Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Computational treatment of natural language text for intent detection
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1539-1554Intent detection plays a crucial role in task-oriented conversational systems. To understand the user’s goal, the system relies on its intent detector to classify the user’s utterance, which may be expressed in different forms of natural language, into intent classes. However, lack of data, and the efficacy of intent detection systems has been hindered by the fact that the user’s intent text is typically characterized by short, general sentences and colloquial expressions. The process of algorithmically determining user intent from a given statement is known as intent detection. The goal of this study is to develop an intent detection model that will accurately classify and detect user intent. The model calculates the similarity score of the three models used to determine their similarities. The proposed model uses Contextual Semantic Search (CSS) capabilities for semantic search, Latent Dirichlet Allocation (LDA) for topic modeling, the Bidirectional Encoder Representations from Transformers (BERT) semantic matching technique, and the combination of LDA and BERT for text classification and detection. The dataset acquired is from the broad twitter corpus (BTC) and comprises various meta data. To prepare the data for analysis, a pre-processing step was applied. A sample of 1432 instances were selected out of the 5000 available datasets because manual annotation is required and could be time-consuming. To compare the performance of the model with the existing model, the similarity scores, precision, recall, f1 score, and accuracy were computed. The results revealed that LDA-BERT achieved an accuracy of 95.88% for intent detection, BERT with an accuracy of 93.84%, and LDA with an accuracy of 92.23%. This shows that LDA-BERT performs better than other models. It is hoped that the novel model will aid in ensuring information security and social media intelligence. For future work, an unsupervised LDA-BERT without any labeled data can be studied with the model.
Ключевые слова: hate speech, intent classification, Twitter posts, sentiment analysis, opinion mining, intent identification from Twitter posts.
Computational treatment of natural language text for intent detection
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1539-1554Intent detection plays a crucial role in task-oriented conversational systems. To understand the user’s goal, the system relies on its intent detector to classify the user’s utterance, which may be expressed in different forms of natural language, into intent classes. However, lack of data, and the efficacy of intent detection systems has been hindered by the fact that the user’s intent text is typically characterized by short, general sentences and colloquial expressions. The process of algorithmically determining user intent from a given statement is known as intent detection. The goal of this study is to develop an intent detection model that will accurately classify and detect user intent. The model calculates the similarity score of the three models used to determine their similarities. The proposed model uses Contextual Semantic Search (CSS) capabilities for semantic search, Latent Dirichlet Allocation (LDA) for topic modeling, the Bidirectional Encoder Representations from Transformers (BERT) semantic matching technique, and the combination of LDA and BERT for text classification and detection. The dataset acquired is from the broad twitter corpus (BTC) and comprises various meta data. To prepare the data for analysis, a pre-processing step was applied. A sample of 1432 instances were selected out of the 5000 available datasets because manual annotation is required and could be time-consuming. To compare the performance of the model with the existing model, the similarity scores, precision, recall, f1 score, and accuracy were computed. The results revealed that LDA-BERT achieved an accuracy of 95.88% for intent detection, BERT with an accuracy of 93.84%, and LDA with an accuracy of 92.23%. This shows that LDA-BERT performs better than other models. It is hoped that the novel model will aid in ensuring information security and social media intelligence. For future work, an unsupervised LDA-BERT without any labeled data can be studied with the model.
-
К вопросу об определении ядра концевого вихря
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 9-27Дается обзор критериев, используемых при идентификации концевых вихрей, сходящих с несущих поверхностей летательного аппарата. В качестве основного метода идентификации вихря используется $Q$-критерий, в соответствии с которым ядро вихря ограничено поверхностью, на которой норма тензора завихренности равна норме тензора сдвиговых деформаций. При этом внутри ядра вихря должны выполняться следующие условия: (i) ненулевое значение нормы тензора завихренности, (ii) геометрия ядра вихря должна удовлетворять условию галилеевой инвариантности. На основе аналитических моделей вихря дается определение понятия центра двумерного вихря как точки, в которой $Q$-распределение принимает максимальное значение и много больше нормы тензора сдвиговых деформаций (для осесимметричного 2D-вихря норма тензора сдвиговых деформаций в центре вихря стремится к нулю). Поскольку необходимость существования оси вихря обсуждается в работах различных авторов и выглядит достаточно естественным требованием при анализе концевых вихрей, упомянутые выше условия (i), (ii) дополнены условием (iii): ядро вихря в трехмерном потоке должно содержать ось вихря. Анализируются течения, имеющие в 2D-сечениях осевую симметрию, а также форму ядра вихря, отличающуюся от окружности (в частности, эллиптического вида). Показывается, что в этом случае с использованием $Q$-распределения можно не только определить область ядра вихря, но и выделить ось ядра вихря. Для иллюстрации введенных понятий используются результаты численного моделирования обтекания крыла конечного размаха на базе решения осредненных по Рейнольдсу стационарных уравнений Навье – Стокса (RANS). Замыкание уравнений Навье – Стокса осуществлялось с использованием модели турбулентности $k-\omega$.
