Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'characteristic boundary conditions':
Найдено статей: 32
  1. Максимов Ф.А., Нигматуллин В.О.
    Метод гибридных сеток в задачах внешней и внутренней газовой динамики
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 543-565

    На основе метода моделирования задач газовой динамики с помощью системы сеток реализован алгоритм для решения нестационарной задачи с движущими телами. Алгоритм учитывает перемещение и вращение тел по заданному закону движения. Алгоритм применен для исследования обтекания бесконечной решетки, составленной из цилиндров с эллиптическим сечением, которые либо перемещаются поперек потока, либо вращаются с изменением угла атаки. Для моделирования обтекания тел с острой кромкой, характерных для профилей турбомашин, реализован алгоритм построения сетки типа С с включением некоторой области за профилем. Программа моделирования течения около профиля реализована в рамках моделей уравнений Эйлера, уравнений Навье – Стокса в приближении тонкого слоя с ламинарной вязкостью и турбулентной вязкостью в рамках алгебраической модели вязкости. Также программа была адаптирована для решения задач внутренней газодинамики турбомашин. Для этого была изменена методика задания граничных условий на входе и выходе из расчетной области со скорости на перепад давления, а также на боковых границах со свободного потока на периодичность. Это позволило моделировать течение газа в межлопаточных каналах компрессоров и турбин газотурбинных двигателей. Для отработки алгоритма были проведены серии расчетов аэродинамических параметров нескольких турбинных решеток на различных дозвуковых и сверхзвуковых режимах и их сравнение с экспериментом. Расчеты параметров турбинных решеток были проведены в рамках модели невязкого и вязкого газа. Сравнение расчета и эксперимента проводилось по распределению параметров газа около профиля, а также по потерям энергии потока в решетке. Расчеты показали применимость и корректность работы программы для решения данного класса задач. Для тестирования программы на задачах внешней дозвуковой аэродинамики были выполнены расчеты аэродинамических характеристик изолированного аэродинамического профиля в невозмущенном потоке. Полученные результаты позволяют утверждать о применимости метода гибридных сеток к различным классам задач прикладной газовой динамики.

    Maksimov F.A., Nigmatullin V.O.
    Hybrid grid method for external and internal gas dynamics
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 543-565

    Based on the modeling method using a mesh system, an algorithm is implemented for solving a unsteady problem with moving bodies The algorithm takes into account the movement and rotation of bodies according to a given law of motion. The algorithm is applied to analysis the flow around an infinite composed of cylinders with an elliptical cross-section, which either move across the flow or rotate with a change in the angle of attack. To simulate the flow of bodies with a sharp edge, characteristic of the profiles of gas turbine machines, an algorithm for constructing a mesh of type C with the inclusion of a certain area behind the profile is implemented. The program for modeling the flow near the profile is implemented within the framework of models of Euler equations, Navier – Stokes equations in the approximation of a thin layer with laminar viscosity and turbulent viscosity in the framework of an algebraic viscosity model. The program has also been adapted to solve the problems of internal gas dynamics of turbomachines. For this purpose, the method of setting the boundary conditions at the entrance and exit from the calculated area from the velocity to the pressure drop, as well as at the lateral boundaries from the free flow to the periodicity, was changed. This made it possible to simulate the flow of gas in the inter-blade channels of compressors and turbines of gas turbine engines. To refine the algorithm, a series of calculations of the aerodynamic parameters of several turbine cascades in various subsonic and supersonic modes and their comparison with the experiment were carried out. Calculations of turbine grating parameters were carried out within the framework of the inviscid and viscous gas model. The calculation and experiment were compared by the distribution of gas parameters near the profile, as well as by the energy losses of the flow in the cascade. Calculations have shown the applicability and correctness of the program to solve this class of problems. To test the program on the problems of external subsonic aerodynamics, calculations of the aerodynamic characteristics of an isolated airfoil in an undisturbed flow were performed. The results obtained allow us to assert the applicability of the hybrid grid method to various classes of problems of applied gas dynamics.

  2. Муратов М.В., Петров И.Б., Левянт В.Б.
    Разработка математических моделей трещин для численного решения задач сейсморазведки с применением сеточно-характеристического метода
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 911-925

    Данная статья посвящена описанию разработанных математических моделей трещин, которые могут быть применены для численного решения задач сейсморазведки с использованием сеточно- характеристического метода на неструктурированных треугольных (в двумерном случае) и тетраэдральных (в трехмерном случае) сетках. Такой подход позволяет корректно обсчитывать динамические процессы в условиях неоднородностей в области интегрирования. В основе разработанных моделей неоднородностей лежит концепция бесконечно-тонкой трещины — трещина задается в виде контактной границы. Такой подход заметно сокращает потребление вычислительных ресурсов за счет отсутствия необходимости задания сетки внутри трещины. В то же время он позволяет задавать трещину дискретно в области интегрирования, что дает возможность наблюдать качественно новые эффекты, которые невозможно получить с применением эффективных моделей трещиноватости, активно используемых в вычислительной сейсмике.

