Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Применение модели кинетического типа для изучения пространственного распространения COVID-19
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 611-627Предлагается простая модель на основе уравнения кинетического типа для описания распространения вируса в пространстве посредством миграции носителей вируса из выделенного центра. Рассматриваются страны, для которых применима одномерная модель: Россия, Италия, Чили. Одномерный подход возможен из-за географического расположения этих стран и их протяженности в направлениях от центров заражения (Москвы, Ломбардии и Сантьяго соответственно). Определяется изменение плотности зараженных во времени и пространстве. Применяется двухпараметрическая модель. Первый параметр — величина средней скорости распространения, соответствующий переносу инфицированных транспортными средствами. Второй параметр — частота уменьшения количества инфицированных элементов по мере продвижения по территории страны, что связано с прибытием пассажиров в места назначения, а также с карантинными мерами, препятствующими их перемещению по стране. Параметры модели определяются по фактически известным данным. Строится аналитическое решение, для получения серии расчетов применяются также простые численные методы. В модели рассматривается пространственное распространение заболевания, при этом заражения на местах не учитываются. Поэтому вычисленные значения на начальном этапе хорошо соответствуют экспериментальным данным, а затем плотность заболевших начинает быстрее возрастать из-за заражений на местах. Тем не менее модельные расчеты позволяют делать некоторые предсказания. Помимо скорости заражения, возможна аналогичная «скорость выздоровления». По моменту времени достижения охвата большей части населения страны при движении фронта выздоровления делается вывод о начале глобального выздоровления, что соответствует реальным данным.
Application of the kinetic type model for study of a spatial spread of COVID-19
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 611-627A simple model based on a kinetic-type equation is proposed to describe the spread of a virus in space through the migration of virus carriers from a certain center. The consideration is carried out on the example of three countries for which such a one-dimensional model is applicable: Russia, Italy and Chile. The geographical location of these countries and their elongation in the direction from the centers of infection (Moscow, Milan and Lombardia in general, as well as Santiago, respectively) makes it possible to use such an approximation. The aim is to determine the dynamic density of the infected in time and space. The model is two-parameter. The first parameter is the value of the average spreading rate associated with the transfer of infected moving by transport vehicles. The second parameter is the frequency of the decrease of the infected as they move through the country, which is associated with the passengers reaching their destination, as well as with quarantine measures. The parameters are determined from the actual known data for the first days of the spatial spread of the epidemic. An analytical solution is being built; simple numerical methods are also used to obtain a series of calculations. The geographical spread of the disease is a factor taken into account in the model, the second important factor is that contact infection in the field is not taken into account. Therefore, the comparison of the calculated values with the actual data in the initial period of infection coincides with the real data, then these data become higher than the model data. Those no less model calculations allow us to make some predictions. In addition to the speed of infection, a similar “speed of recovery” is possible. When such a speed is found for the majority of the country's population, a conclusion is made about the beginning of a global recovery, which coincides with real data.
-
Модели популяционного процесса с запаздыванием и сценарий адаптационного противодействия инвазии
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 147-161Изменения численности y образующихся популяций могут развиваться по нескольким динамическим сценариям. Для стремительных биологических инвазий оказывается важным фактор времени выработки реакции противодействия со стороны биотического окружения. Известны два классических эксперимента с разным завершением противоборства биологических видов. В опытах Гаузе с инфузориями вселенный хищник после кратких осцилляций полностью уничтожал свой ресурс, так его $r$-параметр для созданных условий стал избыточен. Собственная репродуктивная активность не регулировалась дополнительными факторами и в результате становилась критичной для вселенца. В экспериментах Утиды с жуками и выпущенными паразитическими осами виды сосуществовали. В ситуации, когда популяцию с высоким репродуктивным потенциалом регулируют несколько естественных врагов, могут возникать интересные динамические эффекты, наблюдавшиеся у фитофагов в вечнозеленом лесу Австралии. Паразитические перепончатокрылые, конкурируя между собой, создают для быстро размножающихся вредителей псиллид систему регуляции с запаздыванием, когда допускается быстрое увеличение локальной популяции, но не превышающее порогового значения численности вредителя. В работе предложена модель на основе дифференциального уравнения с запаздыванием, описывающая сценарий адаптационной регуляции для популяции с большим репродуктивным потенциалом при активном, но запаздывающем противодействии с пороговой регуляцией данного вновь возникшего воздействия. За кратким максимумом следует быстрое сокращение численности, но минимизация не становится критической для популяции. Показано, что усложнение функции регуляции биотического противодействия приводит к стабилизации динамики после прохождения минимума численности быстро размножающимся видом. Для гибкой системы переходные режимы «рост/кризис» ведут к поиску нового равновесия в эволюционном противостоянии.