On the identification of the tip vortex core
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 9-27An overview is given for identification criteria of tip vortices, trailing from lifting surfaces of aircraft. $Q$-distribution is used as the main vortex identification method in this work. According to the definition of Q-criterion, the vortex core is bounded by a surface on which the norm of the vorticity tensor is equal to the norm of the strain-rate tensor. Moreover, following conditions are satisfied inside of the vortex core: (i) net (non-zero) vorticity tensor; (ii) the geometry of the identified vortex core should be Galilean invariant. Based on the existing analytical vortex models, a vortex center of a twodimensional vortex is defined as a point, where the $Q$-distribution reaches a maximum value and it is much greater than the norm of the strain-rate tensor (for an axisymmetric 2D vortex, the norm of the vorticity tensor tends to zero at the vortex center). Since the existence of the vortex axis is discussed by various authors and it seems to be a fairly natural requirement in the analysis of vortices, the above-mentioned conditions (i), (ii) can be supplemented with a third condition (iii): the vortex core in a three-dimensional flow must contain a vortex axis. Flows, having axisymmetric or non-axisymmetric (in particular, elliptic) vortex cores in 2D cross-sections, are analyzed. It is shown that in such cases $Q$-distribution can be used to obtain not only the boundary of the vortex core, but also to determine the axis of the vortex. These concepts are illustrated using the numerical simulation results for a finite span wing flow-field, obtained using the Reynolds-Averaged Navier – Stokes (RANS) equations with $k-\omega$ turbulence model.
-
Численная идентификация модели дегидрирования в грид-системе на базе BOINC
Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 37-45В работе рассматривается обратная задача определения по экспериментальным данным параметров модели выделения водорода из порошка гидрида металла. Методом слепого поиска в пространстве параметров установлено, что задача имеет многочисленные физически разумные решения. Решения задачи получены с помощью высокопроизводительного численного моделирования в грид–системе на базе платформы BOINC.
Ключевые слова: обратная задача, оценка параметров, математическое моделирование, вычислительные методы в физике, грид-системы, BOINC.
Numerical identification of the dehydriding model in a BOINC-based grid system
Computer Research and Modeling, 2013, v. 5, no. 1, pp. 37-45Цитирований: 6 (РИНЦ).In the paper we consider the inverse problem of evaluating kinetic parameters of the model of dehydriding of metal powder using experimental data. The «blind search» in the space of parameters revealed multiple physically reasonable solutions. The solutions were obtained using high–performance computational modeling based on BOINC–grid.
-
Нейросетевой анализ транспортных потоков городских агломераций на основе данных публичных камер видеообзора
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 305-318Адекватное моделирование сложной динамики городских транспортных потоков требует сбора больших объемов данных для определения характера соответствующих моделей и их калибровки. Вместе с тем оборудование специализированных постов наблюдения является весьма затратным мероприятием и не всегда технически возможно. Совокупность этих факторов приводит к недостаточному фактографическому обеспечению как систем оперативного управления транспортными потоками, так и специалистов по транспортному планированию с очевидными последствиями для качества принимаемых решений. В качестве способа обеспечить массовый сбор данных хотя бы для качественного анализа ситуаций достаточно давно применяется обзорные видеокамеры, транслирующие изображения в определенные ситуационные центры, где соответствующие операторы осуществляют контроль и управление процессами. Достаточно много таких обзорных камер предоставляют данные своих наблюдений в общий доступ, что делает их ценным ресурсом для транспортных исследований. Вместе с тем получение количественных данных с таких камер сталкивается с существенными проблемами, относящимися к теории и практике обработки видеоизображений, чему и посвящена данная работа. В работе исследуется практическое применение некоторых мейнстримовских нейросетевых технологий для определения основных характеристик реальных транспортных потоков, наблюдаемых камерами общего доступа, классифицируются возникающие при этом проблемы и предлагаются их решения. Для отслеживания объектов дорожного движения применяются варианты сверточных нейронных сетей, исследуются способы их применения для определения базовых характеристик транспортных потоков. Простые варианты нейронной сети используются для автоматизации при получении обучающих примеров для более глубокой нейронной сети YOLOv4. Сеть YOLOv4 использована для оценки характеристик движения (скорость, плотность потока) для различных направлений с записей камер видеонаблюдения.
