Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Обоснование связи модели Бэкмана с вырождающимися функциями затрат с моделью стабильной динамики
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 335-342С 50-х годов XX века транспортное моделирование крупных мегаполисов стало усиленно развиваться. Появились первые модели равновесного распределения потоков по путям. Наиболее популярной (и использующейся до сих пор) моделью была модель Бэкмана и др. 1955 г. В основу этой модели положены два принципа Вардропа. На современном теоретико-игровом языке можно кратко описать суть модели как поиск равновесия Нэша в популяционной игре загрузки, в которой потери игроков (водителей) рассчитываются исходя из выбранного пути и загрузках на этом пути, при фиксированных корреспонденциях. Загрузки (затраты) на пути рассчитываются как сумма затрат на различных участках дороги (ребрах графа транспортной сети). Затраты на ребре (время проезда по ребру) определяется величиной потока автомобилей на этом ребре. Поток на ребре, в свою очередь, определяется суммой потоков по всем путям, проходящим через заданное ребро. Таким образом, затраты на проезд по пути определяются не только выбором пути, но и тем, какие пути выбрали остальные водители. Таким образом, мы находимся в стандартной теоретико-игровой постановке. Специфика формирования функций затрат позволяет сводить поиск равновесия к решению задачи оптимизации (игра потенциальная). Эта задача оптимизации будет выпуклой, если функции затрат монотонно неубывающие. Собственно, различные предположения о функциях затрат формируют различные модели. Наиболее популярной моделью является модель с функцией затрат BPR. Такие функции используются при расчетах реальных городов повсеместно. Однако в начале XXI века Ю. Е. Нестеровым и А. де Пальмой было показано, что модели типа Бэкмана имеют серьезные недостатки. Эти недостатки можно исправить, используя модель, которую авторы назвали моделью стабильной динамики. Поиск равновесия в такой модели также сводится к задаче оптимизации. Точнее, даже задаче линейного программирования. В 2013 г. А. В. Гасниковым было обнаружено, что модель стабильной ди- намики может быть получена предельным переходом, связанным с поведением функции затрат, из модели Бэкмана. Однако обоснование упомянутого предельного перехода было сделано в нескольких важных (для практики), но все- таки частных случаях. В общем случае вопрос о возможности такого предельного перехода, насколько нам известно, остается открытым. Данная работа закрывает данный зазор. В статье в общем случае приводится обоснование возможности отмеченного предельного перехода (когда функция затрат на проезд по ребру как функция потока по ребру вырождается в функцию, равную постоянным затратам до достижения пропускной способности, и равна плюс бесконечности, при превышении пропускной способности).
Ключевые слова: модель равновесного распределения потоков по путям, модель Бэкмана, модель стабильной динамики.
Proof of the connection between the Backman model with degenerate cost functions and the model of stable dynamics
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 335-342Since 1950s the field of city transport modelling has progressed rapidly. The first equilibrium distribution models of traffic flow appeared. The most popular model (which is still being widely used) was the Beckmann model, based on the two Wardrop principles. The core of the model could be briefly described as the search for the Nash equilibrium in a population demand game, in which losses of agents (drivers) are calculated based on the chosen path and demands of this path with correspondences being fixed. The demands (costs) of a path are calculated as the sum of the demands of different path segments (graph edges), that are included in the path. The costs of an edge (edge travel time) are determined by the amount of traffic on this edge (more traffic means larger travel time). The flow on a graph edge is determined by the sum of flows over all paths passing through the given edge. Thus, the cost of traveling along a path is determined not only by the choice of the path, but also by the paths other drivers have chosen. Thus, it is a standard game theory task. The way cost functions are constructed allows us to narrow the search for equilibrium to solving an optimization problem (game is potential in this case). If the cost functions are monotone and non-decreasing, the optimization problem is convex. Actually, different assumptions about the cost functions form different models. The most popular model is based on the BPR cost function. Such functions are massively used in calculations of real cities. However, in the beginning of the XXI century, Yu. E. Nesterov and A. de Palma showed that Beckmann-type models have serious weak points. Those could be fixed using the stable dynamics model, as it was called by the authors. The search for equilibrium here could be also reduced to an optimization problem, moreover, the problem of linear programming. In 2013, A.V.Gasnikov discovered that the stable dynamics model can be obtained by a passage to the limit in the Beckmann model. However, it was made only for several practically important, but still special cases. Generally, the question if this passage to the limit is possible remains open. In this paper, we provide the justification of the possibility of the above-mentioned passage to the limit in the general case, when the cost function for traveling along the edge as a function of the flow along the edge degenerates into a function equal to fixed costs until the capacity is reached and it is equal to plus infinity when the capacity is exceeded.