Ключевые слова: моделирование инвазий, адаптационные механизмы регуляции, биологи- ческая интерпретация запаздывания, сценарий популяционного кризиса.
Models of population process with delay and the scenario for adaptive resistance to invasion
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 147-161Changes in abundance for emerging populations can develop according to several dynamic scenarios. After rapid biological invasions, the time factor for the development of a reaction from the biotic environment will become important. There are two classic experiments known in history with different endings of the confrontation of biological species. In Gause’s experiments with ciliates, the infused predator, after brief oscillations, completely destroyed its resource, so its $r$-parameter became excessive for new conditions. Its own reproductive activity was not regulated by additional factors and, as a result, became critical for the invader. In the experiments of the entomologist Uchida with parasitic wasps and their prey beetles, all species coexisted. In a situation where a population with a high reproductive potential is regulated by several natural enemies, interesting dynamic effects can occur that have been observed in phytophages in an evergreen forest in Australia. The competing parasitic hymenoptera create a delayed regulation system for rapidly multiplying psyllid pests, where a rapid increase in the psyllid population is allowed until the pest reaches its maximum number. A short maximum is followed by a rapid decline in numbers, but minimization does not become critical for the population. The paper proposes a phenomenological model based on a differential equation with a delay, which describes a scenario of adaptive regulation for a population with a high reproductive potential with an active, but with a delayed reaction with a threshold regulation of exposure. It is shown that the complication of the regulation function of biotic resistance in the model leads to the stabilization of the dynamics after the passage of the minimum number by the rapidly breeding species. For a flexible system, transitional regimes of growth and crisis lead to the search for a new equilibrium in the evolutionary confrontation.
-
Промысловое воздействие на динамику популяции с возрастной и половой структурой: оптимальный равновесный промысел и эффект гидры
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1107-1130На основе дискретной по времени математической модели изучено влияние избирательного промысла с постоянной долей изъятия на динамику численности популяции с возрастной и половой структурой. При построении модели предполагается, что рождаемость популяции зависит от соотношения численностей полов и количества формируемых пар. Регуляция роста численности осуществляется путем лимитирования выживаемости молоди, когда с увеличением численностей половозрастных классов уменьшается выживаемость неполовозрелых особей. Рассмотрены случаи, когда изъятие осуществляется только из младшего возрастного класса либо из группы половозрелых самок или самцов. Выявлено, что изъятие зрелых самцов или самок на оптимальном уровне оказывается ответственным за изменение соотношения самок и самцов (с учетом среднего размера гарема). Показано, что максимальное число добытых самцов достигается либо при такой доле изъятия, когда изымается их избыточное количество и устанавливается баланс полов, либо при такой оптимальной доле изъятия, при которой соотношение полов смещено в сторону размножающихся самок. Оптимальный промысел самок, при котором добывается их наибольшее количество, либо сохраняет ранее существующий дефицит взрослых самцов, либо ведет к избытку самцов, либо приводит к установлению баланса полов. Обнаружено, что в зависимости от популяционных параметров для всех рассмотренных вариантов промысла может наблюдаться эффект гидры, т. е. увеличение равновесной численности изымаемого половозрастного класса (сразу после размножения) с ростом доли изъятия. Избирательный промысел, вследствие которого возникает эффект гидры, приводит одновременно к увеличению численности оставшейся части популяции после размножения и росту количества добытых особей. При этом численность эксплуатируемой группы после воспроизводства может быть даже выше, чем без эксплуатации. Равновесный промысел с оптимальной долей изъятия хотя и обеспечивает добычу максимально возможного количества особей, однако приводит к снижению численности популяции. Эффект гидры отмечается при меньших величинах доли изъятия, чем оптимальная доля. Вместе с тем следствием эффекта гидры может оказаться более высокая численность половозрастной группы при оптимальной эксплуатации по сравнению с тем уровнем, который отмечался в отсутствии промысла.
