Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'нелинейная динамика':
Найдено статей: 100
  1. Ильичев В.Г., Дашкевич Л.В.
    Оптимальный промысел и эволюция путей миграции рыбных популяций
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 879-893

    Представлена новая дискретная эколого-эволюционная математическая модель, в которой реализованы механизмы поиска эволюционно устойчивых маршрутов миграции рыбных популяций. Предложенные адаптивные конструкции имеют малую размерность и поэтому обладают высоким быстродействием, что позволяет проводить компьютерные расчеты на длительный срок за приемлемое машинное время. При исследовании устойчивости использованы как геометрические подходы нелинейного анализа, так и компьютерные асимптотические методы. Динамика миграции рыбной популяции описывается некоторой марковской матрицей, которая может изменяться в процессе эволюции. В семействе марковских матриц (фиксированной размерности) выделены базисные матрицы, которые использованы для генерации маршрутов миграции мутантов. В результате конкуренции исходной популяции с мутантами выявляется перспективное направление эволюции пространственного поведения рыбы при заданном промысле и кормовой базе. Данная модель была применена к решению проблемы оптимального вылова на долгосрочную перспективу, при условии, что водоем разделен на две части, у каждой из которых свой собственник. При решении оптимизационных задач используется динамическое программирование, основанное на построении функции Беллмана. Обнаружена парадоксальная стратегия заманивания, когда один из участников промысла на своей акватории временно сокращает вылов. В этом случае мигрирующая рыба больше времени проводит в этом районе (при условии равной кормовой базы). Такой маршрут эволюционно закрепляется и не изменяется даже после возобновления промысла в этом районе. Второй участник промысла может восстановить статус-кво, применив заманивание на своей части акватории. Возникает бесконечная последовательность заманиваний — своеобразная игра в поддавки. Введено новое эффективное понятие — внутренняя цена рыбной популяции, зависящая от района водоема. По сути, эти цены представляют собой частные производные функции Беллмана и могут быть использованы в качестве налога на выловленную рыбу. В этом случае проблема многолетнего промысла сводится к решению задачи одногодичной оптимизации.

  2. Никонов Э.Г., Назмитдинов Р.Г., Глуховцев П.И.
    Молекулярно-динамические исследования равновесных конфигураций одноименно заряженных частиц в планарных системах с круговой симметрией
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 609-618

    В данной работе представлены результаты численного анализа равновесных конфигураций отрицательно заряженных частиц (электронов), запертых в круговой области бесконечным внешним потенциалом на ее границе. Для поиска устойчивых конфигураций с минимальной энергией авторами разработан гибридный вычислительный алгоритм. Основой алгоритма являются интерполяционные формулы, полученные из анализа равновесных конфигураций, полученных с помощью вариационного принципа минимума энергии для произвольного, но конечного числа частиц в циркулярной модели. Решения нелинейных уравнений данной модели предсказывают формирование оболочечной структуры в виде колец (оболочек), заполненных электронами, число которых уменьшается при переходе от внешнего кольца к внутренним. Число колец зависит от полного числа заряженных частиц. Полученные интерполяционные формулы распределения полного числа электронов по кольцам используются в качестве начальных конфигураций для метода молекулярной динамики. Данный подход позволяет значительно повысить скорость достижения равновесной конфигурации для произвольно выбранного числа частиц по сравнению с алгоритмом имитации отжига Метрополиса и другими алгоритмами, основанными на методах глобальной оптимизации.

  3. Богомолов С.В.
    Стохастическая формализация газодинамической иерархии
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 767-779

    Математические модели газовой динамики и ее вычислительная индустрия, на наш взгляд, далеки от совершенства. Мы посмотрим на эту проблематику с точки зрения ясной вероятностной микромодели газа из твердых сфер, опираясь как на теорию случайных процессов, так и на классическую кинетическую теорию в терминах плотностей функций распределения в фазовом пространстве; а именно, построим сначала систему нелинейных стохастических дифференциальных уравнений (СДУ), а затем обобщенное случайное и неслучайное интегро-дифференциальное уравнение Больцмана с учетом корреляций и флуктуаций. Ключевыми особенностями исходной модели являются случайный характер интенсивности скачкообразной меры и ее зависимость от самого процесса.