    Основной задачей при разработке моделей было получение максимального точного результата. Разрабатывались модели, позволяющие получить отклик, близкий к отклику реально существующей трещины в геологической среде. Рассматривались газонасыщенные, флюидонасыщенные трещины, слипшиеся трещины, частично слипшиеся трещины, а также трещины с заданием сил динамического трения. Поведение трещины определялось характером задаваемого условия на контактной границе.

    Пустые трещины задавались условием свободной границы. Такое условие давало возможность полного отражения от трещины волнового фронта. Флюидонасыщенность обеспечивало условие свободного скольжения на контактной границе. При таком условии наблюдалось полное прохождение продольных волн через трещину и отражение поперечных. На слипшихся трещинах использовалось условие полного слипания. Для реальных трещин, в которых расстояние между створками не равномерное и местами происходит соприкосновение (слипание) створок, была предложена модель частично слипшейся трещины. На разных точках контактной границы трещины задавались разные условия: условия скольжения (при флюидонасыщении трещины) и слипания, свободной границы (при газонасыщении трещины) и слипания. Почти такой же эффект достигается использованием модели трещины с условием динамического трения. Однако ее существенным недостатком является невозможность задания доли слипшейся поверхности трещины в силу того, что коэффициент трения может принимать значения от нуля до бесконечности. Этого недостатка лишена модель частично слипшейся трещины.

    Muratov M.V., Petrov I.B., Leviant V.B.
    The development of fracture mathematical models for numerical solution of exploration seismology problems with use of grid-characteristic method
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 911-925

    The article contains the description of developed mathematical models of fractures which can be used for numerical solution of exploration seismology problems with use of grid-characteristic method on unstructured triangular and tetrahedral meshes. The base of developed models is the concept of infinitely thin fracture. This fracture is represented by contact boundary. Such approach significantly reduces the consumption of computer resources by the absence of the mesh definition inside of fracture necessity. By the other side it lets state the fracture discretely in integration domain, therefore one can observe qualitative new effects which are not available to observe by use of effective models of fractures, actively used in computational seismic.

    The main target in the development of models have been getting the most accurate result. Developed models thet can receive the response close to the actual response of the existing fracture in geological environment. We considered fluid-filled fractures, glued and partially glued fractures, and also fractures with dynamical friction force. Fracture behavior determinated by the nature of condition on the border.

    Empty fracture was represented as free boundary condition. This condition give us opportunity for total reflection of wave fronts from fracture. Fluid-filling provided the condition for sliding on the border. Under this condition, there was a passage of longitudinal and total reflection of converted waves. For the real fractures, which has unequal distance between the borders has been proposed the model of partially glued fracture. At different points of the fracture's boundary were sat different conditions. Almost the same effect is achieved by using a fracture model of dynamic friction condition. But its disadvantage is the inabillity to specify the proportion of fracture's glued area due to the friction factor can take values from zero to infinity. The model of partially glued fracture is devoid of this disadvantage.

    Просмотров за год: 9.
  3. Гаспарян М.М., Самонов А.С., Сазыкина Т.А., Остапов Е.Л., Сакмаров А.В., Шайхатаров О.К.
    Решатель уравнения Больцмана на неструктурированных пространственных сетках
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 427-447

    Целью данной работы является создание достаточно универсальной вычислительной программы (решателя) кинетического уравнения Больцмана для моделирования течений разреженного газа в устройствах сложной формы. Подробно описывается структура решателя, а его эффективность демонстрируется на примере расчета современной конструкции многотрубочного насоса Кнудсена. Решение уравнения Больцмана выполняется на фиксированных пространственной и скоростной сетках с помощью метода расщепления по физическим процессам. Дифференциальный оператор переноса аппроксимируется методом конечных разностей. Вычисление интеграла столкновений производится на основе консервативного проекционного метода.

    Пространственная неструктурированная сетка строится с помощью внешнего генератора сеток и может включать в себя призмы, тетраэдры, гексаэдры и пирамиды. Сетка сгущается в областях течения с наибольшими градиентами рассчитываемых величин. Трехмерная скоростная сетка состоит из кубических ячеек равного объема.