-
Метод стохастической чувствительности в анализе динамических трансформаций в модели «две жертвы – хищник»
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1343-1356Данная работа посвящена исследованию проблемы моделирования и анализа сложных колебательных режимов, как регулярных, так и хаотических, в системах взаимодействующих популяций в присутствии случайных возмущений. В качестве исходной концептуальной детерминированной модели рассматривается вольтерровская система трех дифференциальных уравнений, описывающая динамику популяций жертв двух конкурирующих видов и хищника. Данная модель учитывает следующие ключевые биологические факторы: естественный прирост жертв, их внутривидовую и межвидовую конкуренцию, вымирание хищников в отсутствие жертв, скорость выедания жертв хищником, прирост популяции хищника вследствие выедания жертв, интенсивность внутривидовой конкуренции в популяции хищника. В качестве бифуркационного параметра используется скорость роста второй популяции жертв. На некотором интервале изменения этого параметра система демонстрирует большое разнообразие динамических режимов: равновесных, колебательных и хаотических. Важной особенностью этой модели является мультистабильность. В данной работе мы фокусируемся на изучении параметрической зоны тристабильности, когда в системе сосуществуют устойчивое равновесие и два предельных цикла. Такая биритмичность в присутствии случайных возмущений порождает новые динамические режимы, не имеющие аналогов в детерминированном случае. Целью статьи является детальное изучение стохастических явлений, вызванных случайными флуктуациями скорости роста второй популяции жертв. В качестве математической модели таких флуктуаций мы рассматриваем белый гауссовский шум. Методами прямого численного моделирования решений соответствующей системы стохастических дифференциальных уравнений выявлены и описаны следующие феномены: однонаправленные стохастические переходы с одного цикла на другой; триггерный режим, вызванный переходами между циклами; индуцированный шумом переход с циклов на равновесие, отвечающее вымиранию популяции хищника и второй жертвы. В статье представлены результаты анализа этих явлений с помощью показателей Ляпунова, выявлены параметрические условия переходов от порядка к хаосу и от хаоса к порядку. Для аналитического исследования таких вызванных шумом многоэтапных переходов были применены техника функций стохастической чувствительности и метод доверительных областей. В статье показано, как этот математический аппарат позволяет спрогнозировать интенсивность шума, приводящего к качественным трансформациям режимов стохастической популяционной динамики.
Ключевые слова: популяционная динамика, модель «две жертвы – хищник», случайные возмущения, бифуркации, равновесия, осцилляции, биритмичность, хаос, стохастическая чувствительность, доверительные области.
Stochastic sensitivity analysis of dynamic transformations in the “two prey – predator” model
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1343-1356This work is devoted to the study of the problem of modeling and analyzing complex oscillatory modes, both regular and chaotic, in systems of interacting populations in the presence of random perturbations. As an initial conceptual deterministic model, a Volterra system of three differential equations is considered, which describes the dynamics of prey populations of two competing species and a predator. This model takes into account the following key biological factors: the natural increase in prey, their intraspecific and interspecific competition, the extinction of predators in the absence of prey, the rate of predation by predators, the growth of the predator population due to predation, and the intensity of intraspecific competition in the predator population. The growth rate of the second prey population is used as a bifurcation parameter. At a certain interval of variation of this parameter, the system demonstrates a wide variety of dynamic modes: equilibrium, oscillatory, and chaotic. An important feature of this model is multistability. In this paper, we focus on the study of the parametric zone of tristability, when a stable equilibrium and two limit cycles coexist in the system. Such birhythmicity in the presence of random perturbations generates new dynamic modes that have no analogues in the deterministic case. The aim of the paper is a detailed study of stochastic phenomena caused by random fluctuations in the growth rate of the second population of prey. As a mathematical model of such fluctuations, we consider white Gaussian noise. Using methods of direct numerical modeling of solutions of the corresponding system of stochastic differential equations, the following phenomena have been identified and described: unidirectional stochastic transitions from one cycle to another, trigger mode caused by transitions between cycles, noise-induced transitions from cycles to the equilibrium, corresponding to the extinction of the predator and the second prey population. The paper presents the results of the analysis of these phenomena using the Lyapunov exponents, and identifies the parametric conditions for transitions from order to chaos and from chaos to order. For the analytical study of such noise-induced multi-stage transitions, the technique of stochastic sensitivity functions and the method of confidence regions were applied. The paper shows how this mathematical apparatus allows predicting the intensity of noise, leading to qualitative transformations of the modes of stochastic population dynamics.
