяют по-новому интерпретировать механизмы экономического роста. В отличие от многих других макроэкономических моделей модели этого класса, в которых конкурирующие между собой подсистемы поочередно приобретают преимущество над остальными за счет обновления, принципиально не равновесны. Изначально они были описаны в виде систем обыкновенных дифференциальных уравнений со скачкообразно меняющимися коэффициентами. В численных расчетах, проводившихся для этих систем, в зависимости от значений параметров и начальных условий была выявлена как регулярная, так и нерегулярная динамика. В данной работе показано, что простейшие варианты этой модели без использования дополнительных приближений могут быть представлены в дискретной форме (в виде нелинейных отображений) при различных вариантах (непрерывных и дискретных) финансовых потоков между подсистемами (интерпретируемых как зарплаты и субсидии). Эта форма представления более удобна для получения строгих аналитических результатов, а также для проведения более экономных и точных численных расчетов. В частности, ее использование позволило определить начальные условия, соответствующие скоординированному, устойчивому экономическому росту без систематического отставания в производительности одних подсистем от других.
-
Слоистая конвекция Бенара–Марангони при теплообмене по закону Ньютона–Рихмана
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 927-940Просмотров за год: 10. Цитирований: 3 (РИНЦ).В работе осуществлено математическое моделирование нестационарной слоистой конвекции Бенара–Марангони вязкой несжимаемой жидкости. Движение жидкости происходит в бесконечно протяженном слое. Система Обербека–Буссинеска, описывающая слоистую конвекцию Бенара–Марангони, является переопределенной, поскольку вертикальная скорость тождественно равна нулю. Для вычисления двух компонент вектора скорости, температурыи давления имеется система пяти уравнений (три уравнения сохранения импульсов, уравнение несжимаемости и уравнение теплопроводности). Для разрешимости системы Обербека–Буссинеска предложен класс точных решений. Структура предложенного решения такова, что уравнение несжимаемости удовлетворяется тождественно. Таким образом, удается устранить «лишнее» уравнение. Основное внимание уделено исследованию теплообмена на свободной границе слоя, которая считается недеформируемой. При описании термокапиллярного конвективного движения теплообмен задавался согласно закону Ньютона–Рихмана. Использование такого закона распространения тепла приводит к начально-краевой задаче третьего рода. Показано, что переопределенная начально-краевая задача в рамках представленного в статье класса точных решений уравнений Обербека–Буссинеска сводится к проблеме Штурма–Лиувилля. Следовательно, гидродинамические поля выражаются через тригонометрические функции (базис Фурье). Для определения собственных чисел задачи получено трансцендентное уравнение, которое решалось численно. Проведен численный анализ решений системы эволюционных и градиентных уравнений, описывающих течение жидкости. На основании вычислительного эксперимента проведен анализ гидродинамических полей. При исследовании краевой задачи было показано существование противотечений в слое жидкости. Существование противотечений эквивалентно наличию застойных точек в жидкости, что говорит о существовании локального экстремума кинетической энергии жидкости. Установлено, что у каждой компонентыск орости может быть не более одного нулевого значения. Таким образом, поток жидкости расслаивается на две зоны. В этих зонах касательные напряжения разного знака. Причем существует толщина слоя жидкости, при которой на нижней границе слоя жидкости касательные напряжения равны нулю. Данный физический эффект возможен только для классических ньютоновских жидкостей. Для поля температурыи давления справедливы те же свойства, что и для скоростей. Отметим, что в данном случае все нестационарные решения выходят на установившийся режим.
-
Расчетные исследования аэродинамических характеристик тематической модели летательного аппарата схемы «летающее крыло» с помощью программного комплекса FlowVision
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 67-74Просмотров за год: 10. Цитирований: 1 (РИНЦ).Модернизация методики аэродинамического эксперимента на современном уровне подразумевает создание математических моделей аэродинамических труб (электронных АДТ), предназначенных для вычислительного сопровождения экспериментальных исследований. Применение электронных АДТ в перспективе способно обеспечить получение достоверных аэродинамических характеристик летательных аппаратов по результатам исследования их моделей в аэродинамических трубах, согласования результатов, полученных на разных экспериментальных установках, сравнения расчетов моделей в безграничном потоке с учетом влияния подвесных устройств и границ потока в рабочей части экспериментальной установки.