    Большой объем вычислений требует эффективного распараллеливания алгоритма, что реализовано на основе методики Message Passing Interface (MPI). Передача информации от одного узла MPI к другому осуществляется как разновидность граничного условия — таким образом, каждый MPI узел может хранить только ту часть сетки, которая имеет отношение конкретно к нему.

    В результате получен график разности давлений в двух резервуарах, соединенных многотрубочным насосом Кнудсена в зависимости от числа Кнудсена, т. е. получена численными методами характеристика, ответственная за качество работы термомолекулярного микронасоса. Также показаны распределения давления, температуры и концентрации газа в установившемся состоянии внутри резервуаров и самого микронасоса.

    Корректность работы солвера проверяется на тестах с распределением температуры газа между двух нагретых до разной температуры пластинок, а также в тесте с сохранением общей массы газа.

    Корректность полученных данных для многотрубочного насоса Кнудсена проверяется на более точных скоростной и пространственной сетках, а также при использовании большего количества столкновений в интеграле столкновений за шаг.

    Gasparyan M.M., Samonov A.S., Sazykina T.A., Ostapov E.L., Sakmarov A.V., Shahatarov O.K.
    The Solver of Boltzmann equation on unstructured spatial grids
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 427-447

    The purpose of this work is to develop a universal computer program (solver) which solves kinetic Boltzmann equation for simulations of rarefied gas flows in complexly shaped devices. The structure of the solver is described in details. Its efficiency is demonstrated on an example of calculations of a modern many tubes Knudsen pump. The kinetic Boltzmann equation is solved by finite-difference method on discrete grid in spatial and velocity spaces. The differential advection operator is approximated by finite difference method. The calculation of the collision integral is based on the conservative projection method.

    In the developed computational program the unstructured spatial mesh is generated using GMSH and may include prisms, tetrahedrons, hexahedrons and pyramids. The mesh is denser in areas of flow with large gradients of gas parameters. A three-dimensional velocity grid consists of cubic cells of equal volume.

    A huge amount of calculations requires effective parallelization of the algorithm which is implemented in the program with the use of Message Passing Interface (MPI) technology. An information transfer from one node to another is implemented as a kind of boundary condition. As a result, every MPI node contains the information about only its part of the grid.

    The main result of the work is presented in the graph of pressure difference in 2 reservoirs connected by a multitube Knudsen pump from Knudsen number. This characteristic of the Knudsen pump obtained by numerical methods shows the quality of the pump. Distributions of pressure, temperature and gas concentration in a steady state inside the pump and the reservoirs are presented as well.

    The correctness of the solver is checked using two special test solutions of more simple boundary problems — test with temperature distribution between 2 planes with different temperatures and test with conservation of total gas mass.

    The correctness of the obtained data for multitube Knudsen pump is checked using denser spatial and velocity grids, using more collisions in collision integral per time step.

    Просмотров за год: 13.
  4. Багаев Р.А., Голубев В.И., Голубева Ю.А.
    Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1061-1067

    One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.

    The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.

    In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.

    Bagaev R.A., Golubev V.I., Golubeva Y.A.
    Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1061-1067

    One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.

    The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.

    In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.

  5. Садин Д.В.
    Приложение гибридного метода крупных частиц к расчету взаимодействия ударной волны со слоем газовзвеси
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1323-1338

    Для модельного неоднородного уравнения переноса с источником выполнен анализ устойчивости линейной гибридной схемы (комбинации противопоточной и центральной аппроксимаций). Получены условия устойчивости, зависящие от параметра гибридности, фактора интенсивности источника (произведения интенсивности на шаг по времени) и весового коэффициента линейной комбинации мощности источника на нижнем и верхнем временном слое. В нелинейном случае для уравнений движения неравновесной по скоростям и температурам газовзвеси расчетным путем подтвержден линейный анализ устойчивости. Установлено, что предельно допустимое число Куранта гибридного метода крупных частиц второго порядка точности по пространству и времени при неявном учете трения и теплообмена между газом и частицами не зависит от фактора интенсивности межфазных взаимодействий, шага расчетной сетки и времен релаксации фаз (K-устойчивость). В традиционном случае явного способа расчета источниковых членов для значений безразмерного фактора интенсивности больше 10 наблюдается катастрофическое (на несколько порядков) снижение предельно допустимого числа Куранта, при котором расчетный шаг по времени становится неприемлемо малым.

    На основе базовых соотношений распада разрыва в равновесной гетерогенной среде получено асимптотически точное автомодельное решение задачи взаимодействия ударной волны со слоем газовзвеси, к которому сходится численное решение двухскоростной двухтемпературной динамики газовзвеси при уменьшении размеровди сперсных частиц.