-
A study on the dynamics of pest population with biocontrol using predator, parasite in presence of awareness
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 713-729The coconut tree is often mentioned as the “tree of life” due to its immense benefits to the human community ranging from edible products to building materials. Rugose spiraling whitefly (RSW), a natural enemy seems to be a major threat to farmers in bringing up these coconut trees. A mathematical model to study the dynamics of pest population in the presence of predator and parasite is developed. The biologically feasible equilibrium points are derived. Local asymptotic stability as well as global asymptotic stability is analyzed at the points. Furthermore, in order to educate farmers on pest control, we have added the impact of awareness programs in the model. The conditions of existence and stability properties of all feasible steady states of this model are analyzed. The result reveals that predator and parasite play a major role in reducing the immature pest. It also shows that pest control activities through awareness programs further reduce the mature pest population which decreases the egg laying rate which in turn reduces the immature population.
A study on the dynamics of pest population with biocontrol using predator, parasite in presence of awareness
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 713-729The coconut tree is often mentioned as the “tree of life” due to its immense benefits to the human community ranging from edible products to building materials. Rugose spiraling whitefly (RSW), a natural enemy seems to be a major threat to farmers in bringing up these coconut trees. A mathematical model to study the dynamics of pest population in the presence of predator and parasite is developed. The biologically feasible equilibrium points are derived. Local asymptotic stability as well as global asymptotic stability is analyzed at the points. Furthermore, in order to educate farmers on pest control, we have added the impact of awareness programs in the model. The conditions of existence and stability properties of all feasible steady states of this model are analyzed. The result reveals that predator and parasite play a major role in reducing the immature pest. It also shows that pest control activities through awareness programs further reduce the mature pest population which decreases the egg laying rate which in turn reduces the immature population.
-
Глобальный бифуркационный анализ системы Лесли – Говера с аддитивным эффектом Олли и функциональным откликом Холлинга
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 125-138В статье рассматриваются модели «хищник – жертва» и проводится глобальный бифуркационный анализ системы Лесли – Говера с аддитивным эффектом Олли и упрощенным функциональным откликом Холлинга III типа, которая моделирует динамику популяций хищников и их жертв в заданной экологической или биомедицинской системе. В данной системе используется наиболее распространенная математическая форма выражения эффекта (или закона) Олли через функцию роста жертвы. Закон Олли гласит, что существует вполне определенное соотношение между индивидуальной приспособленностью к условиям жизни и численностью либо плотностью индивидов данного вида, а именно: с увеличением численности популяции способность к выживанию и репродуктивная способность также увеличиваются. После алгебраических преобразований рациональную систему Лесли – Говера с аддитивным эффектом Олли и упрощенным функциональным откликом Холлинга III типа можно записать в виде квинтико-секстичной динамической системы, т.е. в виде системы с полиномами пятой и шестой степени. Используя информацию о ее особых точках и применяя наш бифуркационно-геометрический подход к качественному анализу, мы изучаем глобальные бифуркации предельных циклов квинтико-секстичной системы. Чтобы контролировать все бифуркации предельных циклов, особенно бифуркации кратных предельных циклов, необходимо знать свойства и комбинировать действия всех параметров, поворачивающих векторное поле системы. Это может быть сделано с помощью принципа окончания Уинтнера – Перко, согласно которому максимальное однопараметрическое семейство кратных предельных циклов заканчивается либо в особой точке, которая, как правило, имеет ту же кратность (цикличность), либо на сепаратрисном цикле, который также, как правило, имеет ту же кратность (цикличность). Этот принцип является следствием принципа естественного окончания, который был сформулирован для многомерных динамических систем Уинтнером, который изучал однопараметрические семейства периодических орбит ограниченной задачи трех тел и доказал, что в аналитическом случае любое однопараметрическое семейство периодических орбит может быть однозначно продолжено через любую бифуркацию, кроме бифуркации удвоения периода. Применяя планарный принцип Уинтнера – Перко, мы доказываем, что если цикличность фокуса в рассматриваемой системе равна трем, то система может иметь не более трех предельных циклов, окружающих одну особую точку.
