Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Расчет гидродинамических воздействий на возвращаемый аппарат при посадке на воду
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 37-46Просмотров за год: 30.В работе представлены результаты моделирования расчетных случаев приводнения возвращаемого аппарата (ВА) пилотируемого транспортного корабля нового поколения в условиях штиля. Рассмотрены случаи посадки ВА с работающими и с выключенными двигательными установками.
Задача приводнения ВА моделировалась в рамках двухфазной постановки с наличием двух несмешивающихся фаз: воды и газа, состоящего из воздуха и продуктов сгорания, поступающих из двигательной установки. Параметры течения в каждой фазе резко отличаются друг от друга по величине плотности и скорости распространения звука. Истечение продуктов сгорания из сопловых установок характеризуется высокими скоростями и давлениями, что усложняет задачу, по сравнению со свободным падением ВА в воду. В расчетах используется упрощение постановки задачи, в котором при взаимодействии горячих струй с водой кипение, испарение и образование водяного пара не учитываются. Газовые струи только нагревают и вытесняют воду.
Для моделирования переноса межфазных границ применяется метод VOF (Volume of fluid), где перенос контактной поверхности описывается конвективным уравнением, а поверхностное натяжение на межфазной границе учитывается давлением Лапласа. Ключевой особенностью метода является расщепление поверхностных ячеек, куда заносятся данные соответствующей фазы. Уравнения для обеих фаз (уравнения неразрывности, импульса, энергии и другие) в поверхностных ячейках решаются совместно.
Моделирование приводнения ВА занимает длительное время, что связанно с особенностями явного расчета уровня границы раздела фаз (свободной поверхности). Для получения качественных результатов свободная поверхность должна быть разрешена большим количеством расчетных ячеек, но при этом за один шаг интегрирования перемещаться не более чем на одну ячейку.
В процессе приземления исследовались гидродинамическое воздействие на ВА, динамика его движения и остойчивость ВА после приводнения, оценивались продольные перегрузки. Полученные данные использовались для анализа нагружения и прочности конструкции корпуса ВА, а также его отдельных элементов.
-
Математические модели и методы организации вычислений в мультипроцессорных системах
Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 423-436В работе предложена и исследована математическая модель распределенной вычислительной системы параллельных взаимодействующих процессов, конкурирующих за использование ограниченного числа копий структурированного программного ресурса. В случаях неограниченного и ограниченного параллелизма по числу процессоров мультипроцессорной системы решены задачи определения оперативных и точных значений времени выполнения неоднородных и одинаково распределенных конкурирующих процессов в синхронном режиме, при котором обеспечивается линейный порядок выполнения блоков структурированного программного ресурса внутри каждого из процессов без задержек. Полученные результаты можно использовать при сравнительном анализе математических соотношений для вычисления времени реализации множества параллельных распределенных взаимодействующих конкурирующих процессов, математическом исследовании эффективности и оптимальности организации распределенных вычислений, решении задач построения оптимальной компоновки блоков одинаково распределенной системы, нахождения оптимального числа процессоров, обеспечивающих директивное время выполнения заданных объемов вычислений. Предложенные модели и методы открывают новые перспективы при решении проблем оптимального распределения ограниченных вычислительных ресурсов, синхронизации множества взаимодействующих конкурирующих процессов, минимизации системных затрат при выполнении параллельных распределенных процессов.
-
Аппроксимация решения нестационарного уравнения теплопроводности методом вероятностных непрерывных асинхронных клеточных автоматов для одномерного случая
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 293-301Просмотров за год: 10. Цитирований: 4 (РИНЦ).В статье рассматривается решение задач теплопроводности с помощью метода непрерывных асинхронных клеточных автоматов. Продемонстрировано согласование распределения температуры в образце между клеточно-автоматной моделью и точным аналитическим решением уравнения теплопереноса в определенный момент времени, что говорит о целесообразном использовании данного метода моделирования. Получена зависимость между временем одного клеточно-автоматного взаимодействия и размерностью клеточно-автоматного поля.