    Изучены динамика движения скачка уплотнения в газе и его взаимодействия с ограниченным слоем газовзвеси для различных размеров дисперсных частиц: 0.1, 2 и 20 мкм. Задача характеризуется двумя распадами разрывов: отраженной и преломленной ударными волнами на левой границе слоя, отраженной волной разрежения и прошедшим скачком уплотнения на правой контактной границе. Обсуждено влияние релаксационных процессов (безразмерных времен релаксации фаз) на характер течения газовзвеси. Для мелких частиц времена выравнивания скоростей и температур фаз малы, а зоны релаксации являются подсеточными. Численное решение в характерных точках с относительной точностью $O\, (10^{−4})$  сходится к автомодельным решениям.

    For a non-homogeneous model transport equation with source terms, the stability analysis of a linear hybrid scheme (a combination of upwind and central approximations) is performed. Stability conditions are obtained that depend on the hybridity parameter, the source intensity factor (the product of intensity per time step), and the weight coefficient of the linear combination of source power on the lower- and upper-time layer. In a nonlinear case for the non-equilibrium by velocities and temperatures equations of gas suspension motion, the linear stability analysis was confirmed by calculation. It is established that the maximum permissible Courant number of the hybrid large-particle method of the second order of accuracy in space and time with an implicit account of friction and heat exchange between gas and particles does not depend on the intensity factor of interface interactions, the grid spacing and the relaxation times of phases (K-stability). In the traditional case of an explicit method for calculating the source terms, when a dimensionless intensity factor greater than 10, there is a catastrophic (by several orders of magnitude) decrease in the maximum permissible Courant number, in which the calculated time step becomes unacceptably small.

    On the basic ratios of Riemann’s problem in the equilibrium heterogeneous medium, we obtained an asymptotically exact self-similar solution of the problem of interaction of a shock wave with a layer of gas-suspension to which converge the numerical solution of two-velocity two-temperature dynamics of gassuspension when reducing the size of dispersed particles.

    The dynamics of the shock wave in gas and its interaction with a limited gas suspension layer for different sizes of dispersed particles: 0.1, 2, and 20 ìm were studied. The problem is characterized by two discontinuities decay: reflected and refracted shock waves at the left boundary of the layer, reflected rarefaction wave, and a past shock wave at the right contact edge. The influence of relaxation processes (dimensionless phase relaxation times) to the flow of a gas suspension is discussed. For small particles, the times of equalization of the velocities and temperatures of the phases are small, and the relaxation zones are sub-grid. The numerical solution at characteristic points converges with relative accuracy $O \, (10^{-4})$ to self-similar solutions.

  6. Ветлужский А.Ю.
    Метод самосогласованных уравнений при решении задач рассеяния волн на системах цилиндрических тел
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 725-733

    Рассматривается один из численных методов решения задач рассеяния электромагнитных волн на системах, образованных параллельно ориентированными цилиндрическими элементами, — двумерных фотонных кристаллах. Описываемый метод является развитием метода разделения переменных при решении волнового уравнения. Его суть применительно к дифракционным задачам заключается в представлении поля в виде суммы первичного поля и неизвестного рассеянного на элементах среды вторичного поля. Математическое выражение для последнего записывается в виде бесконечных рядов по элементарным волновым функциям с неизвестными коэффициентами. В частности, поле, рассеянное на $N$ элементах, ищется в виде суммы $N$ дифракционных рядов, в которой один из рядов составлен из волновых функций одного тела, а волновые функции в остальных рядах выражены через собственные волновые функции первого тела при помощи теорем сложения. Далее из удовлетворения граничным условиям на поверхности каждого элемента получаются системы линейных алгебраических уравнений с бесконечным числом неизвестных — искомых коэффициентов разложения, которые разрешаются стандартными способами. Особенностью метода является использование аналитических выражений, описывающих дифракцию на одиночном элементе системы. В отличие от большинства строгих численных методов данный подход при его использовании позволяет получить информацию об амплитудно-фазовых или спектральных характеристиках поля только в локальных точках структуры. Отсутствие необходимости определения параметров поля во всей области пространства, занимаемой рассматриваемой многоэлементной системой, обуславливает высокую эффективность данного метода. В работе сопоставляются результаты расчета спектров пропускания двумерных фотонных кристаллов рассматриваемым методом с экспериментальными данными и численными результатами, полученными с использованием других подходов. Демонстрируется их хорошее согласие.