Решение данной задачи требует создания научного задела, что, в свою очередь, подразумевает выполнение экспериментальных методических исследований и обширного комплекса расчетных исследований на основе численного решения осредненных по Рейнольдсу уравнений Навье–Стокса с применением суперкомпьютерных технологий. При этом на различных этапах расчетных исследований необходимо моделировать не только летательный аппарат, но и комплексную геометрию рабочей части аэродинамической трубы и подвесных устройств, что требует дополнительных методических расчетов. Также определенные трудности может представлять моделирование ламинарно-турбулентного перехода на поверхности модели, который в большинстве случаев имеет место в условиях эксперимента.
В данной работе представлены результаты расчетов аэродинамических характеристик тематической модели летательного аппарата схемы «летающее крыло» в безграничном потоке при разных углах атаки, полученные в рамках первого этапа работы по созданию математической модели рабочей части аэродинамической трубы Т-102 ЦАГИ. Расчеты выполнялись с использованием двухпараметрической k–ε модели турбулентности со специальными пристеночными функциями, приспособленными для расчета отрывных течений. В рамках данной работы исследовались основные продольные аэродинамические характеристики, было выполнено сравнение с результатами экспериментальных исследований в аэродинамической трубе Т-102 ЦАГИ с учетом погрешностей.
-
Поиск стохастических равновесий в транспортных сетях с помощью универсального прямо-двойственного градиентного метода
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 335-345Просмотров за год: 28.В статье рассматривается одна из задач транспортного моделирования — поиск равновесного распределения транспортных потоков в сети. Для описания временных издержек и распределения потоков в сети, представляемой с помощью графа, используется классическая модель Бэкмана. При этом поведение агентов не является полностью рациональным, что описывается посредством введения марковской логит-динамики: в каждый момент времени водительвыбирает маршрут случайно согласно распределению Гиббса с учетом текущих временных затрат на ребрах графа. Таким образом, задача сводится к поиску стационарного распределения для данной динамики, которое является стохастическим равновесием Нэша – Вардропа в соответствующей популяционной игре загрузки транспортной сети. Так как данная игра является потенциальной, эта задача эквивалентна минимизации некоторого функционала от распределения потоков, причем стохастичностьпро является в появлении энтропийной регуляризации. Для полученной задачи оптимизации построена двойственная задача. Для ее решения применен универсальный прямо-двойственный градиентный метод. Его особенность заключается в адаптивной настройке на локальную гладкость задачи, что особенно важно при сложной структуре целевой функции и невозможности априорно оценитьг ладкость с приемлемой точностью. Такая ситуация имеет место в рассматриваемой задаче, так как свойства функции сильно зависят от транспортного графа, на который мы не накладываем сильных ограничений. В статье приводится описание алгоритма, в том числе подробно рассмотрено применение численного дифференцирования для вычисления значения и градиента целевой функции. В работе представлены теоретическая оценка времени работы алгоритма и результаты численных экспериментов на примере небольшого американского города.
-
Высокорейнольдсовые расчеты турбулентного теплопереноса в программном комплексе FlowVision
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 461-481Просмотров за год: 23.В работе представлена модель тепловых пристеночных функций FlowVision (WFFV), позволяющая моделировать неизотермические течения жидкости и газа около твердых поверхностей на относительно грубых сетках с использованием различных моделей турбулентности. Настоящая работа продолжает исследование по разработке модели пристеночных функций, применимой в широком диапазоне значений величины y+. Модель WFFV предполагает гладкие профили касательной составляющей скорости, турбулентной вязкости, температуры и турбулентной теплопроводности около твердой поверхности. В работе исследуется возможность использования простой алгебраической модели для вычисления переменного турбулентного числа Прандтля, входящего в модель WFFV в качестве параметра. Результаты удовлетворительные. Обсуждаются особенности реализации модели WFFV в программном комплексе FlowVision. В частности, обсуждается граничное условие для уравнения энергии, используемое в высокорейнольдсовых расчетах неизотермических течений. Граничное условие выводится для уравнения энергии, записанного через термодинамическую энтальпию, и для уравнения энергии, записанного через полную энтальпию. Возможности модели демонстрируются на двух тестовых задачах: течение несжимаемой жидкости около пластины и сверхзвуковое течение газа около пластины (M = 3).