Ключевые слова: модель «хищник –жертва», система Лесли – Говера, эффект Олли, функциональный отклик Холлинга III типа, параметр поворота поля, бифуркация, особая точка, предельный цикл, принцип окончания Уинтнера – Перко.
Global bifurcation analysis of the Leslie – Gower system with additive Allee effect and Holling functional response
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 125-138In this paper, we consider predator – prey models and carry out a global bifurcation analysis of the Leslie –Gower system with an additive Allee effect and a simplified Holling type III functional response, which models the dynamics of predator and prey populations in a given ecological or biomedical system. This system uses the most common mathematical form of expressing the Allee effect (or law) through the prey growth function. Allee’s law states that there is a very specific relationship between individual fitness to living conditions and the number or density of individuals of a given species, namely: with an increase in the population size, the ability to survive and reproductive ability also increases. After algebraic transformations, the rational Leslie –Gower system with additive Allee effect and simplified Holling type III functional response can be written as a quantic-sextic dynamical system, i. e., as a system with polynomials of the fifth and sixth degrees. Using information about its singular points and applying our bifurcation-geometric approach to qualitative analysis, we study global bifurcations of limit cycles of the quintic-sextic system. To control all limit cycle bifurcations, especially bifurcations of multiple limit cycles, it is necessary to know the properties and combine the actions of all parameters rotating the vector field of the system. This can be done using the Wintner – Perko termination principle, according to which a maximal one-parameter family of multiple limit cycles terminates either at a singular point, which typically has the same multiplicity (cyclicity), or at a separatrix cycle, which also typically has the same multiplicity (cyclicity). This principle is a consequence of the principle of natural termination which was stated for higher-dimensional dynamical systems by Wintner who studied one-parameter families of periodic orbits of the restricted three-body problem and proved that in the analytic case any oneparameter family of periodic orbits can be uniquely continued through any bifurcation except a period-doubling bifurcation. Applying the planar Wintner – Perko principle, we prove that if the cyclicity of the focus in the system under consideration is three, then the system can have at most three limit cycles surrounding one singular point.
-
Комплексный анализ воздействия ионов меди на первичные процессы фотосинтеза Scenedesmus quadricauda по результатам измерений флуоресценции хлорофилла a в суспензии и на одиночных клетках
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 293-322С помощью комплекса биофизических и математических методов исследовано влияние ионов меди на первичные процессы фотосинтеза пресноводной микроводоросли Scenedesmus quadricauda. Проведена оценка воздействия меди (0,1–10 мкМ CuSO4) по индукционным кривым флуоресценции хлорофилла a, полученным как на суспензии клеток, так и на отдельных клетках водорослей после инкубации в световых и темных условиях. Установлено, что медь оказывает дозозависимое воздействие на фотосинтетический аппарат микроводорослей. Низкие (0,1 мкМ) концентрации CuSO4 по ряду параметров оказывают стимулирующие воздействие, тогда как концентрация 10 мкМ приводила к существенным нарушениям функционирования фотосистемы II. Анализ флуоресценции одиночных клеток оказался более чувствительным по сравнению с традиционными измерениями на суспензиях, позволив выявить гетерогенность реакции клеток на действие CuSO4. Анализ кинетики быстрой флуоресценции хлорофилла a (JIP-тест) показал, что наибольшую чувствительность к воздействию меди проявили параметры $\delta_{Ro}$ и $\varphi_{Ro}$, которые достоверно отличались от контроля при воздействии не только высокой, но и средней концентрации (1 мкМ). При инкубации с CuSO4 в световых условиях снижение фотохимической активности клеток было менее выражено, чем в условиях темновой инкубации. Нормирование данных по интенсивности начальной и максимальной флуоресценции на оптическую плотность суспензии при $\lambda = 455$ нм значительно повысило чувствительность метода и позволило более точно интерпретировать эти данные. Использование L1-регуляризации (LASSO) по методу наименьших углов (LARS) для спектральной мультиэкспоненциальной аппроксимации индукционной кривой позволило выявить ее временные характеристики. Результаты математической обработки полученных данных дают основание предположить, что действие ионов меди приводит к увеличению нефотохимического тушения флуоресценции, являющегося защитным механизмом рассеивания избыточной энергии возбуждения. Наблюдаемая гетерогенность реакций отдельных клеток водорослей на воздействие меди, по-видимому, является важным адаптационным механизмом, позволяющим популяции сохранять жизнеспособность в условиях стресса. Полученные данные подтверждают перспективность использования методов флуоресцентного анализа для ранней диагностики стрессовых воздействий тяжелых металлов на фотосинтезирующие организмы.