    Vetluzhsky A.Y.
    Method of self-consistent equations in solving problems of wave scattering on systems of cylindrical bodies
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 725-733

    One of the numerical methods for solving problems of scattering of electromagnetic waves by systems formed by parallel oriented cylindrical elements — two-dimensional photonic crystals — is considered. The method is based on the classical method of separation of variables for solving the wave equation. Тhe essence of the method is to represent the field as the sum of the primary field and the unknown secondary scattered on the elements of the medium field. The mathematical expression for the latter is written in the form of infinite series in elementary wave functions with unknown coefficients. In particular, the field scattered by N elements is sought as the sum of N diffraction series, in which one of the series is composed of the wave functions of one body, and the wave functions in the remaining series are expressed in terms of the eigenfunctions of the first body using addition theorems. From satisfying the boundary conditions on the surface of each element we obtain systems of linear algebraic equations with an infinite number of unknowns — the required expansion coefficients, which are solved by standard methods. A feature of the method is the use of analytical expressions describing diffraction by a single element of the system. In contrast to most numerical methods, this approach allows one to obtain information on the amplitude-phase or spectral characteristics of the field only at local points of the structure. The absence of the need to determine the field parameters in the entire area of space occupied by the considered multi-element system determines the high efficiency of this method. The paper compares the results of calculating the transmission spectra of two-dimensional photonic crystals by the considered method with experimental data and numerical results obtained using other approaches. Their good agreement is demonstrated.

  7. Фадеев И.Д., Аксёнов А.А., Дмитриева И.В., Низамутдинов В.Р., Пахолков В.В., Рогожкин С.А., Сазонова М.Л., Шепелев С.Ф.
    Разработка методического подхода и численное моделирование теплогидравлических процессов в промежуточном теплообменнике реактора БН
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 877-894

    В работе представлены результаты трехмерного численного моделирования теплогидравлических процессов в промежуточном теплообменнике перспективного реактора на быстрых нейтронах с натриевым теплоносителем (БН) с учетом разработанного методического подхода.

    Промежуточный теплообменник (ПТО) размещен в корпусе реактора и предназначен для передачи тепла от натрия первого контура, циркулирующего в межтрубном пространстве, натрию второго контура, циркулирующему внутри труб. Перед входными окнами ПТО при интегральной компоновке оборудования первого контура в реакторе БН имеет место температурное расслоение теплоносителя из-за неполного перемешивания разнотемпературных потоков на выходе из активной зоны. Внутри ПТО в районе входных и выходных окон теплообменника также реализуется сложное продольно-поперечное течение теплоносителя, которое приводит к неравномерному распределению расхода теплоносителя в межтрубном пространстве и, как следствие, к неравномерному распределению температуры и эффективности теплообмена по высоте и радиусу трубного пучка.

    С целью подтверждения заложенных в проекте теплогидравлических параметров ПТО перспективного реактора БН был разработан методический подход для трехмерного численного моделирования теплообменника, размещенного в корпусе реактора, учитывающий трехмерную картину течения натрия на входе и внутри ПТО, а также обосновывающий рекомендации для упрощения геометрии расчетной модели ПТО. Численное моделирование теплогидравлических процессов в ПТО перспективного реактора БН проводилось с использованием программного комплекса FlowVision со стандартной $k-\varepsilon$-моделью турбулентности и моделью турбулентного теплопереноса LMS. Для повышения представительности численного моделирования трубного пучка ПТО выполнены верификационные расчеты однотрубного и многотрубного теплообменников «натрий – натрий» с соответствующими конструкции ПТО геометрическими характеристиками. Для определения входных граничных условий в модели ПТО выполнен дополнительный трехмерный расчет с учетом неравномерной картины течения в верхней смесительной камере реактора. Расчетная модель ПТО была оптимизирована за счет упрощения дистанционирующих поясов и выбора секторной модели. В результате численного моделирования ПТО получены распределения скорости натрия первого контура, температуры натрия первого и второго контуров. Удовлетворительное согласование результатов расчета с проектными данными по интегральным параметрам подтвердило принятые проектные теплогидравлические характеристики ПТО перспективного реактора БН.

    Fadeev I.D., Aksenov A.A., Dmitrieva I.V., Nizamutdinov V.R., Pakholkov V.V., Rogozhkin S.A., Sazonova M.L., Shepelev S.F.
    Development of a methodological approach and numerical simulation of thermal-hydraulic processes in the intermediate heat exchanger of a BN reactor
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 877-894

    The paper presents the results of three-dimensional numerical simulation of thermal-hydraulic processes in the Intermediate Heat Exchanger of the advanced Sodium-Cooled Fast-Neutron (BN) Reactor considering a developed methodological approach.

