Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Численное исследование турбулентного потока Тейлора – Куэтта
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 395-408В настоящей работе исследован турбулентный поток Тейлора – Куэтта с помощью двухмерного моделирования на базе осредненных уравнений Навье – Стокса (RANS) и нового двухжидкостного подхода к турбулентности при числах Рейнольдса в диапазоне от 1000 до 8000. Исследуется течение, обусловленное вращающимся внутренним и неподвижным внешним цилиндрами. Рассмотрен случай соотношения диаметров цилиндров 1:2. Известно, что возникающее круговое течение характеризуется анизотропной турбулентностью и математическое моделирование таких потоков является сложной задачей. Для описания таких потоков используются либо методы прямого моделирования, которые требуют больших вычислительных затрат, либо достаточно трудоемкие методы рейнольдсовых напряжений или же линейные RANS-модели со специальными поправками на вращение, которые способны описывать анизотропную турбулентность. В работе для сравнения различных подходов к моделированию турбулентности представлены численные результаты линейных RANS-моделей SARC, SST-RC, метода рейнольдсовых напряжений SSG/LRR-RSM-w2012, прямого моделирования турбулентности DNS, а также новой двухжидкостной модели. Показано, что недавно разработанная двухжидкостная модель адекватно описывает рассматриваемый поток. Помимо этого, двухжидкостная модель проста для численной реализации и имеет хорошую сходимость.
-
Вычислительный алгоритм решения нелинейной краевой задачи водородопроницаемости с динамическими граничными условиями и концентрационно-зависимым коэффициентом диффузии
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1179-1193Рассматривается нелинейная краевая задача водородопроницаемости, соответствующая следующему эксперименту. Нагретая до достаточно высокой температуры мембрана из исследуемого конструкционного материала служит перегородкой вакуумной камеры. После предварительного вакуумирования и практически полной дегазации на входной стороне создается постоянное давление газообразного (молекулярного) водорода. С выходной стороны в условиях вакуумирования с помощью масс-спектрометра определяется проникающий поток.
Принята линейная модель зависимости коэффициента диффузии растворенного атомарного водорода в объеме от концентрации, температурная зависимость в соответствии с законом Аррениуса. Поверхностные процессы растворения и сорбции-десорбции учтены в форме нелинейных динамических краевых условий (дифференциальные уравнения динамики поверхностных концентраций атомарного водорода). Математическая особенность краевой задачи состоит в том, что производные по времени от концентраций входят как в уравнение диффузии, так и в граничные условия с квадратичной нелинейностью. В терминах общей теории функционально-дифференциальных уравнений это приводит к так называемым уравнениям нейтрального типа и требует разработки более сложного математического аппарата. Представлен итерационный вычислительный алгоритм второго (повышенного) порядка точности решения соответствующей нелинейной краевой задачи на основе явно-неявных разностных схем. Явная составляющая применяется к более медленным подпроцессам, что позволяет на каждом шаге избегать решения нелинейной системы уравнений.
Приведены результаты численного моделирования, подтверждающие адекватность модели экспериментальным данным. Определены степени влияния вариаций параметров водородопроницаемости («производные») на проникающий поток и распределение концентрации атомов H по толщине образца, что важно, в частности, для задач проектирования защитных конструкций от водородного охрупчивания и мембранных технологий получения особо чистого водорода. Вычислительный алгоритм позволяет использовать модель и при анализе экстремальных режимов для конструкционных материалов (перепады давления, высокие температуры, нестационарный нагрев), выявлять лимитирующие факторы при конкретных условиях эксплуатации и экономить на дорогостоящих экспериментах (особенно это касается дейтерий-тритиевых исследований).