Ключевые слова: дискретная во времени модель, возрастная и половая структура, плотност- но-зависимая регуляция, промысел, устойчивость, эффект гидры.
Harvesting impact on population dynamics with age and sex structure: optimal harvesting and the hydra effect
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1107-1130Based on the time-discrete model, we study the effect of selective proportional harvesting on the population dynamics with age and sex structure. When constructing the model, we assume that the population birth rate depends on the ratio of the sexes and the number of formed pairs. The regulation of population growth is carried out by limiting the juvenile’s survival when the survival of immature individuals decreases with an increase in the numbers of sex and age classes. We consider cases where the harvest is carried out only from a younger age class or from a group of mature females or males. We find that the harvesting of males or females at the optimal level is responsible for changing the ratio of females to males (taking into account the average size of the harem). We show that the maximum number of harvested males is achieved either at such a harvest rate when their excess number is withdrawn and the balance of sexes is established or at such an optimal catch quota at which the sex ratio is shifted towards breeding females. Optimal female harvesting, in which the highest number of them are taken, either maintains a preexisting shortage of adult males or leads to an excess of males or the fixing of a sex balance. We find that, depending on the population parameters for all considered harvesting strategies, the hydra effect can observe, i. e., the equilibrium size of the exploited sex and age-specific group (after reproduction) can increase with the growth of harvesting intensity. The selective harvesting, due to which the hydra effect occurs, simultaneously leads to an increase remaining population size and the number of harvested individuals. At the same time, the size of the exploited group after reproduction can become even more than without exploitation. Equilibrium harvesting with the optimal harvest rate that maximizes yield leads to a population size decrease. The effect of hydra is at lower values of the catch quota than the optimal harvest rate. At the same time, the consequence of the hydra effect may be a higher abundance of the age-sex group under optimal exploitation compared to the level observed in the absence of harvesting.
-
Sensitivity analysis and semi-analytical solution for analyzing the dynamics of coffee berry disease
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 731-753Coffee berry disease (CBD), resulting from the Colletotrichum kahawae fungal pathogen, poses a severe risk to coffee crops worldwide. Focused on coffee berries, it triggers substantial economic losses in regions relying heavily on coffee cultivation. The devastating impact extends beyond agricultural losses, affecting livelihoods and trade economies. Experimental insights into coffee berry disease provide crucial information on its pathogenesis, progression, and potential mitigation strategies for control, offering valuable knowledge to safeguard the global coffee industry. In this paper, we investigated the mathematical model of coffee berry disease, with a focus on the dynamics of the coffee plant and Colletotrichum kahawae pathogen populations, categorized as susceptible, exposed, infected, pathogenic, and recovered (SEIPR) individuals. To address the system of nonlinear differential equations and obtain semi-analytical solution for the coffee berry disease model, a novel analytical approach combining the Shehu transformation, Akbari – Ganji, and Pade approximation method (SAGPM) was utilized. A comparison of analytical results with numerical simulations demonstrates that the novel SAGPM is excellent efficiency and accuracy. Furthermore, the sensitivity analysis of the coffee berry disease model examines the effects of all parameters on the basic reproduction number $R_0$. Moreover, in order to examine the behavior of the model individuals, we varied some parameters in CBD. Through this analysis, we obtained valuable insights into the responses of the coffee berry disease model under various conditions and scenarios. This research offers valuable insights into the utilization of SAGPM and sensitivity analysis for analyzing epidemiological models, providing significant utility for researchers in the field.