    The Intermediate Heat Exchanger (IHX) is located in the reactor vessel and intended to transfer heat from the primary sodium circulating on the shell side to the secondary sodium circulating on the tube side. In case of an integral layout of the primary equipment in the BN reactor, upstream the IHX inlet windows there is a temperature stratification of the coolant due to incomplete mixing of different temperature flows at the core outlet. Inside the IHX, in the area of the input and output windows, a complex longitudinal and transverse flow of the coolant also takes place resulting in an uneven distribution of the coolant flow rate on the tube side and, as a consequence, in an uneven temperature distribution and heat transfer efficiency along the height and radius of the tube bundle.

    In order to confirm the thermal-hydraulic parameters of the IHX of the advanced BN reactor applied in the design, a methodological approach for three-dimensional numerical simulation of the heat exchanger located in the reactor vessel was developed, taking into account the three-dimensional sodium flow pattern at the IHX inlet and inside the IHX, as well as justifying the recommendations for simplifying the geometry of the computational model of the IHX.

    Numerical simulation of thermal-hydraulic processes in the IHX of the advanced BN reactor was carried out using the FlowVision software package with the standard $k-\varepsilon$ turbulence model and the LMS turbulent heat transfer model.

    To increase the representativeness of numerical simulation of the IHX tube bundle, verification calculations of singletube and multi-tube sodium-sodium heat exchangers were performed with the geometric characteristics corresponding to the IHX design.

    To determine the input boundary conditions in the IHX model, an additional three-dimensional calculation was performed taking into account the uneven flow pattern in the upper mixing chamber of the reactor.

    The IHX computational model was optimized by simplifying spacer belts and selecting a sector model.

    As a result of numerical simulation of the IHX, the distributions of the primary sodium velocity and primary and secondary sodium temperature were obtained. Satisfactory agreement of the calculation results with the design data on integral parameters confirmed the adopted design thermal-hydraulic characteristics of the IHX of the advanced BN reactor.

  8. Долуденко А.Н., Куликов Ю.М., Савельев А.С.
    Хаотизация течения под действием объемной силы
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 883-912

    В предлагаемой статье приводятся результаты аналитического и компьютерного исследования хаотической эволюции регулярного поля скорости, возникающего под действием крупномасштабной гармонической вынуждающей силы. Авторами получено аналитическое решение для функции тока течения и ее производных величин (скорости, завихренности, кинетической энергии, энстрофии и палинстрофии). Проведено численное моделирование эволюции течения с помощью пакета программ OpenFOAM (на основе модели несжимаемой среды), а также двух собственных реализаций, использующих приближение слабой сжимаемости (схемы КАБАРЕ и схемы МакКормака). Расчеты проводились на последовательности вложенных сеток с 642, 1282, 2562, 5122, 10242 ячейками для двух характерных (асимптотических) чисел Рейнольдса Rea, характеризующих ламинарную и турбулентную эволюцию течения соответственно. Моделирование показало, что разрушение аналитического решения происходит в обоих случаях. Энергетические характеристики течения обсуждаются на основе кривых энергии, а также скоростей диссипации. Для самой подробной сетки эта величина оказывается на несколько порядков меньше своего гидродинамического (вязкого) аналога. Разрушение регулярной структуры течения наблюдается для любого из численных методов, в том числе на поздних стадиях ламинарной эволюции, когда полученные распределения близки к аналитическим значениям. Можно предположить, что предпосылкой к развитию неустойчивости выступает ошибка, накапливаемая в процессе счета. Эта ошибка приводит к неравномерностям в распределении завихренности и, как следствие, к появлению вихрей различной интенсивности, взаимодействие которых приводит к хаотизации течения. Для исследования процессов производства завихренности мы использовали две интегральные величины, определяемые на ее основе, — интегральные энстрофию ($\zeta$) и палинстрофию $(P)$. Постановка задачи с периодическими граничными условиями позволяет установить простую связь между этими величинами. Кроме того, $\zeta$ может выступать в качестве меры вихреразрешающей способности численного метода, а палинстрофия определяет степень производства мелкомасштабной завихренности.