-
Моделирование и анализ основных характеристик внутренней трековой системы многофункционального детектора частиц MPD методом Монте-Карло
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 87-94Просмотров за год: 28.В настоящее время в ОИЯИ (Дубна) осуществляется строительство ускорительного комплекса NICA для проведения экспериментов по изучению взаимодействий релятивистских ядер и поляризованных частиц (протонов и дейтронов). Одна из создаваемых экспериментальных установок MPD (MultiPurpose Detector) рассчитана на изучение ядро-ядерных, протон-ядерных и протон-протонных взаимодействий. В связи с планами развития установки MPD рассматривается возможность создания внутреннего трекера с использованием кремниевых пиксельных детекторов нового поколения. Предполагается, что такой детектор позволит значительно повысить исследовательский потенциал эксперимента как для ядро-ядерных (за счет высокого пространственного разрешения вблизи области пересечения пучков), так и для протон-протонных (за счет высокого быстродействия) взаимодействий.
В представленной работе изучаются основные характеристики такого трекера с использованием данных по протон-протонным взаимодействиям, полученных с помощью моделирования методом Монте-Карло. В частности, оцениваются возможности детектора по восстановлению вершин распада короткоживущих частиц и по выделению редких событий таких распадов среди продуктов гораздо более вероятных «обычных» взаимодействий. Также затрагивается проблема разделения вершин взаимодействий для восстановления наложенных событий при высокой светимости ускорителя и способность детектора проводить быструю селекцию редких событий (триггер). Полученные результаты могут быть использованы для обоснования необходимости создания данного детектора и развития системы триггера высокого уровня, основанного в том числе на методах машинного обучения.
-
Приложение гибридного метода крупных частиц к расчету взаимодействия ударной волны со слоем газовзвеси
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1323-1338Для модельного неоднородного уравнения переноса с источником выполнен анализ устойчивости линейной гибридной схемы (комбинации противопоточной и центральной аппроксимаций). Получены условия устойчивости, зависящие от параметра гибридности, фактора интенсивности источника (произведения интенсивности на шаг по времени) и весового коэффициента линейной комбинации мощности источника на нижнем и верхнем временном слое. В нелинейном случае для уравнений движения неравновесной по скоростям и температурам газовзвеси расчетным путем подтвержден линейный анализ устойчивости. Установлено, что предельно допустимое число Куранта гибридного метода крупных частиц второго порядка точности по пространству и времени при неявном учете трения и теплообмена между газом и частицами не зависит от фактора интенсивности межфазных взаимодействий, шага расчетной сетки и времен релаксации фаз (K-устойчивость). В традиционном случае явного способа расчета источниковых членов для значений безразмерного фактора интенсивности больше 10 наблюдается катастрофическое (на несколько порядков) снижение предельно допустимого числа Куранта, при котором расчетный шаг по времени становится неприемлемо малым.
На основе базовых соотношений распада разрыва в равновесной гетерогенной среде получено асимптотически точное автомодельное решение задачи взаимодействия ударной волны со слоем газовзвеси, к которому сходится численное решение двухскоростной двухтемпературной динамики газовзвеси при уменьшении размеровди сперсных частиц.
Изучены динамика движения скачка уплотнения в газе и его взаимодействия с ограниченным слоем газовзвеси для различных размеров дисперсных частиц: 0.1, 2 и 20 мкм. Задача характеризуется двумя распадами разрывов: отраженной и преломленной ударными волнами на левой границе слоя, отраженной волной разрежения и прошедшим скачком уплотнения на правой контактной границе. Обсуждено влияние релаксационных процессов (безразмерных времен релаксации фаз) на характер течения газовзвеси. Для мелких частиц времена выравнивания скоростей и температур фаз малы, а зоны релаксации являются подсеточными. Численное решение в характерных точках с относительной точностью $O\, (10^{−4})$ сходится к автомодельным решениям.