Ключевые слова: coffee berry disease (CBD), Colletotrichum kahawae pathogen, epidemic mathematical model, sensitivity analysis, Shehu transformation, Akbari – Ganji’s method (AGM), Pade approximation method, numerical simulation.
Sensitivity analysis and semi-analytical solution for analyzing the dynamics of coffee berry disease
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 731-753Coffee berry disease (CBD), resulting from the Colletotrichum kahawae fungal pathogen, poses a severe risk to coffee crops worldwide. Focused on coffee berries, it triggers substantial economic losses in regions relying heavily on coffee cultivation. The devastating impact extends beyond agricultural losses, affecting livelihoods and trade economies. Experimental insights into coffee berry disease provide crucial information on its pathogenesis, progression, and potential mitigation strategies for control, offering valuable knowledge to safeguard the global coffee industry. In this paper, we investigated the mathematical model of coffee berry disease, with a focus on the dynamics of the coffee plant and Colletotrichum kahawae pathogen populations, categorized as susceptible, exposed, infected, pathogenic, and recovered (SEIPR) individuals. To address the system of nonlinear differential equations and obtain semi-analytical solution for the coffee berry disease model, a novel analytical approach combining the Shehu transformation, Akbari – Ganji, and Pade approximation method (SAGPM) was utilized. A comparison of analytical results with numerical simulations demonstrates that the novel SAGPM is excellent efficiency and accuracy. Furthermore, the sensitivity analysis of the coffee berry disease model examines the effects of all parameters on the basic reproduction number $R_0$. Moreover, in order to examine the behavior of the model individuals, we varied some parameters in CBD. Through this analysis, we obtained valuable insights into the responses of the coffee berry disease model under various conditions and scenarios. This research offers valuable insights into the utilization of SAGPM and sensitivity analysis for analyzing epidemiological models, providing significant utility for researchers in the field.
-
Стохастические переходы от порядка к хаосу в метапопуляционной модели с миграцией
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 959-973Данная работа посвящена исследованию проблемы моделирования и анализа динамических режимов, как регулярных, так и хаотических, в системах связанных популяций в присутствии случайных возмущений. В качестве исходной детерминированной популяционной модели рассматривается дискретная модель Рикера. В работе исследуется динамика двух популяций, связанных миграцией. Миграция пропорциональна разнице между плотностями двух популяций с коэффициентом связи, который отвечает за силу миграционного потока. Изолированные популяционные подсистемы, не учитывающие миграцию и моделируемые отображением Рикера, демонстрируют различные динамические режимы: равновесный, периодический и хаотический. В данной работе в качестве бифуркационного параметра используется коэффициент связи, а также фиксируются параметры естественного прироста популяций, при которых одна изп одсистем находится в равновесном режиме, а во второй преобладает хаотический режим. Связывание двух популяций посредством миграции порождает новые динамические режимы, не наблюдавшиеся в изолированной модели. Целью данной статьи является анализ динамических режимов корпоративной динамики при вариации интенсивности перетоков между популяционными подсистемами. В статье представлен бифуркационный анализа ттракторов детерминированной модели двух связанных популяций, выявлены зоны моно- и бистабильности, даны примеры регулярных и хаотических аттракторов. Основной акцент данной работы сделан на сравнении устойчивости динамических режимов к случайным возмущениям в коэффициенте интенсивности миграции. Методами прямого численного моделирования выявлены и описаны индуцированные шумом переходы с периодического аттрактора на хаотический. В статье представлены результаты анализа стохастических явлений с помощью показателя Ляпунова. Показано, что в рассматриваемой модели существует зона изменения бифуркационного параметра, при котором даже с увеличением интенсивности случайных возмущений не происходит переход от порядка к хаосу. Для аналитического исследования вызванных шумом переходов применены техника функции стохастической чувствительности и метод доверительных областей. В работе показано, как с помощью этого математического аппарата можно предсказать критическую интенсивность шума, вызывающую трансформацию периодического режима в хаотический.
