Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Компактная разностная схема для анизотропной задачи конвекции Дарси
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 199-211Для моделирования гравитационной конвекции жидкости, насыщающей пористую среду, развивается компактная конечно-разностная схема. На основе закона Дарси с учетом анизотропии свойств проницаемости и теплопроводности рассматривается задача для прямоугольной области в переменных «функция тока» и «температура». На границах заданы условия непроницаемости и линейный по высоте профиль температуры. При определенных соотношениях между коэффициентами обратной проницаемости и теплопроводности данная система является косимметричной, при потере устойчивости механического равновесия от него ответвляется однопараметрическое семейство стационарных конвективных режимов. Разработана численная схема с конечно-разностной аппроксимацией четвертого порядка точности по пространственным координатам и с использованием метода Рунге – Кутты. Доказано, что построенная на девятиточечном шаблоне численная схема сохраняет свойство косимметрии исходной системы. Представлены результаты численного решения спектральной задачи по определению критических чисел Рэлея, отвечающих возникновению конвективных движений. Проведено сравнение с расчетами методом второго порядка точности и на основе комбинированной разностной схемы, обеспечивающей четвертый порядок аппроксимации по вертикальной координате. Показано, что с большой точностью критические числа являются двукратными при коэффициентах, обеспечивающих свойство косимметрии. Приведены результаты вычисления конвективных режимов и спектров устойчивости стационарных решений. Дана оценка эффективности предложенной компактной схемы.
Ключевые слова: компактная конечно-разностная схема, конвекция, модель Дарси, анизотропия, пористая среда, косимметрия. -
Об аппроксимации прозрачных граничных условий с высоким порядком точности для волнового уравнения
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 45-56Просмотров за год: 1. Цитирований: 1 (РИНЦ).В работе рассмотрена проблема повышения порядка аппроксимации прозрачных граничных условий для волнового уравнения при использовании разностных схем вплоть до шестого порядка точности по пространству. В качестве примера формулируется задача распространения волн в полубесконечном волноводе прямоугольного сечения. Предложен подход, позволивший вывести экономные и высокоточные формулы при дискретизации оператора прозрачных граничных условий. Приведены примеры численных расчетов, подтверждающие точность и устойчивость полученных разностных алгоритмов.
-
Разностная схема для решения задач гидродинамики при больших сеточных числах Пекле
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 833-848В работе рассматриваются развитие и применение метода учета заполненности прямоугольных ячеек материальной средой, в частности жидкостью для повышения гладкости и точности конечно-разностного решения задач гидродинамики со сложной формой граничной поверхности. Для исследования возможностей предлагаемых разностных схем рассмотрены две задачи вычислительной гидродинамики — пространственно-двумерного течения вязкой жидкости между двумя соосными полуцилиндрами и переноса веществ между соосными полуцилиндрами. Аппроксимация задач по времени выполнена на основе схем расщепления по физическим процессам. Дискретизация операторов диффузии и конвекции выполнена на основе интегроинтерполяционного метода с учетом заполненности ячеек и без ее учета. Для решения задачи диффузии – конвекции при больших сеточных числах Пекле предложено использовать разностную схему, учитывающую функцию заполненности ячеек, и схему, построенную на основе линейной комбинации разностных схем «кабаре» и «крест» с весовыми коэффициентами, полученными в результате минимизации погрешности аппроксимации при малых числах Куранта. Для оценки точности численного решения в качестве эталона используется аналитическое решение, описывающее течение Куэтта – Тейлора. В случае непосредственного использования прямоугольных сеток (ступенчатой аппроксимации границ) относительная погрешность расчетов достигает 70 %, при тех же условиях использование предлагаемого метода позволяет уменьшить погрешность до 6%. Показано, что дробление прямоугольной сетки в 2–8 раз по каждому из пространственных направлений не приводит к такому же повышению точности, которой обладают численные решения, полученные с учетом заполненности ячеек. Предложенные разностные схемы, построенные на основе линейной комбинации разностных схем «кабаре» и «крест» с весовыми коэффициентами 2/3 и 1/3 соответственно, полученные в результате минимизации порядка погрешности аппроксимации, для задачи диффузии – конвекции обладают меньшей сеточной вязкостью и, как следствие, точнее описывают поведение решения в случае больших сеточных чисел Пекле.