Ключевые слова: Scenedesmus quadricauda, ионы меди (Cu2+), флуоресценция хлорофилла a, фотосистема II (ФСII), JIP-тест, квантовый выход фотохимического преобразования энергии $\left(\frac{F_\nu}{F_m}\right)$, микрофлуориметрия, нефотохимическое тушение, нормировка данных, спектральная мультиэкспоненциальная аппроксимация.
Comprehensive analysis of copper ions effect on the primary processes of photosynthesis in Scenedesmus quadricauda based on chlorophyll a fluorescence measurements in suspension and on single cells
Computer Research and Modeling, 2025, v. 17, no. 2, pp. 293-322The effect of copper ions on the primary processes of photosynthesis in freshwater microalgae Scenedesmus quadricauda was studied using a set of biophysical and mathematical methods. Chlorophyll a fluorescence transients were recorded both in cell suspensions and at the level of single cells after incubation at copper concentrations of 0.1–10 $\mu$M under light and dark conditions. It was found that copper has a dose-dependent effect on the photosynthetic apparatus of microalgae. At low copper concentration (0.1 $\mu$M), a stimulating effect on a number of studied parameters was observed, whereas significant disruption of Photosystem II activity was detected at 10 $\mu$M. The method of analyzing fluorescence of single cells proved to be more sensitive compared to traditional suspension measurements, allowing the detection of heterogeneous cellular responses to the toxicant. Analysis of chlorophyll a fast fluorescence kinetics showed that the JIP-test parameters $\delta_{Ro}$ and $\varphi_{Ro}$ were the most sensitive to copper exposure and were significantly different from the control when exposed not only to high but also to medium (1 $\mu$M) copper concentrations. The decrease in photochemical activity of cells during light incubation was less pronounced compared to dark conditions. The application of data normalization to optical density at $\lambda = 455$ nm significantly increased the sensitivity of the method and accuracy of result interpretation. The use of L1-regularization (LASSO) by the least angles method (LARS) for the spectral multi-exponential approximation of the fluorescence transients allowed us to reveal their temporal characteristics. Mathematical analysis of the obtained data suggested that copper exposure leads to increased non-photochemical quenching of fluorescence, which serves as a protective mechanism for dissipating excess excitation energy. The revealed heterogeneity of cellular responses to copper action may have important ecological significance, ensuring the survival of part of the population under stress conditions. The obtained data confirm the promise of using fluorescent analysis methods for early diagnosis of heavy metal stress effects on photosynthesizing organisms.
-
Аналоги фазовых переходов в экономике и демографии
Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 209-218Рассмотрены эмпирические аналогии между кризисными процессами в социальных системах и фазовыми переходами с сопутствующими им критическими явлениями в «неживых» физических системах. Представлены качественное модельное описание историко-демографического прогресса (постепенная конденсация хозяйственных доменов с улучшением условий жизни населения), без дополнительных допущений объясняющее гиперболический рост населения Земли в I–XX вв. н. э., и модель современного мирового экономического кризиса как следствия спонтанной «конденсации капиталов», создавшей неуправляемые хозяйственные конгломераты, при свободной экспансии американской экономики в 1990-х и 2000-х гг. с ослаблением конкуренции («расширение в пустоту»).
Ключевые слова: социальные системы, фазовый переход, критические явления, кризис, демография, экономика.