Ключевые слова: метапопуляция, связанные системы, случайные возмущения, стохастическая чувствительность, переход «порядок – хаос», модель Рикера.
Stochastic transitions from order to chaos in a metapopulation model with migration
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 959-973This paper focuses on the problem of modeling and analyzing dynamic regimes, both regular and chaotic, in systems of coupled populations in the presence of random disturbances. The discrete Ricker model is used as the initial deterministic population model. The paper examines the dynamics of two populations coupled by migration. Migration is proportional to the difference between the densities of two populations with a coupling coefficient responsible for the strength of the migration flow. Isolated population subsystems, modeled by the Ricker map, exhibit various dynamic modes, including equilibrium, periodic, and chaotic ones. In this study, the coupling coefficient is treated as a bifurcation parameter and the parameters of natural population growth rate remain fixed. Under these conditions, one subsystem is in the equilibrium mode, while the other exhibits chaotic behavior. The coupling of two populations through migration creates new dynamic regimes, which were not observed in the isolated model. This article aims to analyze the dynamics of corporate systems with variations in the flow intensity between population subsystems. The article presents a bifurcation analysis of the attractors in a deterministic model of two coupled populations, identifies zones of monostability and bistability, and gives examples of regular and chaotic attractors. The main focus of the work is in comparing the stability of dynamic regimes against random disturbances in the migration intensity. Noise-induced transitions from a periodic attractor to a chaotic attractor are identified and described using direct numerical simulation methods. The Lyapunov exponents are used to analyze stochastic phenomena. It has been shown that in this model, there is a region of change in the bifurcation parameter in which, even with an increase in the intensity of random perturbations, there is no transition from order to chaos. For the analytical study of noise-induced transitions, the stochastic sensitivity function technique and the confidence domain method are used. The paper demonstrates how this mathematical tool can be employed to predict the critical noise intensity that causes a periodic regime to transform into a chaotic one.
-
The impact of ecological mechanisms on stability in an eco-epidemiological model: Allee effect and prey refuge
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 139-169Eco-epidemiological models provide insights into factors influencing disease transmission and host population stability. This study developed two eco-epidemiological models to investigate the impacts of prey refuge availability and an Allee effect on dynamics. Model A incorporated these mechanisms, while model B did not. Both models featured predator – prey and disease transmission and were analyzed mathematically and via simulation. Model equilibrium states were examined locally and globally under differing parameter combinations representative of environmental scenarios. Model A and B demonstrated globally stable conditions within certain parameter ranges, signalling refuge and Allee effect terms promote robustness. Moreover, model A showed a higher potential toward extinction of the species as a result of incorporating the Allee effect. Bifurcation analyses revealed qualitative shifts in behavior triggered by modifications like altered predation mortality. Model A manifested a transcritical bifurcation indicating critical population thresholds. Additional bifurcation types were noticed when refuge and Allee stabilizing impacts were absent in model B. Findings showed disease crowding effect and that host persistence is positively associated with refuge habitat, reducing predator – prey encounters. The Allee effect also calibrated stability via heightened sensitivity to small groups. Simulations aligned with mathematical predictions. Model A underwent bifurcations at critical predator death rates impacting prey outcomes. This work provides a valuable framework to minimize transmission given resource availability or demographic alterations, generating testable hypotheses.
Ключевые слова: Allee effect, prey refuge, predator – prey, eco-epidemiological model, nonlinear incidence rate, local stability, global stability, Hopf bifurcation, transcritical bifurcation.