-
Разностный метод решения уравнения конвекции–диффузии с неклассическим граничным условием в многомерной области
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 559-579В работе изучается многомерное уравнение конвекции-диффузии с переменными коэффициентами и неклассическим граничным условием. Рассмотрены два случая: в первом случае первое граничное условие содержит интеграл от неизвестной функции по переменной интегрирования $x_\alpha^{}$, а во втором случае — интеграл от неизвестной функции по переменной интегрирования $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении переноса примеси вдоль русла рек. Для приближенного решения поставленной задачи предложена эффективная в плане экономичности, устойчивости и сходимости разностная схема — локально-одномерная разностная схема А.А. Самарского с порядком аппроксимации~$O(h^2+\tau)$. Ввиду того что уравнение содержит первую производную от неизвестной функции по пространственной переменной $x_\alpha^{}$, для повышения порядка точности локально-одномерной схемы используется известный метод, предложенный А.А. Самарским при построении монотонной схемы второго порядка точности по $h_\alpha^{}$ для уравнения параболического типа общего вида, содержащего односторонние производные, учитывающие знак $r_\alpha^{}(x,\,t)$. Для повышения до второго порядка точности по $h_\alpha^{}$ краевых условий третьего рода воспользовались уравнением в предположении, что оно справедливо и на границах. Исследование единственности и устойчивости решения проводилось с помощью метода энергетических неравенств. Получены априорные оценки решения разностной задачи в $L_2^{}$-норме, откуда следуют единственность решения, непрерывная и равномерная зависимость решения разностной задачи от входных данных, а также сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи в $L_2^{}$-норме со скоростью, равной порядку аппроксимации разностной схемы. Для двумерной задачи построен алгоритм численного решения, проведены численные расчеты тестовых примеров, иллюстрирующие полученные в работе теоретические результаты.
-
Об одной модификации узлового метода характеристик
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 29-44Представлен вариант обратного метода характеристик (МОМХ), в алгоритм которого введен дополнительный дробный временной шаг, что позволяет повысить точность вычислений за счет более точной аппроксимации характеристик. Приведены расчетные формулы модифицированного метода для уравнений односкоростной модели газожидкостной смеси, с помощью которого рассчитаны одномерные, а также плоские тестовые задачи, имеющие автомодельные решения. При решении многомерных задач исходная система уравнений расщепляется на ряд одномерных подсистем, для расчета которых применяется обратный метод характеристик с дробным временным шагом. С использованием предложенного метода рассчитаны: одномерная задача распада произвольного разрыва в дисперсной среде; двумерная задача взаимодействия однородного газожидкостного потока с препятствием с присоединенным ударным скачком, а также течение с центрированной волной разрежения. Результаты численных расчетов этих задач сопоставлены с автомодельными решениями и отмечено их удовлетворительное совпадение. На примере задачи Римана с ударным скачком приведено сравнение с рядом консервативных, неконсервативных первого и повышенного порядков точности схем, из которого, в частности, следует, что представленный метод расчета вполне конкурентоспособен. Несмотря на то что применение МОМХ требует в разы больших временных затрат по сравнению с оригинальным обратным методом характеристик (ОМХ), вычисления можно проводить с увеличенным временным шагом и в ряде случаев получать более точные результаты. Отмечено, что метод с дробным временным шагом имеет преимущества в случаях, когда характеристики системы криволинейные. По этой причине для уравнений Эйлера целесообразно использовать ОМХ вместо МОМХ, поскольку в этом случае характеристики в пределах временного шага мало отличаются от прямых линий.
-
Влияние конечности мантиссы на точность безградиентных методов оптимизации
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 259-280Безградиентные методы оптимизации, или методы нулевого порядка, широко применяются в обучении нейронных сетей, обучении с подкреплением, а также в промышленных задачах, где доступны лишь значения функции в точке (работа с неаналитическими функциями). В частности, метод обратного распространения ошибки в PyTorch работает именно по этому принципу. Существует общеизвестный факт, что при компьютерных вычислениях используется эвристика чисел с плавающей точкой, и из-за этого возникает проблема конечности мантиссы.
В этой работе мы, во-первых, сделали обзор наиболее популярных методов аппроксимации градиента: конечная прямая/центральная разность (FFD/FCD), покомпонентная прямая/центральная разность (FWC/CWC), прямая/центральная рандомизация на $l_2$ сфере (FSSG2/CFFG2); во-вторых, мы описали текущие теоретические представления шума, вносимого неточностью вычисления функции в точке: враждебный шум, случайный шум; в-третьих, мы провели серию экспериментов на часто встречающихся классах задач, таких как квадратичная задача, логистическая регрессия, SVM, чтобы попытаться определить, соответствует ли реальная природа машинного шума существующей теории. Оказалось, что в реальности (по крайней мере на тех классах задач, которые были рассмотрены в данной работе) машинный шум оказался чем-то средним между враждебным шумом и случайным, в связи с чем текущая теория о влиянии конечности мантиссы на поиск оптимума в задачах безградиентной оптимизации требует некоторой корректировки.