Phase transitions associated with economy and demography
Computer Research and Modeling, 2010, v. 2, no. 2, pp. 209-218Просмотров за год: 9. Цитирований: 9 (РИНЦ).Crises in social systems are considered by analogy with phase transitions and the corresponding critical phenomena in «non-living» many-particle physical systems. We present two qualitative physical models: (i) a historical and demographic progress as a gradual condensation of economical domains with an improvement of living conditions, and (ii) the modern economical crisis as a result of a spontaneous «condensation» of assets in a free expansion of the U.S. economy in 1990th and 2000th, reducing a control over large business enterprises formed in this process. The first model explains the observed hyperbolic growth of world population in the I–XX centuries A.D. without any additional assumption while the second model points to the analogy between the economic expansion with a drop of competition, and the expansion of gas into vacuum with a drop of temperature.
-
Стехиометрия метаболических путей в динамике клеточных популяций
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 455-475Проанализированы проблемы соответствия кинетических моделей клеточного метаболизма описываемому ими объекту. Изложены основы стехиометрии полного метаболизма и его больших частей. Описана биоэнергетическая форма стехиометрии, основанная на универсальной единице восстановленности химических соединений (редоксон). Выведены уравнения материально-энергетического баланса (биоэнергетической стехиометрии) метаболических потоков, в том числе баланса протонов с высоким электрохимическим потенциалом μH+ и макроэргических соединений. Получены соотношения, выражающие выход биомассы, скорость потребления источника энергии для роста и другие физиологически важные величины через биохимические характеристики клеточной энергетики. Вычислены значения максимального энергетического выхода биомассы при использовании клетками различных источников энергии. Эти значения совпадают с экспериментальными данными.
Ключевые слова: кинетические модели, законы сохранения, биоэнергетика, выход биомассы, скорость потребления источника энергии, поддержание клеток.
The stoichiometry of metabolic pathways in the dynamics of cellular populations
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 455-475Просмотров за год: 5. Цитирований: 1 (РИНЦ).The problem has been considered, to what extent the kinetic models of cellular metabolism fit the matter which they describe. Foundations of stoichiometry of the whole metabolism and its large regions have been stated. A bioenergetic representation of stoichiometry based on a universal unit of chemical compound reductivity, viz., redoxon, has been described. Equations of mass-energy balance (bioenergetic variant of stoichiometry) have been derived for metabolic flows including those of protons possessing high electrochemical potential μH+, and high-energy compounds. Interrelations have been obtained which determine the biomass yield, rate of uptake of energy source for cell growth and other important physiological quantities as functions of biochemical characteristics of cellular energetics. The maximum biomass energy yield values have been calculated for different energy sources utilized by cells. These values coincide with those measured experimentally.
-
Моделирование состояния планктонного сообщества с учетом плотностнозависимой смертности и пространственной активности зоопланктона
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 549-560Рассматривается вертикально-распределенная трехкомпонентная модель морской экосистемы. Состояние планктонного сообщества с учетом питательных веществ анализируется в условиях активных перемещений зоопланктона в вертикальном столбе воды. Аналитически получены условия ДС-неустойчивости системы в окрестности пространственно-однородного равновесия. Численно определены области параметров, при которых пространственнооднородное равновесие устойчиво к небольшим пространственно-неоднородным возмущениям, неустойчиво по Тьюрингу и колебательно неустойчиво. Исследовано влияние параметров, определяющих биологические характеристики зоопланктона и пространственные перемещения планктона, на возможность образования пространственных структур. Показано, что при малой скорости потребления фитопланктона на пространственную неустойчивость существенно влияет убыль зоопланктона, а при больших значениях этого параметра имеют значение перемешивание фитопланктона и пространственные перемещения зоопланктона.
Ключевые слова: пространственно-распределенная модель, планктонное сообщество, плотностнозависимая смертность, трофотаксис, ДС-неустойчивость.