    Кратко напомним переход ко все более грубым мезо-макроприближениям в соответствии с уменьшением параметра обезразмеривания, числа Кнудсена. Получим стохастические и неслучайные уравнения, сначала в фазовом пространстве (мезомодель в терминах СДУ по винеров- ским мерам и уравнения Колмогорова – Фоккера – Планка), а затем в координатном пространстве (макроуравнения, отличающиеся от системы уравнений Навье – Стокса и систем квазигазодинамики). Главным отличием этого вывода является более точное осреднение по скорости благодаря аналитическому решению стохастических дифференциальных уравнений по винеровской мере, в виде которых представлена промежуточная мезомодель в фазовом пространстве. Такой подход существенно отличается от традиционного, использующего не сам случайный процесс, а его функцию распределения. Акцент ставится на прозрачности допущений при переходе от одного уровня детализации к другому, а не на численных экспериментах, в которых содержатся дополнительные погрешности аппроксимации.

    Теоретическая мощь микроскопического представления макроскопических явлений важна и как идейная опора методов частиц, альтернативных разностным и конечно-элементным.

  4. Кондратов Д.В., Кондратова Т.С., Попов В.С., Попова А.А.
    Моделирование гидроупругого отклика пластины, установленной на нелинейно-упругом основании и взаимодействующей с пульсирующим слоем жидкости
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 581-597

    В работе сформулирована математическая модель гидроупругих колебаний пластины на нелинейно-упрочняющемся основании, взаимодействующей с пульсирующим слоем вязкой жидкости. В предложенной модели, в отличие от известных, совместно учтены упругие свойства пластины, нелинейность ее основания, а также диссипативные свойства жидкости и инерция ее движения. Модель представлена системой уравнений двумерной задачи гидроупругости, включающей: уравнение динамики пластины Кирхгофа на упругом основании с жесткой кубической нелинейностью, уравнения Навье – Стокса, уравнение неразрывности, краевые условия для прогибов пластины, давления жидкости на торцах пластины, а также для скоростей движения жидкости на границах контакта жидкости и ограничивающих ее стенок. Исследование модели проведено методом возмущений с последующим использованием метода итерации для уравнений тонкого слоя вязкой жидкости. В результате определен закон распределения давления жидкости на поверхности пластины и осуществлен переход к интегро-дифференциальному уравнению изгибных гидроупругих колебаний пластины. Данное уравнение решено методом Бубнова – Галёркина с применением метода гармонического баланса для определения основного гидроупругого отклика пластины и фазового сдвига. Показано, что исходная задача может быть сведена к исследованию обобщенного уравнения Дуффинга, в котором коэффициенты при инерционных, диссипативных и жесткостных членах определяются физико-механическими параметрами исходной системы. Найдены основной гидроупругий отклик пластины и фазовый сдвиг, проведено их численное исследование при учете инерции движения жидкости и для ползущего движения жидкости при нелинейно- и линейно-упругом основании пластины. Результаты расчетов показали необходимостьу чета вязкости жидкости и инерции ее движения совместно с упругими свойствами пластины и ее основания как для нелинейных колебаний, так и для линейных колебаний пластины.

  5. Брацун Д.А., Захаров А.П.
    Моделирование пространственно-временной динамики циркадианных ритмов Neurospora crassa
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 191-213

    В работе предложена новая модель циркадианных колебаний нейроспоры, которая описывает пространственно-временную динамику белков, ответственных за механизм биоритмов. Модель основывается на нелинейном взаимодействии белков FRQ и WCC, кодируемых генами frequency и white collar, и включает в себя как положительную, так и отрицательную петлю обратной связи. Главным элементом механизма колебаний является эффект запаздывания в биохимических реакциях транскрипции генов. Показано, что модель воспроизводит такие свойства циркадианных колебаний нейроспоры как захват частоты под действием внешнего периодического освещения, сброс фазы биоритмов при воздействии импульса света, устойчивость механизма колебаний по отношению к случайным флуктуациям и т. д. Исследованы волновые структуры, возникающие в ходе пространственной эволюции системы. Показано, что волны синхронизации биоритмов среды возникают под воздействием базального транскрипционного фактора.

    Просмотров за год: 6. Цитирований: 20 (РИНЦ).
  6. Брацун Д.А., Лоргов Е.С., Полуянов А.О.
    Репрессилятор с запаздывающей экспрессией генов. Часть I. Детерминистское описание
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 241-259