-
Метод построения прогнозной нейросетевой модели временного ряда
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 737-756В данной статье рассматривается метод построения прогнозной нейросетевой модели временного ряда, основанный на определении состава входных переменных, построения обучающей выборки и самого обучения с использованием метода обратного распространения ошибки. Традиционные методы построения прогнозных моделей временного ряда (авторегрессионной модели, модели скользящего среднего или модели авторегрессии – скользящего среднего) позволяют аппроксимировать временной ряд линейной зависимостью текущего значения выходной переменной от некоторого количества ее предыдущих значений. Такое ограничение, как линейность зависимости, приводит к значительным ошибкам при прогнозировании.
Технологии интеллектуального анализа с применением нейросетевого моделирования позволяют аппроксимировать временной ряд нелинейной зависимостью. Причем процесс построения нейросетевой модели (определение состава входных переменных, числа слоев и количества нейронов в слоях, выбор функций активации нейронов, определение оптимальных значений весов связей нейронов) позволяет получить прогнозную модель в виде аналитической нелинейной зависимости.
Одним из ключевых моментов при построении нейросетевых моделей в различных прикладных областях, влияющих на ее адекватность, является определение состава ее входных переменных. Состав входных переменных традиционно выбирается из некоторых физических соображений или методом подбора. Для задачи определения состава входных переменных прогнозной нейросетевой модели временного ряда предлагается использовать особенности поведения автокорреляционной и частной автокорреляционной функций.
В работе предлагается метод определения состава входных переменных нейросетевых моделей для стационарных и нестационарных временных рядов, базирующийся на построении и анализе автокорреляционных функций. На основе предложенного метода разработаны алгоритм и программа в среде программирования Python, определяющая состав входных переменных прогнозной нейросетевой модели — персептрона, а также строящая саму модель. Осуществлена экспериментальная апробация предложенного метода на примере построения прогнозной нейросетевой модели временного ряда, отражающего потребление электроэнергии в разных регионах США, открыто опубликованной компанией PJM Interconnection LLC (PJM) — региональной сетевой организацией в Соединенных Штатах. Данный временной ряд является нестационарным и характеризуется наличием как тренда, так и сезонности. Прогнозирование очередных значений временного ряда на ос- нове предыдущих значений и построенной нейросетевой модели показало высокую точность аппроксимации, что доказывает эффективность предлагаемого метода.
-
Вычислительный алгоритм для изучения внутренних ламинарных потоков многокомпонентного газа с разномасштабными химическими процессами
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1169-1187Разработан вычислительный алгоритм для изучения химических процессов во внутренних течениях многокомпонентного газа при воздействии лазерного излучения. Математическая модель представляет собой уравнения газовой динамики с химическими реакциями при малых числах Маха с учетом диссипативных членов, которые описывают динамику вязкой теплопроводной среды с диффузией, химическими реакциями и подводом энергии посредством лазерного излучения. Для данной математической модели характерно наличие нескольких сильно различающихся между собой временных и пространственных масштабов. Вычислительный алгоритм построен на основе схемы расщепления по физическим процессам. Каждый шаг интегрирования по времени разбивается на следующие блоки: решение уравнений химической кинетики, решение уравнения для интенсивности излучения, решение уравнений конвекции – диффузии, расчет динамической составляющей давления и расчет коррекции вектора скорости. Решение жесткой системы уравнений химической кинетики проводится с помощью специализированной явной схемы второго порядка точности или подключаемым модулем RADAU5. Для нахождения конвективных членов в уравнениях применяются численные потоки Русанова и WENO-схема повышенного порядка аппроксимации. На основе полученного алгоритма разработан код с использованием технологии параллельных вычислений MPI. Созданный код использован для расчетов пиролиза этана с радикальными реакциями. Детально изучается формирование сверхравновесных концентраций радикалов по объему реактора. Проведено численное моделирование течения реакционного газа в плоской трубе с подводом лазерного излучения, востребованное для интерпретации экспериментальных результатов. Показано, что лазерное излучение увеличивает в разы конверсию этана и выходы целевых продуктов на коротких длинах ближе к входу в реакционную зону. Сокращение эффективной длины реакционной зоны позволяет предложить новые решения при проектировании реакторов конверсии этана в ценные углеводороды. Разработанные алгоритм и программа найдут свое применение в создании новых технологий лазерной термохимии.