Ключевые слова: гибридный метод крупных частиц, устойчивость, газовзвесь, релаксация, жесткость, автомодельное решение. -
Моделирование межпроцессорного взаимодействия при выполнении MPI-приложений в облаке
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 955-963Просмотров за год: 10. Цитирований: 1 (РИНЦ).В Лаборатории информационных технологий (ЛИТ) Объединенного института ядерных исследований (ОИЯИ) планируется создание облачного центра параллельных вычислений, что позволит существенно повысить эффективность выполнения численных расчетов и ускорить получение новых физически значимых результатов за счет более рационального использования вычислительных ресурсов. Для оптимизации схемы параллельных вычислений в облачной среде эту схему необходимо протестировать при различных сочетаниях параметров оборудования (количества и частоты процессоров, уровней распараллеливания, пропускной способности коммуникационной сети и ее латентности). В качестве тестовой была выбрана весьма актуальная задача параллельных вычислений длинных джозефсоновских переходов (ДДП) с использованием технологии MPI. Проблемы оценки влияния вышеуказанных факторов вычислительной среды на скорость параллельных вычислений тестовой задачи было предложено решать методом имитационного моделирования, с использованием разработанной в ЛИТ моделирующей программы SyMSim.
Работы, выполненные по имитационному моделированию расчетов ДДП в облачной среде с учетом межпроцессорных соединений, позволяют пользователям без проведения серии тестовых запусков в реальной компьютерной обстановке подобрать оптимальное количество процессоров при известном типе сети, характеризуемой пропускной способностью и латентностью. Это может существенно сэкономить вычислительное время на счетных ресурсах, высвободив его для решения реальных задач. Основные параметры модели были получены по результатам вычислительного эксперимента, проведенного на специальном облачном полигоне для MPI-задач из 10 виртуальных машин, взаимодействующих между собой через Ethernet-сеть с пропускной способностью 10 Гбит/с. Вычислительные эксперименты показали, что чистое время вычислений спадает обратно пропорционально числу процессоров, но существенно зависит от пропускной способности сети. Сравнение результатов, полученных эмпирическим путем, с результатами имитационного моделирования показало, что имитационная модель корректно моделирует параллельные расчеты, выполненные с использованием технологии MPI, и подтвердило нашу рекомендацию, что для быстрого счета задач такого класса надо одновременно с увеличением числа процессоров увеличивать пропускную способность сети. По результатам моделирования удалось вывести эмпирическую аналитическую формулу, выражающую зависимость времени расчета от числа процессоров при фиксированной конфигурации системы. Полученная формула может применяться и для других подобных исследований, но требует дополнительных тестов по определению значений переменных.
-
Некоторые особенности групповой динамики в агентной модели «ресурс–потребитель»
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 833-850Просмотров за год: 32.В работе исследуются особенности групповой динамики особей-агентов в компьютерной модели популяции животных, взаимодействующих между собой и с возобновимым ресурсом. Такого типа динамика были ранее обнаружены в работе [Белотелов, Коноваленко, 2016]. Модельная популяция состоит из совокупности особей. Каждая особь характеризуется своей массой, которая отождествляется с энергией. В ней подробно описана динамика энергетического баланса особи. Ареал обитания моделируемой популяции представляет собой прямоугольную область, на которой равномерно произрастает ресурс (трава).