Ключевые слова: искусственные нейронные сети, машинное зрение, машинное обучение, сопровождение объекта, сверточные нейронные сети.
Neural network analysis of transportation flows of urban aglomeration using the data from public video cameras
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 305-318Correct modeling of complex dynamics of urban transportation flows requires the collection of large volumes of empirical data to specify types of the modes and their identification. At the same time, setting a large number of observation posts is expensive and technically not always feasible. All this results in insufficient factographic support for the traffic control systems as well as for urban planners with the obvious consequences for the quality of their decisions. As one of the means to provide large-scale data collection at least for the qualitative situation analysis, the wide-area video cameras are used in different situation centers. There they are analyzed by human operators who are responsible for observation and control. Some video cameras provided their videos for common access, which makes them a valuable resource for transportation studies. However, there are significant problems with getting qualitative data from such cameras, which relate to the theory and practice of image processing. This study is devoted to the practical application of certain mainstream neuro-networking technologies for the estimation of essential characteristics of actual transportation flows. The problems arising in processing these data are analyzed, and their solutions are suggested. The convolution neural networks are used for tracking, and the methods for obtaining basic parameters of transportation flows from these observations are studied. The simplified neural networks are used for the preparation of training sets for the deep learning neural network YOLOv4 which is later used for the estimation of speed and density of automobile flows.
-
Параметрическая идентификация динамических систем на основе внешних интервальных оценок фазовых переменных
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 299-314Важную роль при построении математических моделей динамических систем играют обратные задачи, к которым, в частности, относится задача параметрической идентификации. В отличие от классических моделей, оперирующих точечными значениями, интервальные модели дают ограничения сверху и снизу на исследуемые величины. В работе рассматривается интерполяционный подход к решению интервальных задач параметрической идентификации динамических систем для случая, когда экспериментальные данные представлены внешними интервальными оценками. Цель предлагаемого подхода заключается в нахождении такой интервальной оценки параметров модели, при которой внешняя интервальная оценка решения прямой задачи моделирования содержала бы экспериментальные данные или минимизировала бы отклонение от них. В основе подхода лежит алгоритм адаптивной интерполяции для моделирования динамических систем с интервальными неопределенностями, позволяющий в явном виде получать зависимость фазовых переменных от параметров системы. Сформулирована задача минимизации расстояния между экспериментальными данными и модельным решением в пространстве границ интервальных оценок параметров модели. Получено выражение для градиента целевой функции. На репрезентативном наборе задач продемонстрированы эффективность и работоспособность предлагаемого подхода.
Ключевые слова: обратные задачи, параметрическая идентификация, интервальные оценки, интервальные параметры, динамические системы, обыкновенные дифференциальные уравнения, алгоритм адаптивной интерполяции, градиентный спуск.
Parametric identification of dynamic systems based on external interval estimates of phase variables
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 299-314An important role in the construction of mathematical models of dynamic systems is played by inverse problems, which in particular include the problem of parametric identification. Unlike classical models that operate with point values, interval models give upper and lower boundaries on the quantities under study. The paper considers an interpolation approach to solving interval problems of parametric identification of dynamic systems for the case when experimental data are represented by external interval estimates. The purpose of the proposed approach is to find such an interval estimate of the model parameters, in which the external interval estimate of the solution of the direct modeling problem would contain experimental data or minimize the deviation from them. The approach is based on the adaptive interpolation algorithm for modeling dynamic systems with interval uncertainties, which makes it possible to explicitly obtain the dependence of phase variables on system parameters. The task of minimizing the distance between the experimental data and the model solution in the space of interval boundaries of the model parameters is formulated. An expression for the gradient of the objectivet function is obtained. On a representative set of tasks, the effectiveness of the proposed approach is demonstrated.