The impact of ecological mechanisms on stability in an eco-epidemiological model: Allee effect and prey refuge
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 139-169Eco-epidemiological models provide insights into factors influencing disease transmission and host population stability. This study developed two eco-epidemiological models to investigate the impacts of prey refuge availability and an Allee effect on dynamics. Model A incorporated these mechanisms, while model B did not. Both models featured predator – prey and disease transmission and were analyzed mathematically and via simulation. Model equilibrium states were examined locally and globally under differing parameter combinations representative of environmental scenarios. Model A and B demonstrated globally stable conditions within certain parameter ranges, signalling refuge and Allee effect terms promote robustness. Moreover, model A showed a higher potential toward extinction of the species as a result of incorporating the Allee effect. Bifurcation analyses revealed qualitative shifts in behavior triggered by modifications like altered predation mortality. Model A manifested a transcritical bifurcation indicating critical population thresholds. Additional bifurcation types were noticed when refuge and Allee stabilizing impacts were absent in model B. Findings showed disease crowding effect and that host persistence is positively associated with refuge habitat, reducing predator – prey encounters. The Allee effect also calibrated stability via heightened sensitivity to small groups. Simulations aligned with mathematical predictions. Model A underwent bifurcations at critical predator death rates impacting prey outcomes. This work provides a valuable framework to minimize transmission given resource availability or demographic alterations, generating testable hypotheses.
-
Моделирование пространственно-временной миграции близкородственных популяций
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 477-488Рассматривается модель распространения по ареалу конкурирующих за единый ресурс близкородственных популяций, записываемая в виде системы уравнений параболического типа. Анализируется случай переменной диффузии с миграционными потоками, зависящими от неравномерности распределения популяций и ресурсов. На основе метода прямых исследовано влияние миграции на формирование распределений популяций, изучены сценарии локального вытеснения и сосуществования видов. Найдены условия на параметры системы, при которых возникает непрерывное косимметричное семейство равновесий.
Ключевые слова: популяционная динамика, нелинейные параболические уравнения.
Modeling of spatialtemporal migration for closely related species
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 477-488We consider a model of populations that are closely related and share a common areal. System of nonlinear parabolic equations is formulated that incorporates nonlinear diffusion and migration flows induced by nonuniform densities of population and carrying capacity. We employ the method of lines and study the impact of migration on scenarios of local competition and coexistence of species. Conditions on system parameters are determined when a nontrivial family of steady states is formed.
Keywords: dynamics of populations, nonlinear parabolic equations.Просмотров за год: 6. Цитирований: 9 (РИНЦ). -
Влияние диффузии и конвекции на динамику хемостата
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 121-129В работе рассматривается популяционная динамика, описываемая модифицированной моделью хемостата, в которую включены диффузия, хемотаксис и нелокальные конкурентные потери. Для учета воздействия внешнего окружения экосистемы на популяцию, при построении численных решений в систему уравнений модели включались случайные параметры. С помощью компьютерного моделирования выявлено три динамических режима, зависящих от значений параметров системы: переход от начального состояния к пространственно-однородному стационарному состоянию, к пространственно-неоднородному распределению популяционной концентрации и к элиминации популяционной концентрации.
Ключевые слова: хемостат, диффузия, конвекция, популяционная динамика, нелокальные конкурентные потери.
Influence of diffusion and convection on the chemostat dynamics
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 121-129Просмотров за год: 1.Population dynamics is considered in a modified chemostat model including diffusion, chemotaxis, and nonlocal competitive losses. To account for influence of the external environment on the population of the ecosystem, a random parameter is included into the model equations. Computer simulations reveal three dynamic modes depending on system parameters: the transition from initial state to a spatially homogeneous steady state, to a spatially inhomogeneous distribution of population density, and elimination of population density.
-
Анализ стохастических аттракторов квадратичной дискретной популяционной модели с запаздыванием
Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 145-157В работе рассматривается квадратичная дискретная модель популяционной динамики с запаздыванием под воздействием случайных возмущений. Анализ стохастических аттракторов модели проводится с помощью методов прямого численного моделирования и техники функций стохастической чувствительности. Показана деформация вероятностных распределений случайных состояний вокруг устойчивых равновесий и циклов при изменении параметров. Продемонстрировано явление индуцированных шумом переходов в зоне дискретных циклов.