Modeling of plankton community state with density-dependent death and spatial activity of zooplankton
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 549-560Просмотров за год: 6.A vertically distributed three-component model of marine ecosystem is considered. State of the plankton community with nutrients is analyzed under the active movement of zooplankton in a vertical column of water. The necessary conditions of the Turing instability in the vicinity of the spatially homogeneous equilibrium are obtained. Stability of the spatially homogeneous equilibrium, the Turing instability and the oscillatory instability are examined depending on the biological characteristics of zooplankton and spatial movement of plankton. It is shown that at low values of zooplankton grazing rate and intratrophic interaction rate the system is Turing instable when the taxis rate is low. Stabilization occurs either through increased decline of zooplankton either by increasing the phytoplankton diffusion. With the increasing rate of consumption of phytoplankton range of parameters that determine the stability is reduced. A type of instability depends on the phytoplankton diffusion. For large values of diffusion oscillatory instability is observed, with a decrease in the phytoplankton diffusion zone of Turing instability is increases. In general, if zooplankton grazing rate is faster than phytoplankton growth rate the spatially homogeneous equilibrium is Turing instable or oscillatory instable. Stability is observed only at high speeds of zooplankton departure or its active movements. With the increase in zooplankton search activity spatial distribution of populations becomes more uniform, increasing the rate of diffusion leads to non-uniform spatial distribution. However, under diffusion the total number of the population is stabilized when the zooplankton grazing rate above the rate of phytoplankton growth. In general, at low rate of phytoplankton consumption the spatial structures formation is possible at low rates of zooplankton decline and diffusion of all the plankton community. With the increase in phytoplankton predation rate the phytoplankton diffusion and zooplankton spatial movement has essential effect on the spatial instability.
-
Математическое моделирование динамики человеческого капитала
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 329-342В условиях развития современной экономики человеческий капитал является одним из главных факторов экономического роста. Формирование человеческого капитала начинается с рождения человека и продолжается в течение всей жизни, поэтому величина человеческого капитала неотделима от его носителей, что, в свою очередь, затрудняет учет данного фактора. Это привело к тому, что в настоящее время нет общепринятых методик расчета величины человеческого капитала. Можно выделить лишь несколько подходов к измерению человеческого капитала: стоимостной подход (по доходам или инвестициям) и индексный подход, из которых наиболее известен подход, разработанный под эгидой ООН.
В данной работе поставленная задача рассматривается совместно с задачей демографической динамики, решаемой во временно-возрастной плоскости, что позволяет наиболее полно учесть влияние временных изменений демографической структуры на динамику человеческого капитала.
Задача демографической динамики ставится в рамках модели Мак-Кендрика – фон Ферстера на основе уравнения динамики возрастного состава. Вид функций распределения рождений, смертности и миграции населения определяется на основе имеющейся статистической информации. Приводится численное решение задачи. Представлены анализ и прогноз демографических показателей. На основе задачи демографической динамики формулируется экономико-математическая модель динамики человеческого капитала. В задаче моделирования динамики человеческого капитала рассматриваются три составляющие: образовательная, составляющая здоровья и культурная (духовная) составляющая. Для описания эволюции составляющих человеческого капитала используется двумерное уравнение типа уравнения переноса. Объемы инвестиций в составляющие человеческого капитала определяются на основе расходных статей бюджета и частных расходов с учетом характерного временного жизненного цикла демографических элементов. Для прогнозирования динамики суммарной величины человеческого капитала используется одномерное кинетическое уравнение. Приводится методика расчета динамики данного фактора как функции времени. Представлены расчетные данные по динамике человеческого капитала для Российской Федерации. Как показали исследования, величина человеческого капитала интенсивно нарастала до 2008 года, в дальнейшем наступил период стабилизации, но после 2014 года имеет место отрицательная динамика данной величины.
Ключевые слова: демографическая динамика, динамика человеческого капитала, математическое моделирование, уравнения переноса, разностная схема, составляющие человеческого капитала, инвестиции в человеческий капитал.
Mathematical modeling of the human capital dynamic
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 329-342Просмотров за год: 34.In the conditions of the development of modern economy, human capital is one of the main factors of economic growth. The formation of human capital begins with the birth of a person and continues throughout life, so the value of human capital is inseparable from its carriers, which in turn makes it difficult to account for this factor. This has led to the fact that currently there are no generally accepted methods of calculating the value of human capital. There are only a few approaches to the measurement of human capital: the cost approach (by income or investment) and the index approach, of which the most well-known approach developed under the auspices of the UN.
This paper presents the assigned task in conjunction with the task of demographic dynamics solved in the time-age plane, which allows to more fully take into account the temporary changes in the demographic structure on the dynamics of human capital.
