Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'sets of results':
Найдено статей: 139
  1. Рукавишников В.А., Мосолапов А.О.
    Весовой векторный метод конечных элементов и его приложения
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 71-86

    Математические модели многих естественных процессов описываются дифференциальными уравнениями с особенностями решения. Классические численные методы для нахождения приближенного решения таких задач оказываются неэффективными. В настоящей работе рассмотрена краевая задача для векторного волнового уравнения в двумерной L-образной области. Наличие входящего угла величиной  $3\pi/2$ на границе расчетной области обусловливает сильную сингулярность задачи, то есть ее решение не принадлежит пространству Соболева $H^1$, в результате чего классические и специализированные численные методы имеют скорость сходимости ниже чем $O(h)$. Поэтому в работе введено специальное весовое множество вектор-функций. В этом множестве решение рассматриваемой краевой задачи определено как $R_ν$-обобщенное.

    Для численного нахождения $R_ν$-обобщенного решения построен весовой векторный метод конечных элементов. Основным отличием этого метода является введение в базисные функции в качестве сомножителя специальной весовой функции в степени, определяемой свойствами решения исходной краевой задачи. Это позволило существенно повысить скорость сходимости приближенного решения к точному при измельчении конечноэлементной сетки. Кроме того, введенные базисные функции соленоидальны, что обеспечило точный учет условия соленоидальности искомого решения и предотвратило появление ложных численных решений.

    Представлены результаты численного эксперимента для серии модельных задач различных типов: для задач, решение которых содержит только сингулярную составляющую, и для задач, решение которых содержит как сингулярную, так и регулярную составляющие. Результаты численного анализа показали, что при измельчении конечноэлементной сетки скорость сходимости построенного весового векторного метода конечных элементов составляет $O(h)$, что по порядку степени в полтора раза выше, чем в разработанных к настоящему времени специализированных методах решения рассматриваемой задачи: методе сингулярных дополнений и методе регуляризации. Другие особенности построенного метода — его алгоритмическая простота и естественность определения решения, что является преимуществом при проведении численных расчетов.

    Rukavishnikov V.A., Mosolapov A.O.
    Weighthed vector finite element method and its applications
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 71-86

    Mathematical models of many natural processes are described by partial differential equations with singular solutions. Classical numerical methods for determination of approximate solution to such problems are inefficient. In the present paper a boundary value problem for vector wave equation in L-shaped domain is considered. The presence of reentrant corner of size $3\pi/2$ on the boundary of computational domain leads to the strong singularity of the solution, i.e. it does not belong to the Sobolev space $H^1$ so classical and special numerical methods have a convergence rate less than $O(h)$. Therefore in the present paper a special weighted set of vector-functions is introduced. In this set the solution of considered boundary value problem is defined as $R_ν$-generalized one.

    For numerical determination of the $R_ν$-generalized solution a weighted vector finite element method is constructed. The basic difference of this method is that the basis functions contain as a factor a special weight function in a degree depending on the properties of the solution of initial problem. This allows to significantly raise a convergence speed of approximate solution to the exact one when the mesh is refined. Moreover, introduced basis functions are solenoidal, therefore the solenoidal condition for the solution is taken into account precisely, so the spurious numerical solutions are prevented.

    Results of numerical experiments are presented for series of different type model problems: some of them have a solution containing only singular component and some of them have a solution containing a singular and regular components. Results of numerical experiment showed that when a finite element mesh is refined a convergence rate of the constructed weighted vector finite element method is $O(h)$, that is more than one and a half times better in comparison with special methods developed for described problem, namely singular complement method and regularization method. Another features of constructed method are algorithmic simplicity and naturalness of the solution determination that is beneficial for numerical computations.

    Просмотров за год: 37.
  2. Иванова А.С., Омельченко С.С., Котлярова Е.В., Матюхин В.В.
    Калибровка параметров модели расчета матрицы корреспонденций для г. Москвы
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 961-978

    В данной работе рассматривается задача восстановления матрицы корреспонденций для наблюдений реальных корреспонденций в г. Москве. Следуя общепринятому подходу [Гасников и др., 2013], транспортная сеть рассматривается как ориентированный граф, дуги которого соответствуют участкам дороги, а вершины графа — районы, из которых выезжают / в которые въезжают участники движения. Число жителей города считается постоянным. Задача восстановления матрицы корреспонденций состоит в расчете всех корреспонденций израйона $i$ в район $j$.