Ключевые слова: квадратичная дискретная популяционная модель с запаздыванием, функция стохастической чувствительности.
Analysis of stochastic attractors for time-delayed quadratic discrete model of population dynamics
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 145-157Просмотров за год: 3. Цитирований: 1 (РИНЦ).We consider a time-delayed quadratic discrete model of population dynamics under the influence of random perturbations. Analysis of stochastic attractors of the model is performed using the methods of direct numerical simulation and the stochastic sensitivity function technique. A deformation of the probability distribution of random states around the stable equilibria and cycles is studied parametrically. The phenomenon of noise-induced transitions in the zone of discrete cycles is demonstrated.
-
Дискретная математическая модель системы «власть–общество–экономика» на основе клеточного автомата
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 561-572Данная работа посвящена модификации ранее предлагавшегося автором дискретного варианта модели А. П. Михайлова «власть–общество». Эта модификация учитывает социально-экономическое развитие системы и коррупцию в ней по аналогии с непрерывной моделью «власть–общество–экономика–коррупция», но имеет в своей основе стохастический клеточный автомат, описывающий динамику распределения власти в иерархии. Новая версия модели построена путем введения в пространство состояний клетки ранее предлагавшегося клеточного автомата переменных, соответствующих численности населения, объему экономического производства, объему основных производственных фондов и уровню коррупции. Структура социально-экономических зависимостей в системе заимствована из модели Солоу и непрерывной детерминированной модели «власть–общество–экономика–коррупция», однако особенностью новой модели является ее гибкость, позволяющая рассматривать в ее рамках региональные различия во всех параметрах социально-экономического развития, различные модели производства и динамики народонаселения, а также транспортные связи между регионами. Построена имитационная система, включающая три уровня властной иерархии, пять регионов и 100 муниципалитетов, при помощи которой проведен ряд вычислительных экспериментов. В ходе этого исследования получены результаты, указывающие на изменение характера динамики распределения власти при повышении уровня коррупции. Если в отсутствие коррупции (аналогично предыдущей версии модели) распределение власти в иерархии асимптотически стремится к одному из стационарных состояний, то при наличии высокого уровня коррупции объем власти в системе испытывает нерегулярные колебательные изменения и лишь в дальнейшем также сходится к стационарному состоянию. Данные результаты можно содержательно интерпретировать как снижение стабильности властной иерархии при усилении коррупции.
Ключевые слова: система «власть–общество», клеточные автоматы, вычислительный эксперимент, имитационное моделирование, экономика, коррупция.
A discreet ‘power–society–economics’ model based on cellular automaton
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 561-572Просмотров за год: 8. Цитирований: 1 (РИНЦ).In this paper we consider a new modification of the discrete version of Mikhailov’s ‘power–society’ model, previously proposed by the author. This modification includes social-economical dynamics and corruption of the system similarly to continuous ‘power–society–economics–corruption’ model but is based on a stochastic cellular automaton describing the dynamics of power distribution in a hierarchy. This new version is founded on previously proposed ‘power–society’ system modeling cellular automaton, its cell state space enriched with variables corresponding to population, economic production, production assets volume and corruption level. The social-economical structure of the model is inherited from Solow and deterministic continuous ‘power–society–economics–corruption’ models. At the same time the new model is flexible, allowing to consider regional differentiation in all social and economical dynamics parameters, to use various production and demography models and to account for goods transit between the regions. A simulation system was built, including three power hierarchy levels, five regions and 100 municipalities. and a number of numerical experiments were carried out. This research yielded results showing specific changes of the dynamics in power distribution in hierarchy when corruption level increases. While corruption is zero (similar to the previous version of the model) the power distribution in hierarchy asymptotically tends to one of stationary states. If the corruption level increases substantially, volume of power in the system is subjected to irregular oscillations, and only much later tends to a stationary value. The meaning of these results can be interpreted as the fact that the stability of power hierarchy decreases when corruption level goes up.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"