-
Моделирование специальных действий и борьбы с терроризмом
Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1467-1498Специальные действия (партизанские, антипартизанские, разведывательно-диверсионные, подрывные, контртеррористические, контрдиверсионные и др.) организуются и проводятся силами обеспечения правопорядка и вооруженными силами и направлены на защиту граждан и обеспечение национальной безопасности. С начала 2000-х гг. проблематика специальных действий привлекла внимание специалистов в области моделирования, социологов, физиков и представителей других наук. В настоящей статье даны обзор и характеристика работ в области моделирования специальных действий и борьбы с терроризмом. Работы классифицированы по методам моделирования (описательные, оптимизационные и теоретико-игровые), по видам и этапам действий, фазам управления (подготовка и ведение деятельности). Во втором разделе представлена классификация методов и моделей специальных действий и борьбы с терроризмом, дан краткий обзор описательных моделей. Рассмотрены метод географического профилирования, сетевые игры, модели динамики специальных действий, функция победы в боевых и специальных действиях (зависимость вероятности победы от соотношения сил и средств сторон). В третьем разделе рассмотрены игра «атакующий – защитник» и ее расширения: игра Штакельберга и игра безопасности Штакельберга, а также вопросы их применения в задачах обеспечения безопасности. В игре «атакующий – защитник» и играх безопасности известные работы классифицируются по следующим основаниям: последовательность ходов, количество игроков и их целевые функции, временной горизонт игры, степень рациональности игроков и их отношение к риску, степень информированности игроков. Четвертый раздел посвящен описанию игр патрулирования на графе с дискретным временем и одновременным выбором сторонами своих действий (для поиска оптимальных стратегий вычисляется равновесие Нэша). В пятом разделе рассмотрены теоретико-игровые модели обеспечения транспортной безопасности как приложения игр безопасности Штакельберга. Последний раздел посвящен обзору и характеристике ряда моделей обеспечения пограничной безопасности на двух фазах управления: подготовка и ведение деятельности. Рассмотрен пример эффективного взаимодействия подразделений береговой охраны с университетскими исследователями. Перспективными направлениями дальнейших исследований являются следующие: во-первых, моделирование контртеррористических и специальных операций по нейтрализации террористических и диверсионных групп с привлечением разноведомственных и разнородных сил и средств, во-вторых, комплексирование моделей по уровням и этапам циклов деятельности; в-третьих, разработка теоретико-игровых моделей борьбы с морским терроризмом и пиратством.
-
Математическая модель гидридного фазового перехода в частице порошка симметричной формы
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 569-584В статье предложена математическая модель фазового перехода на примере гидрирования/дегидрирования порошка металла. Рассматривается одна частица, форма которой обладает некоторой симметрией. Шар, цилиндр и плоская пластина являются частными случаями симметричных форм. Модель описывает как сценарий «сжимающегося ядра» (формирование слоя новой фазы на поверхности частицы с его последующим утолщением), так и сценарий «образования и роста зародышей», при которых сплошной слой не формируется до полного исчезновения старой фазы. Модель представляет собой неклассическую диффузионную краевую задачу со свободной границей и нелинейными граничными условими III рода. Предположения симметрии позволяют свести задачу к одной пространственной переменной. Модель апробирована на серии экспериментальных данных. Показано, что влияние формы частиц на кинетику несущественно. Также показано, что ансамбль частиц различных форм с распределением по размерам может быть аппроксимирован одной частицей «среднего» размера простой формы, что оправдывает использование в моделях упрощающих предположений.
Ключевые слова: гидрирование, дегидрирование, фазовый переход, математическое моделирование, симметрия формы.Просмотров за год: 2. Цитирований: 2 (РИНЦ). -
Об одном подходе к имитационному моделированию спортивной игры с непрерывным временем
Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 455-460Просмотров за год: 3. Цитирований: 2 (РИНЦ).Работа посвящена обсуждению методов статистического моделирования исходов спортивных соревнований вообще и спортивной игры с непрерывным временем в частности. Предложен основанный на имитационном моделировании хода такой игры подход к предсказанию результата игры, представляющий собой некоторый промежуточный вариант между чистым статистическим моделированием и агентным моделированием действий отдельных игроков, участвующих в матче. Приведен пример ретроспективного прогноза на основе предложенной модели.
-
Расчетные исследования процесса перемешивания неизотермических потоков натриевого теплоносителя в тройнике
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 95-110Просмотров за год: 3.В программном комплексе FlowVision проведено численное моделирование процесса перемешивания неизотермических потоков натриевого теплоносителя в тройнике для обоснования применимости различных подходов — URANS (Unsteady Reynolds Averaged Navier Stokers), LES (Large Eddy Simulation) и квази-DNS (Direct Numerical Simulation) — для предсказания осциллирующего характера течения в зоне смешения и получения температурных пульсаций. Одна из основных задач данной работы — выявление преимуществ и недостатков использования этих подходов.
Численное исследование пульсаций температуры, возникающих в жидкости и в стенках тройника в процессе перемешивания неизотермических потоков натриевого теплоносителя, проведено в рамках математической модели, предполагающей, что рассматриваемое течение турбулентное, плотность жидкости не зависит от давления и что между теплоносителем и стенками тройника происходит теплообмен. При моделировании турбулентного теплопереноса в рамках подхода URANS применялась модель турбулентного теплопереноса LMS.