    Для восстановления матрицы предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийная модель. В работе, в соответствии с работой [Вильсон, 1978], приводится описание эволюционного обоснования энтропийной модели, описывается основная идея перехода к решению задачи энтропийно-линейного программирования (ЭЛП) при расчете матрицы корреспонденций. Для решения полученной задачи ЭЛП предлагается перейти к двойственной задаче и решать задачу относительно двойственных переменных. В работе описывается несколько численных методов оптимизации для решения данной задачи: алгоритм Синхорна и ускоренный алгоритм Синхорна. Далее приводятся численные эксперименты для следующих вариантов функций затрат: линейная функция затрат и сумма степенной и логарифмической функции затрат. В данных функциях затраты представляют из себя некоторую комбинацию среднего времени в пути и расстояния между районами, которая зависит от параметров. Для каждого набора параметров функции затрат рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Мы предполагаем, что шум в восстановленной матрице корреспонденций является гауссовским, в результате в качестве метрики качества выступает среднеквадратичное отклонение. Данная задача представляет из себя задачу невыпуклой оптимизации. В статье приводится обзор безградиенных методов оптимизации для решения невыпуклых задач. Так как число параметров функции затрат небольшое, для определения оптимальных параметров функции затрат было выбрано использовать метод перебора по сетке значений. Таким образом, для каждого набора параметров рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Далее по минимальному значению невязки для каждой функции затрат определяется, для какой функции затрат и при каких значениях параметров восстановленная матрица наилучшим образом описывает реальные корреспонденции.

    Ivanova A.S., Omelchenko S.S., Kotliarova E.V., Matyukhin V.V.
    Calibration of model parameters for calculating correspondence matrix for Moscow
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 961-978

    In this paper, we consider the problem of restoring the correspondence matrix based on the observations of real correspondences in Moscow. Following the conventional approach [Gasnikov et al., 2013], the transport network is considered as a directed graph whose edges correspond to road sections and the graph vertices correspond to areas that the traffic participants leave or enter. The number of city residents is considered constant. The problem of restoring the correspondence matrix is to calculate all the correspondence from the $i$ area to the $j$ area.

    To restore the matrix, we propose to use one of the most popular methods of calculating the correspondence matrix in urban studies — the entropy model. In our work, which is based on the work [Wilson, 1978], we describe the evolutionary justification of the entropy model and the main idea of the transition to solving the problem of entropy-linear programming (ELP) in calculating the correspondence matrix. To solve the ELP problem, it is proposed to pass to the dual problem. In this paper, we describe several numerical optimization methods for solving this problem: the Sinkhorn method and the Accelerated Sinkhorn method. We provide numerical experiments for the following variants of cost functions: a linear cost function and a superposition of the power and logarithmic cost functions. In these functions, the cost is a combination of average time and distance between areas, which depends on the parameters. The correspondence matrix is calculated for multiple sets of parameters and then we calculate the quality of the restored matrix relative to the known correspondence matrix.

    We assume that the noise in the restored correspondence matrix is Gaussian, as a result, we use the standard deviation as a quality metric. The article provides an overview of gradient-free optimization methods for solving non-convex problems. Since the number of parameters of the cost function is small, we use the grid search method to find the optimal parameters of the cost function. Thus, the correspondence matrix calculated for each set of parameters and then the quality of the restored matrix is evaluated relative to the known correspondence matrix. Further, according to the minimum residual value for each cost function, we determine for which cost function and at what parameter values the restored matrix best describes real correspondence.