Анализ литературы показывает, что в экспериментальных данных и, как следствие, в эмпирических корреляциях для числа Стэнтона (безразмерного теплового потока) присутствует существенная неопределенность. Результаты расчетов дают основание полагать, что значения параметров модели WFFV, автоматически задаваемые в программе по умолчанию, позволяют рассчитывать тепловые потоки на твердых протяженных поверхностях с инженерной погрешностью. В то же время очевидно, что невозможно изобрести универсальные пристеночные функции. По этой причине управляющие параметры модели WFFV выведены в интерфейс FlowVision. При необходимости пользователь может настраивать модель на нужный класс течений.
Предлагаемая модель пристеночных функций совместима со всеми реализованными в программном комплексе FlowVision моделями турбулентности: Смагоринского, Спаларта–Аллмараса, SST $k-\omega$, $k-\varepsilon$ стандартной, $k-\varepsilon$ Abe Kondoh Nagano, $k-\varepsilon$ квадратичной и $k-\varepsilon$ FlowVision.
-
К проблеме программной реализации потенциально-потокового метода описания физико-химических процессов
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 817-832Просмотров за год: 12.В рамках современной неравновесной термодинамики (макроскопического подхода описания и математического моделирования динамики реальных физико-химических процессов) авторами был разработан потенциально-потоковый метод описания и математического моделирования этих процессов, применимый в общем случае реальных макроскопических физико-химических систем. В соответствии с этим методом описание и математическое моделирование этих процессов заключаются в определении через потенциалы взаимодействия термодинамических сил, движущих эти процессы, и кинетической матрицы, определяемой кинетическими свойствами рассматриваемой системы, которые, в свою очередь, определяют динамику протекания физико-химических процессов в этой системе под действием термо-динамических сил в ней. Зная термодинамические силы и кинетическую матрицу системы, определяются скорости протекания физико-химических процессов в системе, а через эти скорости согласно законам сохранения определяются скорости изменения ее координат состояния. Получается, таким образом, замкнутая система уравнений физико-химических процессов в системе. Зная потенциалы взаимодействия в системе, кинетические матрицы ее простых подсистем (отдельных процессов, сопряженных между собой и не сопряженных с другими процессами), коэффициенты, входящие в законы сохранения, начальное состояние рассматриваемой системы, внешние потоки в нее, можно получить полную динамику физико-химических процессов в этой системе. Однако в случае сложной физико-химической системы, в которой протекает большое количество физико-химических процессов, размерность системы уравнений этих процессов становится соответствующей. Отсюда возникает проблема автоматизации формирования описанной системы уравнений динамики физико-химических процессов в рассматриваемой системе. В настоящей статье разрабатывается архитектура библиотеки программных типов данных, реализующих заданную пользователем физико-химическую систему на уровне ее расчетной схемы (координат состояния системы, энергетических степеней свободы, физико-химических процессов, в ней протекающих, внешних потоков и взаимосвязи между этими перечисленными компонентами) и алгоритмов задания ссылок в этих типах данных, а также расчета описанных параметров системы.