    Репрессилятором называют первую в синтетической биологии генную регуляторную сеть, искусственно сконструированную в 2000 году. Он представляет собой замкнутую цепь из трех генетических элементов — $lacI$, $\lambda cI$ и $tetR$, — которые имеют естественное происхождение, но в такой комбинации в природе не встречаются. Промотор каждого гена контролирует следующий за ним цистрон по принципу отрицательной обратной связи, подавляя экспрессию соседнего гена. В данной работе впервые рассматривается нелинейная динамика модифицированного репрессилятора, у которого имеются запаздывания по времени во всех звеньях регуляторной цепи. Запаздывание может быть как естественным, т. е. возникать во время транскрипции/трансляции генов в силу многоступенчатого характера этих процессов, так и искусственным, т. е. специально вноситься в работу регуляторной сети с помощью методов синтетической биологии. Предполагается, что регуляция осуществляется протеинами в димерной форме. Рассмотренный репрессилятор имеет еще две важные модификации: расположение на той же плазмиде гена $gfp$, кодирующего флуоресцентный белок, а также наличие в системе накопителя для белка, кодируемого геном $tetR$. В рамках детерминистского описания методом разложения на быстрые и медленные движения получена система нелинейных дифференциальных уравнений с запаздыванием на медленном многообразии. Показано, что при определенных значениях управляющих параметров единственное состояние равновесия теряет устойчивость колебательным образом. Для симметричного репрессилятора, у которого все три гена идентичны, получено аналитическое решение для нейтральной кривой бифуркации Андронова–Хопфа. Для общего случая асимметричного репрессилятора нейтральные кривые построены численно. Показано, что асимметричный репрессилятор является более устойчивым, так как система ориентируется на поведение наиболее стабильного элемента в цепи. Изучены нелинейные динамические режимы, возникающие в репрессиляторе при увеличении надкритических значений управляющих параметров. Кроме предельного цикла, отвечающего поочередным релаксационным пульсациям белковых концентраций элементов, в системе обнаружено существование медленного многообразия, не связанного с этим циклом. Долгоживущий переходный режим, который отвечает многообразию, отражает процесс длительной синхронизации пульсаций в работе отдельных генов. Производится сравнение полученных результатов с известными из литературы экспериментальными данными. Обсуждается место предложенной в работе модели среди других теоретических моделей репрессилятора.

    Просмотров за год: 30.
  7. Поляков С.В., Подрыга В.О.
    Исследование нелинейных процессов на границе раздела газового потока имет аллической стенки микроканала
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 781-794

    Работа посвящена исследованию влияния нелинейных процессов в пограничном слое на общий характер течений газа в микроканалах технических систем. Подобное исследование актуально для задач нанотехнологий. Одной из важных задач в этой сфере является анализ потоков газа в микроканалах в случае переходных и сверхзвуковых течений. Результаты этого анализа важны для техники газодинамического напыления и для синтеза новых наноматериалов. Из-за сложности реализации полномасштабных экспериментов на микро- и наномасштабах они чаще всего заменяются компьютерным моделированием. Эффективность компьютерного моделирования достигается как за счет использования новых многомасштабных моделей, так и за счет сочетания сеточных методов и методов частиц. В данной работе мы используем метод молекулярной динамики. Он был применен для исследования установления газового микротечения в металлическом канале. В качестве газовой среды был выбран азот. Металлические стенки микроканалов состояли из атомов никеля. В численных экспериментах были рассчитаны коэффициенты аккомодации на границе между течением газа и металлической стенкой. Исследование микросистемы в пограничном слое позволило сформировать многокомпонентную макроскопическую модель граничных условий. Эта модель была интегрирована в макроскопическое описание течения на основе системы квазигазодинамических уравнений. На основе такой преобразованной газодинамической модели были проведены расчеты микротечения в реальной микросистеме. Результаты были сопоставлены с классическим расчетом течения, не учитывающим нелинейные процессы в пограничном слое. Сравнение показало необходимость использования разработанной модели граничных условий и ее интеграции с классическим газодинамическим подходом.

  8. Захаров П.В.
    Эффект нелинейной супратрансмиссии в дискретных структурах: обзор
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 599-617

    В данной работе приводится обзор исследований, посвященных нелинейной супратрансмиссии и сопутствую- щим явлениям. Данный эффект заключается в передаче энергии на частотах, не поддерживаемых рассматриваемыми системами. Супратрансмиссия не зависит от интегрируемости системы, устойчива к демпфированию и различным классамгр аничных условий. Кроме того, нелинейная дискретная среда при некоторых общих условиях, накладываемых на структуру, может создавать неустойчивость, обусловленную внешним периодическим воздействием. Она является порождающимпроце ссом, лежащим в основе нелинейной супратрансмиссии. Это возможно, когда система поддерживает нелинейные моды различной природы, в частности дискретные бризеры. Тогда энергия проникает в систему, как только амплитуда внешнего гармонического возбуждения превышает максимальную амплитуду статического бризера той же частоты.

    Эффект нелинейной супратрансмиссии является важным свойством многих дискретных структур. Необходимыми условиями для его существования являются дискретность и нелинейность среды. Его проявление в системах различной природы говорит о его фундаментальности и значимости. В данном обзоре рассмотрены основные работы, затрагивающие вопрос нелинейной супратрансмисии в различных системах, преимущественно модельных.