  3. Зацерковный А.В., Нурминский Е.А.
    Нейросетевой анализ транспортных потоков городских агломераций на основе данных публичных камер видеообзора
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 305-318

    Адекватное моделирование сложной динамики городских транспортных потоков требует сбора больших объемов данных для определения характера соответствующих моделей и их калибровки. Вместе с тем оборудование специализированных постов наблюдения является весьма затратным мероприятием и не всегда технически возможно. Совокупность этих факторов приводит к недостаточному фактографическому обеспечению как систем оперативного управления транспортными потоками, так и специалистов по транспортному планированию с очевидными последствиями для качества принимаемых решений. В качестве способа обеспечить массовый сбор данных хотя бы для качественного анализа ситуаций достаточно давно применяется обзорные видеокамеры, транслирующие изображения в определенные ситуационные центры, где соответствующие операторы осуществляют контроль и управление процессами. Достаточно много таких обзорных камер предоставляют данные своих наблюдений в общий доступ, что делает их ценным ресурсом для транспортных исследований. Вместе с тем получение количественных данных с таких камер сталкивается с существенными проблемами, относящимися к теории и практике обработки видеоизображений, чему и посвящена данная работа. В работе исследуется практическое применение некоторых мейнстримовских нейросетевых технологий для определения основных характеристик реальных транспортных потоков, наблюдаемых камерами общего доступа, классифицируются возникающие при этом проблемы и предлагаются их решения. Для отслеживания объектов дорожного движения применяются варианты сверточных нейронных сетей, исследуются способы их применения для определения базовых характеристик транспортных потоков. Простые варианты нейронной сети используются для автоматизации при получении обучающих примеров для более глубокой нейронной сети YOLOv4. Сеть YOLOv4 использована для оценки характеристик движения (скорость, плотность потока) для различных направлений с записей камер видеонаблюдения.

    Zatserkovnyy A.V., Nurminski E.A.
    Neural network analysis of transportation flows of urban aglomeration using the data from public video cameras
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 305-318

    Correct modeling of complex dynamics of urban transportation flows requires the collection of large volumes of empirical data to specify types of the modes and their identification. At the same time, setting a large number of observation posts is expensive and technically not always feasible. All this results in insufficient factographic support for the traffic control systems as well as for urban planners with the obvious consequences for the quality of their decisions. As one of the means to provide large-scale data collection at least for the qualitative situation analysis, the wide-area video cameras are used in different situation centers. There they are analyzed by human operators who are responsible for observation and control. Some video cameras provided their videos for common access, which makes them a valuable resource for transportation studies. However, there are significant problems with getting qualitative data from such cameras, which relate to the theory and practice of image processing. This study is devoted to the practical application of certain mainstream neuro-networking technologies for the estimation of essential characteristics of actual transportation flows. The problems arising in processing these data are analyzed, and their solutions are suggested. The convolution neural networks are used for tracking, and the methods for obtaining basic parameters of transportation flows from these observations are studied. The simplified neural networks are used for the preparation of training sets for the deep learning neural network YOLOv4 which is later used for the estimation of speed and density of automobile flows.

  4. Рассматривается нелинейная колебательная система, описываемая обыкновенными дифференциальными уравнениями с переменными коэффициентами, в которой в явном виде выделяются члены, линейно зависящие от координат, скоростей и ускорений; нелинейные члены записываются в виде неявных функций от этих переменных. Для численного решения начальной задачи, описываемой такой системой дифференциальных уравнений, используется одношаговый метод Галёркина. На шаге интегрирования неизвестные функции представляются в виде суммы линейных функций, удовлетворяющих начальным условиям, и нескольких заданных корректирующих функций в виде полиномов второй и выше степеней с неизвестными коэффициентами. Дифференциальные уравнения на шаге удовлетворяются приближенно по методу Галёркина на системе корректирующих функций. Получаются алгебраические уравнения с нелинейными членами, которые на каждом шаге решаются методом итераций. Из решения в конце каждого шага определяются начальные условия на следующем шаге.

    Корректирующие функции берутся одинаковыми для всех шагов. В общем случае для расчетов на больших интервалах времени используются 4 или 5 корректирующих функций: в первом наборе — базовые степенные функции от 2-й до 4-й или 5-й степеней; во втором наборе — образованные из базовых функций ортогональные степенные полиномы; в третьем наборе — образованные из базовых функций специальные линейно независимые многочлены с конечными условиями, упрощающими «стыковку» решений на следующих шагах.