Исследование было проведено в два этапа. На предварительном этапе были определены влияние расчетной сетки на формирование осциллирующего течения и характер температурных пульсаций в рамках указанных выше подходов к моделированию турбулентности. В результате этого исследования были выработаны критерии построения расчетных сеток для каждого из подходов и произведена оценка потребных вычислительных ресурсов.
Затем были проведены расчеты для трех режимов течения, отличающихся соотношением расходов и температур натрия во входных сечениях тройника. Для каждого режима выполнены расчеты с применением подходов URANS, LES и квази-DNS.
На заключительном этапе работы был проведен сравнительный анализ численных и экспериментальных данных. Определены и сформулированы преимущества и недостатки использования каждого из указанных подходов к моделированию процесса перемешивания неизотермических потоков натриевого теплоносителя в тройнике.
-
Анализ респираторных реакций человека в условиях измененной газовой среды на математической модели
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 281-296Цель работы — обоснование и разработка методики прогноза динамики респираторных реакций человека на основе математического моделирования. Для достижения этой цели были поставлены и решены следующие задачи: разработаны и обоснованы общая структура и формализованное описание модели респираторной системы; построен и программно реализован алгоритм модели газообмена организма; проведены вычислительный эксперимент и проверка модели на адекватность на основе литературных данных и собственных экспериментальных исследований.
В данном варианте в комплексную модель вошел новый модифицированный вариант частной модели физико-химических свойств крови и кислотно-щелочного баланса. При разработке модели в основу формализованного описания была положена концепция разделения физиологической системы регуляции на активные и пассивные подсистемы регуляции. Разработка модели проводилась поэтапно. Комплексная модель газообмена состояла из следующих частных моделей: базовой биофизической модели системы газообмена; модели физико-химических свойств крови и кислотно-щелочного баланса; модели пассивных механизмов газообмена, разработанной на основе уравнений материального баланса Гродинза Ф.; модели химической регуляции, разработанной на основе многофакторной модели Грея Д.
При программной реализации модели расчеты выполнялись в среде программирования MatLab. Для решения уравнений использовался метод Рунге–Кутты–Фехлберга. При этом предполагается, что модель будет представлена в виде компьютерной исследовательской программы, позволяющей реализовать различные гипотезы о механизме наблюдаемых процессов. Рассчитаны предполагаемые величины основных показателей газообмена в условиях гиперкапнии и гипоксии. Результаты расчетов, как по характеру, так и количественно, достаточно хорошо согласуются с данными, полученными в исследованиях на испытателях. Проведенная проверка на адекватность подтвердила, что погрешность вычислений находится в пределах погрешности данных медико-биологических экспериментов. Модель можно использовать при теоретическом прогнозировании динамики респираторных реакций организма человека в условиях измененной газовой среды.
Ключевые слова: математическая модель, минутный объем дыхания, имитация, регуляция, дыхание, респираторная система, гипоксия, гиперкапния.Просмотров за год: 5. -
Исследование влияния антиангиогенной монотерапии на прогрессию гетерогенной опухоли с помощью методов математического моделирования
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 487-501В последнее десятилетие в онкологии наряду с классическими цитотоксическими агентами при химиотерапии стали активно использоваться антиангиогенные препараты. Они направлены не на убийство злокачественных клеток, а на блокирование процесса ангиогенеза — роста новых сосудов в опухолевом микроокружении. Вещества, стимулирующие ангиогенез, в частности фактор роста эндотелия сосудов, активно вырабатываются опухолевыми клетками, находящимися в состоянии метаболического стресса. Считается, что блокирование опухолевой неоваскуляризации должно привести к нехватке питательных веществ в опухоли, а значит, и к остановке или по крайней мере к существенному замедлению ее роста. Клиническая практика применения первого антиангиогенного препарата, бевацизумаба, показала, что в ряде случаев такая терапия не влияет на скорость роста опухоли, тогда как для других типов опухолей антиангиогенная терапия обладает высоким противоопухолевым действием. Однако было показано, что при успешном замедлении роста опухоли терапия бевацизумабом может вызывать направленную прогрессию опухоли к более инвазивному, а значит, более летальному типу. Эти данные требуют теоретического анализа и определения ключевых факторов, приводящих к такой опухолевой прогрессии, которая в литературе ассоциируется с эпителиально-мезенхимальным переходом. Для решения этой задачи была разработана пространственно-распределенная математическая модель роста и антиангиогенной терапии гетерогенной опухоли, состоящей из двух субпопуляций злокачественных клеток. Одна из субпопуляций обладает свойствами, присущими эпителиальному фенотипу, — малой подвижностью и высокой скоростью пролиферации, другая соответствует мезенхимальному фенотипу и обладает высокой подвижностью и медленной скоростью деления. Проведено исследование конкурентной борьбы между этими субпопуляциями в гетерогенной опухоли как в случае роста опухоли без терапии, так и в случае монотерапии бевацизумабом. Показано, что постоянное использование антиангиогенного препарата приводит к увеличению области в пространстве параметров, где происходит доминирование мезенхимального фенотипа: в определенном диапазоне параметров в отсутствие терапии доминирует эпителиальный фенотип, а при терапии бевацизумабом начинает доминировать мезенхимальный фенотип. Данный результат является теоретическим обоснованием наблюдаемой в клинической практике направленной прогрессии опухоли к более инвазивному типу при проведении антиангиогенной терапии.