-
Обнаружение медленно движущихся или неожиданно возникающих неподвижных «бутылочных горлышек» в транспортномпо токе на основе теории трех фаз
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 319-363Разработан метод обнаружения неожиданно возникающих «бутылочных горлышек», которые появляются в транспортном потоке внезапно и неожиданно для водителей. Такие неожиданно возникающие бутылочные горлышки могут двигаться, если они вызваны медленно движущейся автомашиной (тип МВ), или же оставаться неподвижными, если они вызваны внезапно остановившейся автомашиной (тип SV), например, в результате аварии. На основе численного моделирования стохастической микроскопической модели транспортного потока в рамках теории трех фаз Кернера показано, что даже при использовании небольшого процента «зондирующих» (измеряющих) автомашин (FCD), случайным образом распределенных в транспортном потоке, возможно надежное обнаружение неожиданно возникающих бутылочных горлышек. Найдено, что временная зависимость вероятности прогноза бутылочных горлышек типа МВ или SV, а также точность определения их положения существенно зависят от последовательности фазовых переходов от свободного (F) к синхронизованному (S) транспортному потоку (F→S-переход) и обратных фазовых переходов (S→F-переход), а также от колебаний скорости автомашин в синхронизованном потоке вблизи бутылочного горлышка. Предлагаемая численная методика позволяет как обнаруживать неожиданно возникшее бутылочное горлышко на автомагистрали, так и различать, связано ли такое бутылочное горлышко с медленно движущейся автомашиной (МВ) или же с внезапно остановившейся автомашиной (SV).
Ключевые слова: моделирование транспортных потоков, переход к плотному потоку, движущееся бутылочное горлышко, теория трех фаз Кернера, зондирующие автомашины (FCD) и навигационные данные.
Prediction of moving and unexpected motionless bottlenecks based on three-phase traffic theory
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 319-363We present a simulation methodology for the prediction of ЃgunexpectedЃh bottlenecks, i.e., the bottlenecks that occur suddenly and unexpectedly for drivers on a highway. Such unexpected bottlenecks can be either a moving bottleneck (MB) caused by a slow moving vehicle or a motionless bottleneck caused by a stopped vehicle (SV). Based on simulations of a stochastic microscopic traffic flow model in the framework of KernerЃfs three-phase traffic theory, we show that through the use of a small share of probe vehicles (FCD) randomly distributed in traffic flow the reliable prediction of ЃgunexpectedЃh bottlenecks is possible. We have found that the time dependence of the probability of MB and SV prediction as well as the accuracy of the estimation of MB and SV location depend considerably on sequences of phase transitions from free flow (F) to synchronized flow (S) (F→S transition) and back from synchronized flow to free flow (S→F transition) as well as on speed oscillations in synchronized flow at the bottleneck. In the simulation approach, the identification of F→S and S→F transitions at an unexpected bottleneck has been made in accordance with Kerner's three-phase traffic theory. The presented simulation methodology allows us both the prediction of the unexpected bottleneck that suddenly occurs on a highway and the distinguishing of the origin of the unexpected bottleneck, i.e., whether the unexpected bottleneck has occurred due to a MB or a SV.
-
Применение дискретных методов многокритериальной оптимизации для построения модели цифрового предискажения сигнала усилителя мощности базовой станции
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 281-300Осуществление передачи сигналов сотовой связи — одна из ключевых задач современного мира. Для улучшения сигнала передаваемой информации необходимо чтобы сигнал не искажался при усилении мощности на базовой станции сотовой связи. Поставленную задачу можно решать самыми различными способами, однако одним из самых простых решений, которое широко используется в индустрии, является добавление нелинейных искажений, позволяющих линеаризовать работу усилителя и устранять интермодуляционные искажения в областях спектра, не используемых для передачи сигнала. В силу большой нагрузки и работы в реальном времени модель, осуществляющая данные искажения, не должна быть громоздкой и иметь большое количество адаптируемых параметров. В данной статье производится анализ современных работ по теме многокритериальной оптимизации и построения моделей для решения задачи предискажения сигнала при помощи данных методов. В статье показывается, что возможно найти структуру (сохранив производительность) и имеющую меньшее количество используемых ресурсов, быстрее, чем полный перебор по всему словарю из заданных параметров.