    Doludenko A.N., Kulikov Y.M., Saveliev A.S.
    Сhaotic flow evolution arising in a body force field
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 883-912

    This article presents the results of an analytical and computer study of the chaotic evolution of a regular velocity field generated by a large-scale harmonic forcing. The authors obtained an analytical solution for the flow stream function and its derivative quantities (velocity, vorticity, kinetic energy, enstrophy and palinstrophy). Numerical modeling of the flow evolution was carried out using the OpenFOAM software package based on incompressible model, as well as two inhouse implementations of CABARET and McCormack methods employing nearly incompressible formulation. Calculations were carried out on a sequence of nested meshes with 642, 1282, 2562, 5122, 10242 cells for two characteristic (asymptotic) Reynolds numbers characterizing laminar and turbulent evolution of the flow, respectively. Simulations show that blow-up of the analytical solution takes place in both cases. The energy characteristics of the flow are discussed relying upon the energy curves as well as the dissipation rates. For the fine mesh, this quantity turns out to be several orders of magnitude less than its hydrodynamic (viscous) counterpart. Destruction of the regular flow structure is observed for any of the numerical methods, including at the late stages of laminar evolution, when numerically obtained distributions are close to analytics. It can be assumed that the prerequisite for the development of instability is the error accumulated during the calculation process. This error leads to unevenness in the distribution of vorticity and, as a consequence, to the variance vortex intensity and finally leads to chaotization of the flow. To study the processes of vorticity production, we used two integral vorticity-based quantities — integral enstrophy ($\zeta$) and palinstrophy $(P)$. The formulation of the problem with periodic boundary conditions allows us to establish a simple connection between these quantities. In addition, $\zeta$ can act as a measure of the eddy resolution of the numerical method, and palinstrophy determines the degree of production of small-scale vorticity.

  9. Калашников С.В., Кривощапов А.А., Митин А.Л., Николаев Н.В.
    Расчетные исследования аэродинамических характеристик тематической модели летательного аппарата схемы «летающее крыло» с помощью программного комплекса FlowVision
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 67-74

    Модернизация методики аэродинамического эксперимента на современном уровне подразумевает создание математических моделей аэродинамических труб (электронных АДТ), предназначенных для вычислительного сопровождения экспериментальных исследований. Применение электронных АДТ в перспективе способно обеспечить получение достоверных аэродинамических характеристик летательных аппаратов по результатам исследования их моделей в аэродинамических трубах, согласования результатов, полученных на разных экспериментальных установках, сравнения расчетов моделей в безграничном потоке с учетом влияния подвесных устройств и границ потока в рабочей части экспериментальной установки.

    Решение данной задачи требует создания научного задела, что, в свою очередь, подразумевает выполнение экспериментальных методических исследований и обширного комплекса расчетных исследований на основе численного решения осредненных по Рейнольдсу уравнений Навье–Стокса с применением суперкомпьютерных технологий. При этом на различных этапах расчетных исследований необходимо моделировать не только летательный аппарат, но и комплексную геометрию рабочей части аэродинамической трубы и подвесных устройств, что требует дополнительных методических расчетов. Также определенные трудности может представлять моделирование ламинарно-турбулентного перехода на поверхности модели, который в большинстве случаев имеет место в условиях эксперимента.

    В данной работе представлены результаты расчетов аэродинамических характеристик тематической модели летательного аппарата схемы «летающее крыло» в безграничном потоке при разных углах атаки, полученные в рамках первого этапа работы по созданию математической модели рабочей части аэродинамической трубы Т-102 ЦАГИ. Расчеты выполнялись с использованием двухпараметрической k–ε модели турбулентности со специальными пристеночными функциями, приспособленными для расчета отрывных течений. В рамках данной работы исследовались основные продольные аэродинамические характеристики, было выполнено сравнение с результатами экспериментальных исследований в аэродинамической трубе Т-102 ЦАГИ с учетом погрешностей.

    Kalashnikov S.V., Krivoschapov A.A., Mitin A.L., Nikolaev N.V.
    Computational investigation of aerodynamic performance of the generic flying-wing aircraft model using FlowVision computational code
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 67-74

    Modern approach to modernization of the experimental techniques involves design of mathematical models of the wind-tunnel, which are also referred to as Electronic of Digital Wind-Tunnels. They are meant to supplement experimental data with computational analysis. Using Electronic Wind-Tunnels is supposed to provide accurate information on aerodynamic performance of an aircraft basing on a set of experimental data, to obtain agreement between data from different test facilities and perform comparison between computational results for flight conditions and data with the presence of support system and test section.

    Completing this task requires some preliminary research, which involves extensive wind-tunnel testing as well as RANS-based computational research with the use of supercomputer technologies. At different stages of computational investigation one may have to model not only the aircraft itself but also the wind-tunnel test section and the model support system. Modelling such complex geometries will inevitably result in quite complex vertical and separated flows one will have to simulate. Another problem is that boundary layer transition is often present in wind-tunnel testing due to quite small model scales and therefore low Reynolds numbers.