Ключевые слова: математическое моделирование, прогрессия опухоли, антиангиогенная терапия, бевацизумаб.Просмотров за год: 10. Цитирований: 2 (РИНЦ). -
Математическое моделирование динамики человеческого капитала
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 329-342Просмотров за год: 34.В условиях развития современной экономики человеческий капитал является одним из главных факторов экономического роста. Формирование человеческого капитала начинается с рождения человека и продолжается в течение всей жизни, поэтому величина человеческого капитала неотделима от его носителей, что, в свою очередь, затрудняет учет данного фактора. Это привело к тому, что в настоящее время нет общепринятых методик расчета величины человеческого капитала. Можно выделить лишь несколько подходов к измерению человеческого капитала: стоимостной подход (по доходам или инвестициям) и индексный подход, из которых наиболее известен подход, разработанный под эгидой ООН.
В данной работе поставленная задача рассматривается совместно с задачей демографической динамики, решаемой во временно-возрастной плоскости, что позволяет наиболее полно учесть влияние временных изменений демографической структуры на динамику человеческого капитала.
Задача демографической динамики ставится в рамках модели Мак-Кендрика – фон Ферстера на основе уравнения динамики возрастного состава. Вид функций распределения рождений, смертности и миграции населения определяется на основе имеющейся статистической информации. Приводится численное решение задачи. Представлены анализ и прогноз демографических показателей. На основе задачи демографической динамики формулируется экономико-математическая модель динамики человеческого капитала. В задаче моделирования динамики человеческого капитала рассматриваются три составляющие: образовательная, составляющая здоровья и культурная (духовная) составляющая. Для описания эволюции составляющих человеческого капитала используется двумерное уравнение типа уравнения переноса. Объемы инвестиций в составляющие человеческого капитала определяются на основе расходных статей бюджета и частных расходов с учетом характерного временного жизненного цикла демографических элементов. Для прогнозирования динамики суммарной величины человеческого капитала используется одномерное кинетическое уравнение. Приводится методика расчета динамики данного фактора как функции времени. Представлены расчетные данные по динамике человеческого капитала для Российской Федерации. Как показали исследования, величина человеческого капитала интенсивно нарастала до 2008 года, в дальнейшем наступил период стабилизации, но после 2014 года имеет место отрицательная динамика данной величины.
-
Молекулярно-динамическое моделирование процессов взаимодействия водяного пара с несквозными порами цилиндрического типа
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 493-501Просмотров за год: 9.Теоретические и экспериментальные исследования взаимодействия водяного пара с пористыми материалами проводятся как на макро-, так и на микроуровне. На макроуровне исследуется влияние структуры расположения индивидуальных пор на процессы взаимодействия водяного пара с пористым материалом как сплошной средой. На микроуровне исследуется зависимость характеристик взаимодействия водяного пара с пористой средой от геометрии и размеров индивидуальной поры.
В данной работе проведено исследование посредством математического моделирования процессов взаимодействия водяного пара с индивидуальной несквозной порой цилиндрического типа. Вычисления производились с использованием модели гибридного типа, сочетающей в себе молекулярно-динамический и макродиффузионный подходы для описания взаимодействия водяного пара c индивидуальной порой. Исследовались процессы эволюции к состоянию термодинамического равновесия макроскопических характеристик системы, таких как температура, плотность, давление, в зависимости от внешних по отношению к поре условий. Проведено исследование зависимости параметров эволюции от распределения значений коэффициента диффузии в поре, полученного в результате молекулярно-динамического моделирования. Актуальность данных исследований обусловлена тем, что все используемые для моделирования влаго- и теплопроводности методы и программы основаны на применении уравнений переноса в пористом материале (как сплошной среде) с известными заранее значениями коэффициентов переноса, которые, как правило, получены экспериментально.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"