    На двух примерах расчета нелинейных колебаний систем с одной и с двумя степенями свободы выполнены численные исследования точности численного решения начальных задач на различных интервалах времени по методу Галёркина с использованием указанных наборов степенных корректирующих функций. Выполнены сравнения результатов, полученных по методу Галёркина и по методам Адамса и Рунге – Кутты четвертого порядка. Показано, что методом Галёркина можно получить достоверные результатына значительно больших интервалах времени, чем по методам Адамса и Рунге – Кутты.

    Russkikh S.V., Shklyarchuk F.N.
    Numerical solution of systems of nonlinear second-order differential equations with variable coefficients by the one-step Galerkin method
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1153-1167

    A nonlinear oscillatory system described by ordinary differential equations with variable coefficients is considered, in which terms that are linearly dependent on coordinates, velocities and accelerations are explicitly distinguished; nonlinear terms are written as implicit functions of these variables. For the numerical solution of the initial problem described by such a system of differential equations, the one-step Galerkin method is used. At the integration step, unknown functions are represented as a sum of linear functions satisfying the initial conditions and several given correction functions in the form of polynomials of the second and higher degrees with unknown coefficients. The differential equations at the step are satisfied approximately by the Galerkin method on a system of corrective functions. Algebraic equations with nonlinear terms are obtained, which are solved by iteration at each step. From the solution at the end of each step, the initial conditions for the next step are determined.

    The corrective functions are taken the same for all steps. In general, 4 or 5 correction functions are used for calculations over long time intervals: in the first set — basic power functions from the 2nd to the 4th or 5th degrees; in the second set — orthogonal power polynomials formed from basic functions; in the third set — special linear-independent polynomials with finite conditions that simplify the “docking” of solutions in the following steps.

    Using two examples of calculating nonlinear oscillations of systems with one and two degrees of freedom, numerical studies of the accuracy of the numerical solution of initial problems at various time intervals using the Galerkin method using the specified sets of power-law correction functions are performed. The results obtained by the Galerkin method and the Adams and Runge –Kutta methods of the fourth order are compared. It is shown that the Galerkin method can obtain reliable results at significantly longer time intervals than the Adams and Runge – Kutta methods.

  5. Грачев В.А., Найштут Ю.С.
    Сетчатые развертывающиеся оболочки из полос, образованных трапециевидными пластинами
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 63-73

    Изучаются развертывающиеся системы, составленные из набора трапециевидных пластин. Средние линии пластин в первоначальном положении пакета представляют собой плоскую кривую. Доказывается, что при разворачивании пакета из тонких пластинок, образуется поверхность, аппроксимирующая оболочку практически любой кривизны. Строится кинематика континуальной модели методом подвижного репера Картана, обобщающая ранее опубликованные результаты авторов. Показаны приложения к оболочкам вращения. Представлены экспериментальные модели развертывающихся систем.

    Grachev V.A., Nayshtut Yu.S.
    Latticed deployable shells made of strips assembled from trapezoid plates
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 63-73

    This paper covers deployable systems assembled from a set of trapezium plates. The middles lines of the plates represent a plane curve in the original position of the package. It is proved that when the package of thin plates is unwrapped, a surface approximating a shell of nearly any curvature is formed. Kinematics of the continual model is analyzed by the method of Cartan moving hedron, extending the results the authors published earlier. Various applications of rotating shells are shown. Experimental models of deployable latticed systems are demonstrated.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  6. Абгарян К.К., Журавлев А.А., Загордан Н.Л., Ревизников Д.Л.
    Дискретно-элементное моделирование внедрения шара в массивную преграду
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 71-79

    Дискретно-элементная модель, основанная на представлении ударника и преграды совокупностью плотно упакованных частиц, применена к задаче внедрения металлических шаров в массивные преграды. Для описания взаимодействия между частицами использовался двухпараметрический потенциал Леннарда–Джонса. Компьютерная реализация модели осуществлена с использованием распараллеливания вычислений на графических процессорах, что позволило добиться высокого пространственно-временного разрешения. На основе сравнения результатов компьютерного моделирования с экспериментальными данными идентифицирована зависимость энергии межчастичной связи от динамической твердости материалов. Показано, что использование данного подхода позволяет достаточно точно описать процесс внедрения ударника в преграду в диапазоне скоростей взаимодействия 500–2500 м/c.