    In the current article the first stage of the Electronic Wind-Tunnel design program is covered. This stage involves computational investigation of aerodynamic characteristics of the generic flying-wing UAV model previously tested in TsAGI T-102 wind-tunnel. Since this stage is preliminary the model was simulated without taking test-section and support system geometry into account. The boundary layer was considered to be fully turbulent.

    For the current research FlowVision computational code was used because of its automatic grid generation feature and stability of the solver when simulating complex flows. A two-equation k–ε turbulence model was used with special wall functions designed to properly capture flow separation. Computed lift force and drag force coefficients for different angles-of-attack were compared to the experimental data.

    Просмотров за год: 10. Цитирований: 1 (РИНЦ).
  10. Иванов А.М., Хохлов Н.И.
    Параллельная реализация сеточно-характеристического метода в случае явного выделения контактных границ
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 667-678

    В работе рассматривается применение технологии Message Passing Interface (MPI) для распараллеливания программного алгоритма, основанного на сеточно-характеристическом методе, применительно к численному решению уравнения линейной теории упругости. Данный алгоритм позволяет численно моделировать распространение динамических волновых возмущений в твердых деформируемых телах. К такого рода задачам относится решение прямой задачи распространения сейсмических волн, что представляет интерес в сейсмике и геофизике. Во снове решателя лежит сеточно-характеристический метод. В работе предложен способ уменьшения времени взаимодействия между процессами MPI в течение расчета. Это необходимо для того, чтобы можно было производить моделирование в сложных постановках, при этом сохраняя высокую эффективность параллелизма даже при большом количестве процессов. Решение проблемы эффективного взаимодействия представляет большой интерес, когда в расчете используется несколько расчетных сеток с произвольной геометрией контактов между ними. Сложность данной задачи возрастает, если допускается независимое распределение узлов расчетных сеток между процессами. В работе сформулирован обобщенный подход для обработки контактных условий в терминах переинтерполяции узлов из заданного участка одной сетки в определенную область второй сетки. Предложен эффективный способ распараллеливания и установления эффективных межпроцессорных коммуникаций. Приведены результаты работы реализованного программного кода: получены волновые поля и сейсмограммы как для 2D-, так и для 3D-постановок. Показано, что данный алгоритм может быть реализован в том числе на криволинейных расчетных сетках. Рассмотренные постановки демонстрируют возможность проведения расчета с учетом топографии среды и криволинейных контактов между слоями. Это позволяет получать более точные результаты, чем при расчете только с использованием декартовых сеток. Полученная эффективность распараллеливания — практически 100% вплоть до 4096 процессов (за основу отсчета взята версия, запущенная на 128 процессах). Дале наблюдается ожидаемое постепенное снижение эффективности. Скорость спада не велика, на 16384 процессах удается сохранить 80%-ную эффективность.

    Ivanov A.M., Khokhlov N.I.
    Parallel implementation of the grid-characteristic method in the case of explicit contact boundaries
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 667-678

    We consider an application of the Message Passing Interface (MPI) technology for parallelization of the program code which solves equation of the linear elasticity theory. The solution of this equation describes the propagation of elastic waves in demormable rigid bodies. The solution of such direct problem of seismic wave propagation is of interest in seismics and geophysics. Our implementation of solver uses grid-characteristic method to make simulations. We consider technique to reduce time of communication between MPI processes during the simulation. This is important when it is necessary to conduct modeling in complex problem formulations, and still maintain the high level of parallelism effectiveness, even when thousands of processes are used. A solution of the problem of effective communication is extremely important when several computational grids with arbirtrary geometry of contacts between them are used in the calculation. The complexity of this task increases if an independent distribution of the grid nodes between processes is allowed. In this paper, a generalized approach is developed for processing contact conditions in terms of nodes reinterpolation from a given section of one grid to a certain area of the second grid. An efficient way of parallelization and establishing effective interprocess communications is proposed. For provided example problems we provide wave fileds and seismograms for both 2D and 3D formulations. It is shown that the algorithm can be realized both on Cartesian and on structured (curvilinear) computational grids. The considered statements demonstrate the possibility of carrying out calculations taking into account the surface topographies and curvilinear geometry of curvilinear contacts between the geological layers. Application of curvilinear grids allows to obtain more accurate results than when calculating only using Cartesian grids. The resulting parallelization efficiency is almost 100% up to 4096 processes (we used 128 processes as a basis to find efficiency). With number of processes larger than 4096, an expected gradual decrease in efficiency is observed. The rate of decline is not great, so at 16384 processes the parallelization efficiency remains at 80%.

    Просмотров за год: 18.
Страницы: предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.