Описываются различные компьютерные эксперименты, проведенные с моделью при различных значениях параметров и начальных условиях. Основной целью проведения этих вычислительных экспериментов было изучение групповой (стадной) динамики особей. Выяснилось, что в достаточно широком диапазоне значений параметров и при введении пространственных неоднородностей ареала групповой тип поведения сохраняется. Численно были найдены значения параметров модельной популяции, при которых возникает режим пространственных колебаний численности. А именно, в модельной популяции периодически групповое (стадное) поведение животных сменяется на равномерное по пространству распределение, которое через определенное количество тактов вновь становится групповым. Проведены численные эксперименты по предварительному анализу факторов, влияющих на период этих решений. Оказалось, что ведущими параметрами, влияющими на частоту и амплитуду, а также на количество групп, являются подвижность особей и скорость восстановления ресурса. Проведены численные эксперименты по исследованию влияния на групповое поведение параметров, определяющих нелокальное взаимодействие между особями популяции. Обнаружено, что режимы группового поведения сохраняются достаточно длительное время при исключении факторов рождаемости особей. Подтверждено, что нелокальность взаимодействия между особями является ведущей при формировании группового поведения.
-
Моделирование развития экваториальных плазменных пузырей из плазменных облаков
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 463-476Просмотров за год: 14.В работе определяются и изучаются два параметра процесса развития экваториальных плазменных пузырей (ЭПП): максимальная скорость внутри ЭПП и время развития ЭПП. Исследования проводятся для случаев, когда ЭПП возникают из одной, двух или трех зон повышенной концентрации, или начальных плазменных облаков. Механизмом развития ЭПП является неустойчивость Релея–Тэйлора (НРТ). Ранее было выяснено, что время начальной стадии развития ЭПП должно уложиться в интервал времени, благоприятный для формирования ЭПП (в этом случае линейный инкремент нарастания больше нуля). Этот интервал укладывается для экваториальной ионосферы Земли в промежуток от 3000 с до 7000 с.
Исследование проводилось в форме многочисленных вычислительных экспериментов с использованием разработанной авторами оригинальной двумерной математической и численной модели MI2 развития НРТ в экваториальной ионосфере Земли, аналогичной стандартной модели США SAMI2. Эта численно-математическая модель MI2 достаточно подробно описана в основном тексте статьи. Результаты, полученные в ходе проведенных исследований, могут быть использованы как в других теоретических работах, так и при планировании и проведении натурных экспериментов по генерации F-рассеяния в ионосфере Земли.
Численное моделирование проводилось для геофизических условий, благоприятных для развития в экваториальной F-области ионосферы Земли ЭПП в результате НРТ. Численные исследования подтвердили, что время развития ЭПП из начальных неоднородностей с повышенной концентрацией существенно больше времени развития из зон пониженной концентрации. Однако в условиях, благоприятных для НРТ, ЭПП успевают достигнуть достаточно развитого состояния. Численные эксперименты также продемонстрировали, что развитые неоднородности сильно и нелинейно взаимодействуют между собой даже тогда, когда начальные плазменные облака сильно удалены друг от друга. Причем это взаимодействие более сильное, чем при развитии ЭПП из начальных неоднородностей с пониженной концентрацией. Результаты численных экспериментов показали хорошее согласие параметров развитых ЭПП с экспериментальными данными и с теоретическими исследованиями других авторов.