    Многими авторскими коллективами ведутся исследования данного эффекта. В первую очередь это модели, описываемые дискретными уравнениями, в том числе sin-Гордона и дискретным нелинейным уравнением Шрёдингера. При этом эффект не является исключительно модельным и проявляет себя в натурных экспериментах в электрических цепях, в нелинейных цепочках осцилляторов, а также в метастабильных модульных метаструктурах. Происходит поэтапное усложнение моделей, что приводит к более глубокому пониманию явления супратрансмиссии, а переход к разупорядоченным и с элементами хаоса структурам позволяет говорить о более тонком проявлении данного эффекта. Численные асимптотические подходы позволяют исследовать нелинейную супратрансмиссию в сложных неинтегрируемых системах. Усложнение всевозможных осцилляторов, как физических, так и электрических, актуально для различных реальных устройств, базирующихся на подобных системах. В том числе в области нанообъектов и транспорта энергии в них посредством рассматриваемого эффекта. К таким системам относятся молекулярные, кристаллические кластеры и наноустройства. В заключении работы приводятся основные тенденции исследований нелинейной супратрансмиссии.

  9. Курушина С.Е., Федорова Е.А., Гуровская Ю.А.
    Методика анализа шумоиндуцированных явлений в двухкомпонентных стохастических системах реакционно-диффузионного типа со степенной нелинейностью
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 277-291

    В работе построена и исследуется обобщенная модель, описывающая двухкомпонентные системы реакционно-диффузионного типа со степенной нелинейностью и учитывающая влияние внешних шумов. Для анализа обобщенной модели разработана методология, включающая в себя линейный анализ устойчивости, нелинейный анализ устойчивости и численное моделирование эволюции системы. Методика проведения линейного анализа опирается на базовые подходы, в которых для получения характеристического уравнения используется матрица линеаризации. Нелинейный анализ устойчивости проводится с точностью до моментов третьего порядка включительно. Для этого функции, описывающие динамику компонент, раскладываются в ряд Тейлора до слагаемых третьего порядка. Затем с помощью теоремы Новикова проводится процедура усреднения. В результате полученные уравнения образуют бесконечную иерархично подчиненную структуру, которую в определенный момент необходимо прервать. Для этого пренебрегаем вкладом слагаемых выше третьего порядка как в самих уравнениях, так и при построении уравнений моментов. Полученные уравнения образуют набор линейных уравнений, из которых формируется матрица устойчивости. Эта матрица имеет довольно сложную структуру, в связи с чем ее решение может быть получено только численно. Для проведения численного исследования эволюции системы выбран метод переменных направлений. Из-за наличия в анализируемой системе стохастической части метод был модифицирован таким образом, что на целых слоях проводится генерация случайных полей с заданным распределением и функцией корреляции, отвечающих за шумовой вклад в общую нелинейность. Апробация разработанной методологии проведена на предложенной Barrio et al. модели реакции – диффузии, по результатам исследования которой им показана схожесть получаемых структур с пигментацией рыб. В настоящей работе внимание сосредоточено на анализе поведения системы в окрестности ненулевой стационарной точки. Изучена зависимость действительной части собственных значений от волнового числа. В линейном анализе получена область значений волновых чисел, при которых возникает неустойчивость Тьюринга. Нелинейный анализ и численное моделирование эволюции системы проводятся для параметров модели, которые, напротив, находятся вне области неустойчивости Тьюринга. В рамках нелинейного анализа найдены интенсивности аддитивного шума, при которых, несмотря на отсутствие условий для возникновения диффузионной неустойчивости, система переходит в неустойчивое состояние. Результаты численного моделирования эволюции апробируемой модели демонстрируют процесс образования пространственных структур тьюрингового типа при воздействии на нее аддитивного шума.

  10. Хавинсон М.Ю., Кулаков М.П.
    Математическое моделирование динамики численности разновозрастных занятых в экономике региона
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 441-454

    В статье рассматривается нелинейная модель динамики численности разновозрастных занятых в экономике региона, построенная по принципам базового моделирования в эконофизике. Продемонстрированы сложные режимы динамики модели, накладывающие фундаментальные ограничения на средне- и долгосрочный прогноз численности занятых в регионе. По аналогии с биофизическим подходом предложена классификация социальных взаимодействий разновозрастных работников. Приведен модельный анализ оценки уровня занятости среди возрастных групп населения. Верификация модели проведена на статистических данных Еврейской автономной области.

    Просмотров за год: 4. Цитирований: 15 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.