The task of demographic dynamics is posed within the framework of the Mac-Kendrick – von Foerster model on the basis of the equation of age structure dynamics. The form of distribution functions for births, deaths and migration of the population is determined on the basis of the available statistical information. The numerical solution of the problem is given. The analysis and forecast of demographic indicators are presented. The economic and mathematical model of human capital dynamics is formulated on the basis of the demographic dynamics problem. The problem of modeling the human capital dynamics considers three components of capital: educational, health and cultural (spiritual). Description of the evolution of human capital components uses an equation of the transfer equation type. Investments in human capital components are determined on the basis of budget expenditures and private expenditures, taking into account the characteristic time life cycle of demographic elements. A one-dimensional kinetic equation is used to predict the dynamics of the total human capital. The method of calculating the dynamics of this factor is given as a time function. The calculated data on the human capital dynamics are presented for the Russian Federation. As studies have shown, the value of human capital increased rapidly until 2008, in the future there was a period of stabilization, but after 2014 there is a negative dynamics of this value.
-
Режимы с обострением в истории человечества или воспоминания о будущем
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 931-947В статье рассмотрены режимы с обострением в социальной и биологической истории. Проведен анализ возможных причин резкого ускорения биологических и социальных процессов в определенные исторические эпохи. С использованием математического моделирования показано, что гиперболические тренды в социальной и биологической эволюции могут быть следствием переходных процессов в периоды расширения экологических ниш. Ускорение биологического видообразования связано с тем, что более ранние виды своей жизнедеятельностью изменяют среду обитания, делая ее более разнообразной, насыщая органикой, тем самым создавая благоприятные условия для появления новых видов. В социальной истории расширение экологических ниш связано с технологическими революциями, важнейшими из которых были: неолитическая революция — переход от присваивающего хозяйства к производящему (10 тыс. лет назад), «городская революция» — переход от неолита к бронзовому веку (5 тыс. лет назад), «осевое время» — переход к массовому освоению железных орудий (2.5 тыс. лет назад), промышленная революция — переход от ручного труда к машинному (200 лет назад). Все эти технологические революции сопровождались резким демографическим ростом, изменениями в социальной и политической сфе- рах. Так, наблюдаемый в последние столетия гиперболический характер роста некоторых демографических, экономических и других показателей мировой динамики — это следствие переходных процессов, начавшихся вследствие промышленной революции (замены ручного труда машинным) и предваряющих переход общества на новую стадию своего развития. Точка сингулярности гиперболического тренда характеризует окончание начального этапа этого процесса и переход к завершающей его стадии. Предложена математическая модель, описывающая демографические и экономические изменения в эпохи перемен. Показано, что прямым аналогом современной ситуации в этом смысле является «осевое время» (период с 8 века до нашей эры до начала нашей эры). Наличие такой аналогии позволяет заглянуть в будущее, изучая прошлое.
Ключевые слова: биологическая и социальная эволюция, гиперболический рост, переходные процессы, стабилизация.
Regimes with exacerbation in the history of mankind or memories of the future
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 931-947The article describes the modes with the exacerbation of social and biological history. The analysis of the possible causes of the sharp acceleration of biological and social processes in certain historical periods is carried out. Using mathematical modeling shows that hyperbolic trends in social and biological evolution may be the result of transitional processes in periods of expansion of ecological niches. Accelerating biological speciation due to the fact that its earlier life change inhabitancy, making it more diverse, saturating the organic, thus creating favourable conditions for the emergence of new species. In the social history of the expansion of ecological niches associated with technological revolutions, of which the most important were: Neolithic revolution — the transition from appropriating economy to producing economy (10 thousand years ago), “urban revolution” — a shift from the Neolithic epoch to the bronze epoch (5 thousand years ago), the “axial age” — transition to the development of iron tools (2.5 thousand years ago), the industrial revolution — the transition from manual labor to machine production (200 years ago). All of these technological revolutions have been accompanied by dramatic population growth, changes in social and political spheres. So, observed in the last century, hyperbolic nature of some demographic, economic growth and other indicators of world dynamics is a consequence of the transition process, which began as a result of the industrial revolution and to prepare for the transition of the society to a new stage of its development. Singularity point of hyperbolic trend shows the end of the initial phase of the process and marks the transition to the final stage. The mathematical model describing the demographic and economic changes in the era of change is proposed. It is shown that a direct analogue of the contemporary situation in this sense is the “axial age” (since 8 century BC to the beginning of our era). The existence of this analogy allows you to see into the future by studying the past.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"