-
Синхронизация и несимметрия в модели Курамото из трех неидентичных осцилляторов: особенности моделирования меридионального потока Солнца
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 345-356Модели Курамото нелинейно связанных осцилляторов позволяют достаточно просто описывать фазовую синхронизацию в сложных системах. В данной работе мы рассматриваем частный случай модели Курамото с тремя осцилляторами, возникший в процессе исследования и моделирования меридионального потока в конвективной зоне Солнца. В рассматриваемой модели крайние осцилляторы связаны только со средним, а прямая связь между ними отсутствует. В отличие от классических моделей Курамото рассматриваемая система предполагает существенную асимметрию в связях каждого из осцилляторов с двумя другими. Мы исследуем, какое влияние на синхронизацию оказывает коэффициент связи, характеризующий асимметрию связей среднего осциллятора. Необходимое и достаточное условия синхронизации в этой работе выписываются аналитически и получаются отличными от достаточных условий синхронизации в классической (симметричной) модели. Мы формулируем обратную задачу восстановления коэффициентов связи из фазовой разницы крайних осцилляторов при известных естественных частотах. Восстановление проводится в предположении синхронизации. Получено, что коэффициенты связи с точностью до знака восстанавливаются для любого значения коэффициента несимметрии среднего осциллятора. Мы исследуем, как меняется график зависимости суммарной связи от коэффициента несимметрии при изменении разности фаз крайних осцилляторов, а также в особых случаях совпадающих или сильно отличающихся естественных частот. В случае общего положения, при разности фаз крайних осцилляторов, близких к $\pi$, суммарная связь, соответствующая сильной асимметрии связей среднего осциллятора, оказывается меньше, чем в симметричном случае. Мы рассматриваем значения естественных частот, пересчитанные из скоростей меридионального потока Солнца. В зависимости от интерпретации данных гелиосейсмологии мы получаем два случая: случай общего положения, соответствующий наблюдениям средней ячейки, и особый случай, соответствующий наблюдениям нижней ячейки. Однозначное (с точностью до знака) восстановление коэффициентов связи в случае слабой суммарной связи возможно только в случае общего положения. В заключении делаются выводы о возможности использования курамотовских моделей с асимметрией связей, относящихся к одному осциллятору, для моделирования слабо связанных систем, к каким, по всей видимости, относится солнечная меридиональная циркуляция.
Ключевые слова: синхронизация, нелинейные осцилляторы, модель Курамото, симметрия, меридиональный поток Солнца. -
Влияние силы плавучести на смешанную конвекцию жидкости переменной плотности в квадратной каверне с подвижной крышкой
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 575-595В работе рассматривается задача стационарной смешанной конвекции и теплообмена вязкой теплопроводной жидкости в плоской квадратной каверне с подвижной верхней крышкой. Нагретая верхняя стенка каверны имеет температуру $T_{\mathrm{H}}$, холодная нижняя — $T_\mathrm{0}$ $(T_\mathrm{H} > T_\mathrm{0})$, а боковые стенки каверны теплоизолированы. Особенностью задачи является тот факт, что плотность жидкости может принимать произвольные значения в зависимости от величины перегрева крышки каверны. Математическая постановка включает в себя уравнения Навье–Стокса в переменных «скорость–давление» и баланса тепла, сформулированные с учетом несжимаемости течения жидкости и воздействия объемной силы плавучести. Разностная аппроксимация исходных дифференциальных уравнений выполнена методом контрольного объема. Численные решения задачи получены на сетке $501 \times 501$ для следующих значений параметров подобия: число Прандтля Pr = 0.70; число Рейнольдса Re = 100, 1000; число Ричардсона Ri = 0.1, 1, 10 и относительный перегрев верхней стенки $(T_\mathrm{H} − T_\mathrm{0})/T_\mathrm{0} = 0, 1, 2, 3$. Достоверность полученных результатов подтверждена их сравнением с литературными данными. Представлены подробные картины течения в виде линий тока и изотерм перегрева потока. Показано, что увеличение значения числа Ричардсона (рост влияния силы плавучести) приводит к принципиальному изменению структуры течения жидкости. Также установлено, что учет переменности плотности жидкости приводит к ослаблению влияния роста Ri на трансформацию структуры течения. Это связано с тем, что изменение плотности в замкнутом объеме всегда приводит к возникновению зон с отрицательной плавучестью. Как следствие, конкуренция положительных и отрицательных объемных сил приводит в целом к ослаблению эффекта плавучести. Также проанализировано поведение коэффициентов теплоотдачи (числа Нуссельта) и трения вдоль нижней стенки каверны в зависимости от параметров задачи. Выявлено, что влияние переменности плотности на эти коэффициенты тем больше, чем большие значения при прочих равных условиях принимает число Ричардсона.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