    Abgaryan K.K., Zhuravlev A.A., Zagordan N.L., Reviznikov D.L.
    Discrete-element simulation of a spherical projectile penetration into a massive obstacle
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 71-79

    А discrete element model is applied to the problem of a spherical projectile penetration into a massive obstacle. According to the model both indenter and obstacle are described by a set of densely packed particles. To model the interaction between the particles the two-parameter Lennard–Jones potential is used. Computer implementation of the model has been carried out using parallelism on GPUs, which resulted in high spatial — temporal resolution. Based on the comparison of the results of numerical simulation with experimental data the binding energy has been identified as a function of the dynamic hardness of materials. It is shown that the use of this approach allows to accurately describe the penetration process in the range of projectile velocities 500–2500 m/c.

    Просмотров за год: 5. Цитирований: 5 (РИНЦ).
  7. В работе рассматривается вопрос об улучшении качества изображений, получаемых в задаче томографии. Задача заключается в нахождении границ неоднородностей (включений) в сплошной среде по результатам просвечивания этой среды потоком излучения. Предложено нелинейное интегральное преобразование специального вида, которое позволяет улучшить качество изображений по сравнению с тем, которое получали авторы ряда работ ранее. Метод реализован численно с помощью компьютерного моделирования. Проведено несколько расчетов с использованием данных для конкретных материалов. Полученные при этом результаты представлены рисунками и графическими изображениями.

    Nazarov V.G.
    Improvement of image quality in a computer tomography by means of integral transformation of a special kind
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1033-1046

    The question on improvement of quality of images obtained in a tomography problem is considered. The problem consists in finding of boundaries of inhomogeneities (inclusions) in a continuous medium by results of X-ray radiography of this medium. A nonlinear integral transformation of a special kind is proposed which allows to improve quality of images obtained earlier at a set of papers. The method is realized numerically by the use of computer modelling. Some calculations are carried out with use of data for concrete materials. The results obtained are presented by drawings and graphic images.

    Просмотров за год: 6.
  8. Щербаков А.В.
    Экономика Чернавского
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 397-417

    В настоящей статье изложен научный подход Дмитрия Сергеевича Чернавского к вопросам моделирования экономических процессов. Излагается история работы Дмитрия Сергеевича на экономическом направлении, представлены ее основные этапы и достижения. Одним из важнейших достижений в области экономического анализа стало предсказание группой ученых, возглавляемых Д. С. Чернавским, основных кризисов, произошедших в нашей стране за последние 20 лет, а именно дефолта 1998 года, кризиса промышленного производства второй половины 2000-х, кризиса 2008 года и последовавшей за ним рецессии. В качестве примера динамического анализа мировых макроэкономических процессов приведена модель функционирования доллара в качестве мировой валюты. На данном конкретном примере показана возможность сеньёража за счет эмиссии доллара и рассчитано «окно возможностей», которое позволяет эмитировать доллары в качестве мировой валюты без ущерба для собственной экономики.

    Как пример динамического анализа экономики отдельного государства рассматривается модель развития закрытого общества (без внешних экономических связей) в однопродуктовом приближении. Модель основана на принципах рыночной экономики, то есть динамика цены определяется балансом спроса и предложения. Показано, что в общем случае состояние рыночного равновесия не единственно. Возможно несколько стационарных состояний, отличающихся уровнем производства и потребления. Рассмотрен эффект адресной денежной эмиссии в низкопродуктивном состоянии. Показано, что в зависимости от ее размера и адреса она может привести к переходу в высокопродуктивное состояние и просто вызвать инфляцию без перехода. Обсуждается связь этих результатов с кейнсианским и монетаристским подходами.