-
Методы и задачи кинетического подхода для моделирования биологических структур
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 851-866Биологическая структура рассматривается как открытая неравновесная система, свойства которой могут быть описаны на основе кинетических уравнений. Ставятся новые задачи с неравновесными граничными условиями на границе, причем неравновесное состояние (распределение) преобразуется постепенно в равновесное состояние вниз по течению. Область пространственной неоднородности имеет масштаб, зависящий от скорости переноса вещества в открытой системе и характерного времени метаболизма. В предлагаемом приближении внутренняя энергия движения молекул много меньше энергии поступательного движения; в других терминах: кинетическая энергия средней скорости крови существенно выше, чем энергия хаотического движения частиц в крови. Задача о релаксации в пространстве моделирует живую систему, поскольку сопоставляет области термодинамической неравновесности и неоднородности. Поток энтропии в изучаемой системе уменьшается вниз по потоку, что соответствует общим идеям Э. Шрёдингера о том, что живая система «питается» негэнтропией. Вводится величина, определяющая сложность биосистемы, — это разность между величинами неравновесной кинетической энтропии и равновесной энтропией в каждой пространственной точке, затем проинтегрированная по всему пространству. Решения задач о пространственной релаксации позволяют высказать суждение об оценке размера биосистем в целом как областей неравновесности. Результаты сравниваются с эмпирическими данными, в частности для млекопитающих (размеры животных тем больше, чем меньше удельная энергия метаболизма). Что воспроизводится в предлагаемой кинетической модели, поскольку размеры неравновесной области больше в той системе, где меньше скорость реакции, или в терминах кинетического подхода – чем больше время релаксации характерного взаимодействия между молекулами. Подход применяется для обсуждения характеристик и отдельного органа живой системы, а именно зеленого листа. Рассматриваются проблемы старения как деградации открытой неравновесной системы. Аналогия связана со структурой: для замкнутой системы происходит стремление к равновесию структуры для одних и тех же молекул, в открытой системе происходит переход к равновесию частиц, которые меняются из-за метаболизма. Соответственно, выделяются два существенно различных масштаба времени, отношение которых является приблизительно постоянным для различных видов животных. В предположении существования двух этих временных шкал кинетическое уравнение расщепляется на два уравнения, описывающих метаболическую (стационарную) и «деградационную» (нестационарную) части процесса.
Ключевые слова: неравновесная открытая система, энтропия, кинетические уравнения, старение биосистем.Просмотров за год: 31. -
Компьютерное моделирование процесса обработки почвы рабочими органами почвообрабатывающих машин
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 607-627В работе анализируются методы исследования процесса взаимодействия почвенных сред с рабочими органами почвообрабатывающих машин. Подробно рассмотрены математические методы численного моделирования, позволяющие преодолеть недостатки аналитических и эмпирических подходов. Приводятся классификация и обзор возможностей континуальных (FEM — метод конечных элементов, CFD — вычислительная гидродинамика) и дискретных (DEM — метод дискретных элементов, SPH — гидродинамика сглаженных частиц) численных методов. На основе метода дискретных элементов разработана математическая модель, представляющая почву, в виде множества взаимодействующих сферических элементов малых размеров. Рабочие поверхности почвообрабатывающего орудия в рамках конечноэлементного приближения представлены в виде совокупности элементарных треугольников. В модели рассчитывается движение элементов почвы под действием сил контакта элементов почвы друг с другом и с рабочими поверхностями орудия (упругие силы, силы сухого и вязкого трения). Это дает возможность оценивать влияние геометрических параметров рабочих органов, технологических параметров процесса и параметров почвы на геометрические показатели смещения почвы, показатели самоустановки орудия, силовые нагрузки, показатели качества рыхления и пространственное распределение показателей. Всего исследуются 22 показателя (или распределение показателя в пространстве). Возможности математической модели демонстрируются на примере комплексного исследования процесса обработки почвы дисковой культиваторной батареей. В компьютерном эксперименте использованы виртуальный почвенный канал размером 5×1.4 м и 3D-модель дисковой культиваторной батареи. Радиус почвенных частиц принимался равным 18 мм, скорость рабочего органа — 1 м/с, общее время моделирования — 5 с. Глубина обработки составляла 10 см при углах атаки 10, 15, 20, 25 и 30°. Проверка достоверности результатов моделирования производилась на лабораторной установке, для объемного динамометрирования, путем исследования натурного образца, выполненного в полном соответствии с исследованной 3D-моделью. Контроль осуществлялся по трем составляющим вектора тягового сопротивления: $F_x$, $F_y$ и $F_z$. Сравнение данных, полученных экспериментальным путем, с данными моделирования показало, что расхождение составляет не более 22.2 %, при этом во всех случаях максимальные значения наблюдались при углах атаки 30°. Хорошая согласуемость данных по трем ключевым силовым параметрам подтверждает достоверность всего комплекса исследованных показателей.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"