-
Численное моделирование сходящихся сферических ударных волн с нарушенной симметрией
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 59-71На основе гидродинамического 3D-моделирования с использованием уравнения состояния газа твердых сфер Карнахана – Старлинга выполнено исследование развития периодических возмущений сходящейся сферической ударной волны, приводящих к ограничению кумуляции. Метод решения системы уравнений Эйлера на подвижных (сжимающихся) сетках позволяет с высокой точностью проследить эволюцию фронта сходящейся ударной волны в широком диапазоне изменения ее радиуса. Скорость сжатия расчетной сетки адаптируется к движению фронта ударной волны, при этом движение границ расчетной области выбирается из условия сверхзвуковой скорости ее движения относительно среды. Это приводит к тому, что решение на этапе сжатия определяется только начальными данными. Применена схема TVD второго порядка аппроксимации для реконструкции вектора консервативных переменных на границах расчетных ячеек в сочетании со схемой Русанова для расчета численного вектора потоков. Выбор обусловлен сильной тенденцией к проявлению в расчетах численной неустойчивости типа «карбункул», известной для других классов течений. Использование сжимающихся сеток позволило исследовать детальную картину течения на масштабе прекращения кумуляции, что невозможно в рамках метода геометрической динамики ударных волн Уизема (Whitham), применявшегося ранее другими авторами для расчета сходящихся ударных волн. Исследование показало, что ограничение кумуляции связанно с переходом от маховского взаимодействия сегментов сходящейся ударной волны к регулярному вследствие прогрессирующего роста отношения азимутальной скорости на фронте ударной волны к радиальной при уменьшении ее радиуса. Установлено, что это отношение представляется в виде произведения ограниченной осциллирующей функции радиуса и степенной функции радиуса с показателем степени, зависящим от начальной плотности упаковки в модели твердых сфер. Показано, что увеличение параметра плотности упаковки в модели твердых сфер приводит к значительному увеличению давлений, достигаемых в ударной волне с нарушенной симметрией. Впервые в расчете показано, что на масштабе прекращения кумуляции течение сопровождается формированием высокоэнергетичных вихрей, в которые вовлечено вещество, подвергшееся наибольшему ударно-волновому сжатию. Оказывая влияние на процессы тепло- и массопереноса в области наибольшего сжатия, это обстоятельство является важным для актуальных практических применений сходящихся ударных волн в целях инициирования реакций (детонации, фазовых переходов, управляемого термоядерного синтеза).
-
Применение метода компьютерной аналогии для решения сложных нелинейных систем дифференциальных уравнений
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1083-1104В работе развивается предложенный ранее метод компьютерной аналогии (МКА), основанный на формализации операций цифрового компьютера. Обсуждается место предлагаемого подхода среди известных методов. Подчеркивается, что целью является получение именно аналитических представлений решений, хотя пока в ряде случаев приходится ограничиться полуаналитическими аппроксимациями. Подробно изучается способ построения решений для уравнения Ван дер Поля (сводящегося к нелинейной системе дифференциальных уравнений), для систем Лоренца, Мариока – Шимицу и Рёсслера. Для трех последних нелинейных систем рассматриваются параметры, при которых решения демонстрируют черты детерминистического хаоса. Строятся полуаналитические решения, основанные на представлении решения в виде отрезка сходящегося степенного ряда по шагу независимой переменной при использовании аппроксимирующих разностных схем. Для предотвращения переполнения применяется формализованная операция переноса разрядов. Для перехода на следующий шаг по независимой переменной используется сходящаяся к решению разностная схема, называемая руководящей. Таким образом, получаемая аппроксимация суммой всего с несколькими членами обеспечивает приближение к решению с любой точностью в соответствии с точностью руководящей разностной схемы. Старшие разряды в получаемом приближении обнаруживают вероятностные свойства, которые удается моделировать известными распределениями, что приводит к получению аналитических и полуаналитических аппроксимаций. В работе представлены линейные приближения, являющиеся основой для полных приближений решений и дающие важные качественные, а также некоторые количественные свойства решений. Описываются аппроксимации различного порядка, в том числе и не гарантирующие сходимости к точному решению, но упрощающие анализ определенных свойств решения нелинейных уравнений и систем. В частности, для уравнения Ван дер Поля показывается, что соответствующая ему система уравнений имеет циклическое решение, а также оценивается его масштаб. С помощью модификаций МКА (с некоторыми чертами метода Монте-Карло), в которых удается свернуть рекуррентные последовательности, построены полные решения в простых ситуациях. Упоминается перспективный подход, позволяющий представлять решение с помощью ветвящихся цепных дробей.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