    Scherbakov A.V.
    Economy of Chernavskii
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 397-417

    The present article sets out the scientific approach of Dmitry Sergeevich Chernavskii to the modelling of economic processes. It recounts the history of works of Dmitry Sergeyevich on the economic front, its milestones and achievements. One of the most important advances in the economic analysis was the prediction by a team of scientists headed by D. S. Chernavskii, the major crises that have occurred in our country over the last 20 years, namely, the default of 1998, the crisis of industrial production in the second half of the 2000s, the 2008 crisis and the ensuing recession. As an example, the dynamic analysis of the global macroeconomic processes shows the model of functioning of the dollar as the world currency. On this particular example shows the possibility of seigniorage due to the issue of the dollar and the calculated “window of opportunity” that allows you to issue dollars as the global currency, without prejudice to its own economy.

    A model for the development of a closed society (without external economic relations) in the one-product approach is considered as an example of dynamic analysis of the economy of a separate state. The model is based on the principles of market economy, i.e. the dynamics of prices is determined by the balance of supply and demand. It is shown that in the general case, the state of market equilibrium is not unique. Several steady states with different levels of production and consumption are possible. Effect of addressed emission of money in underproductive state is considered. It is shown that, depending on its size it can lead to the transition to a highly productive condition, and just cause inflation without transition. The relationship of these results with the “Keynesian” and “monetarist” approaches is discussed.

    Просмотров за год: 5. Цитирований: 2 (РИНЦ).
  9. Долуденко А.Н.
    O контактных неустойчивостях вязкопластических жидкостей в трехмерной постановке задачи
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 431-444

    В работе изучаются неустойчивости Рихтмайера–Мешкова и Рэлея–Тейлора вязкопластических жидкостей (или, в частности, бингамовских жидкостей, обладающих предельным напряжением сдвига) в трехмерной постановке задачи. Анализируется развитие неустойчивостей Рихтмайера–Мешкова и Рэлея–Тейлора бингамовских жидкостей при одномодовом возмущении скорости контактной границы. Анализ проводится на основе численного моделирования с использованием метода Мак-Кормака и метода объема жидкости (метода VOF — Volume of Fluid) для отслеживания контактной границы в различные моменты времени. Представлены результаты численного моделирования неустойчивостей Рихтмайера–Мешкова и Рэлея–Тейлора бингамовской жидкости и их сравнение как с теорией, так и с результатами моделирования ньютоновской жидкости. В результате проведенных численных расчетов показано, что предел текучести вязкопластической жидкости существенно влияет на характер неустойчивости как Рэлея–Тейлора, так и Рихтмайера–Мешкова: существует критическая амплитуда начального возмущения поля скорости контактной границы, при превышении которой начинается развитие неустойчивостей. Если амплитуда начального возмущения поля скорости меньше критического значения, то это возмущение относительно быстро затухает и развития неустойчивостей не происходит. При превышении начальным возмущением критической амплитуды характер развития неустойчивостей напоминает таковой у ньютоновской жидкости. При рассмотрении неустойчивости Рихтмайера–Мешкова оцениваются критические амплитуды начального возмущения поля скорости контактной границы при различных значениях предельного напряжения сдвига бингамовской жидкости. Кроме того, наблюдается отличие поведения неньютоновской жидкости при развитии неустойчивости от плоского случая: при одном и том же зна- чении предельного напряжения сдвига в трехмерной геометрии интервал значений амплитуды начального возмущения, при котором происходит переход от покоя к движению, несколько уже. Помимо этого показано, что критическая амплитуда начального возмущения контактной границы для неустойчивости Рэлея–Тейлора ниже, чем для неустойчивости Рихтмайера–Мешкова. Это объясняется действием силы тяжести, «помогающей» развитию неустойчивости и противодействующей силам вязкого трения.

    Doludenko A.N.
    On contact instabilities of viscoplastic fluids in three-dimensional setting
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 431-444

    The Richtmyer–Meshkov and the Rayleigh–Taylor instabilities of viscoplastic (or the Bingham) fluids are studied in the three–dimensional formulation of the problem. A numerical modeling of the intermixing of two fluids with different rheology, whose densities differ twice, as a result of instabilities development process has been carried out. The development of the Richtmyer–Meshkov and the Rayleigh–Taylor instabilities of the Bingham fluids is analyzed utilizing the MacCormack and the Volume of Fluid (VOF) methods to reconstruct the interface during the process. Both the results of numerical simulation of the named instabilities of the Bingham liquids and their comparison with theory and the results of the Newtonian fluid simulation are presented. Critical amplitude of the initial perturbation of the contact boundary velocity field at which the development of instabilities begins was estimated. This critical amplitude presents because of the yield stress exists in the Bingham fluids. Results of numerical calculations show that the yield stress of viscoplastic fluids essentially affects the nature of the development of both Rayleigh–Taylor and Richtmyer–Meshkov instabilities. If the amplitude of the initial perturbation is less than the critical value, then the perturbation decays relatively quickly, and no instability develops.When the initial perturbation exceeds the critical amplitude, the nature of the instability development resembles that of the Newtonian fluid. In a case of the Richtmyer–Meshkov instability, the critical amplitudes of the initial perturbation of the contact boundary at different values of the yield stress are estimated. There is a distinction in behavior of the non-Newtonian fluid in a plane case: with the same value of the yield stress in three-dimensional geometry, the range of the amplitude values of the initial perturbation, when fluid starts to transit from rest to motion, is significantly narrower. In addition, it is shown that the critical amplitude of the initial perturbation of the contact boundary for the Rayleigh–Taylor instability is lower than for the Richtmyer–Meshkov instability. This is due to the action of gravity, which helps the instability to develop and counteracts the forces of viscous friction.

    Просмотров за год: 19.
  10. Распространение устойчивых когерентных образований электромагнитного поля в нелинейных средах с меняющимися в пространстве параметрами может быть описано в рамках итераций нелинейных интегральных преобразований. Показано что для ряда актуальных геометрий задач нелинейной оптики численное моделирование путем сведения к динамическим системам с дискретным временем и непрерывными пространственными переменными, основанное на итерациях локальных нелинейных отображений Фейгенбаума и Икеды, а также нелокальных диффузионно-дисперсионных линейных интегральных преобразований, эквивалентно в довольно широком диапазоне параметров дифференциальным уравнениям в частных производных типа Гинзбурга–Ландау. Такие нелокальные отображения, представляющие собой при численной реализации произведения матричных операторов, оказываются устойчивыми численно-разностными схемами, обеспечивают быструю сходимость и адекватную аппроксимацию решений. Реалистичность данного подхода позволяет учитывать влияние шумов на нелинейную динамику путем наложения на расчетный массив чисел при каждой итерации пространственного шума, задаваемого в виде многомодового случайного процесса, и производить отбор устойчивых волновых конфигураций. Нелинейные волновые образования, описываемые данным методом, включают оптические фазовые сингулярности, пространственные солитоны и турбулентные состояния с быстрым затуханием корреляций. Определенный интерес представляют полученные данным численным методом периодические конфигурации электромагнитного поля, возникающие в результате фазовой синхронизации, такие как оптические решетки и самоорганизованные вихревые кластеры.

    Okulov A.Y.
    Numerical investigation of coherent and turbulent structures of light via nonlinear integral mappings
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 979-992

    The propagation of stable coherent entities of an electromagnetic field in nonlinear media with parameters varying in space can be described in the framework of iterations of nonlinear integral transformations. It is shown that for a set of geometries relevant to typical problems of nonlinear optics, numerical modeling by reducing to dynamical systems with discrete time and continuous spatial variables to iterates of local nonlinear Feigenbaum and Ikeda mappings and nonlocal diffusion-dispersion linear integral transforms is equivalent to partial differential equations of the Ginzburg–Landau type in a fairly wide range of parameters. Such nonlocal mappings, which are the products of matrix operators in the numerical implementation, turn out to be stable numerical- difference schemes, provide fast convergence and an adequate approximation of solutions. The realism of this approach allows one to take into account the effect of noise on nonlinear dynamics by superimposing a spatial noise specified in the form of a multimode random process at each iteration and selecting the stable wave configurations. The nonlinear wave formations described by this method include optical phase singularities, spatial solitons, and turbulent states with fast decay of correlations. The particular interest is in the periodic configurations of the electromagnetic field obtained by this numerical method that arise as a result of phase synchronization, such as optical lattices and self-organized vortex clusters.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.