Ключевые слова: цифровое предискажение сигнала, многокритериальная оптимизация, построение модели, усилитель мощности.
Application of discrete multicriteria optimization methods for the digital predistortion model design
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 281-300In this paper, we investigate different alternative ideas for the design of digital predistortion models for radiofrequency power amplifiers. When compared to the greedy search algorithm, these algorithms allow a faster identification of the model parameters combination while still performing reasonably well. For the subsequent implementation, different metrics of model costs and score results in the process of optimization enable us to achieve sparse selections of the model, which balance the model accuracy and model resources (according to the complexity of implementation). The results achieved in the process of simulations show that combinations obtained with explored algorithms show the best performance after a lower number of simulations.
-
Об однозначности идентификации параметров скорости реакции в модели горения
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1469-1476Рассмотрена модель горения предварительно перемешанной смеси газов с одной глобальной химической реакцией, включающая в себя уравнения второго порядка относительно температуры смеси и концентраций топлива и окислителя, в правые части которых входит функция скорости реакции. Эта функция зависит от пяти неизвестных параметров глобальной реакции и служит приближением для многоступенчатого механизма реакций. Модель сводится к одному уравнению второго порядка относительно температуры смеси, которое после замены переменных преобразуется к уравнению первого порядка относительно производной температуры, зависящей от температуры, в которое входит параметр скорости распространения пламени. Таким образом, для вычисления параметра скорости распространения пламени необходимо решить задачу Дирихле для уравнения первого порядка, в результате чего получится модельная зависимость скорости распространения пламени от эквивалентного отношения смеси при заданных параметрах скорости реакции. При наличии экспериментальных данных зависимости скорости распространения пламени от эквивалентного отношения смеси ставится задача оптимального подбора параметров скорости реакции, исходя из минимизации среднеквадратичного отклонения модельных значений скорости распространения пламени от эксперимента. Целью работы является исследование однозначности решения этой задачи. Для этого применяется вычислительный эксперимент, в ходе которого решается задача глобального поиска оптимумов с помощью мультистарта градиентного спуска. В ходе вычислительного эксперимента выяснено, что обратная задача в такой постановке является недоопределенной, и всякий раз при запуске градиентного метода из новой точки получается новая предельная точка. Исследована структура множества предельных точек в пятимерном пространстве параметров и показано, что это множество может быть описано тремя линейными уравнениями. Таким образом, будет некорректным табулировать все пять параметров скорости реакции исходя из одного лишь критерия соответствия модели данным скорости распространения пламени. Вывод исследования заключается в том, что для корректного табулирования параметров необходимо указать значения двух из них исходя из дополнительных критериев оптимальности.
Ключевые слова: модель горения, обратная задача, метод наименьших квадратов, метод градиентного спуска, глобальная оптимизация.
On the uniqueness of identification of reaction rate parameters in a combustion model
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1469-1476A model of combustion of premixed mixture of gases with one global chemical reaction is considered, the model includes equations of the second order for temperature of mixture and concentrations of fuel and oxidizer, and the right-hand sides of these equations contain the reaction rate function. This function depends on five unknown parameters of the global reaction and serves as approximation to multistep reaction mechanism. The model is reduced, after replacement of variables, to one equation of the second order for temperature of mixture that transforms to a first-order equation for temperature derivative depending on temperature that contains a parameter of flame propagation velocity. Thus, for computing the parameter of burning velocity, one has to solve Dirichlet problem for first-order equation, and after that a model dependence of burning velocity on mixture equivalence ratio at specified reaction rate parameters will be obtained. Given the experimental data of dependence of burning velocity on mixture equivalence ratio, the problem of optimal selection of reaction rate parameters is stated, based on minimization of the mean square deviation of model values of burning velocity on experimental ones. The aim of our study is analysis of uniqueness of this problem solution. To this end, we apply computational experiment during which the problem of global search of optima is solved using multistart of gradient descent. The computational experiment clarifies that the inverse problem in this statement is underdetermined, and every time, when running gradient descent from a selected starting point, it converges to a new limit point. The structure of the set of limit points in the five-dimensional space is analyzed, and it is shown that this set can be described with three linear equations. Therefore, it might be incorrect to tabulate all five parameters of reaction rate based on just one match criterion between model and experimental data of flame propagation velocity. The conclusion of our study is that in order to tabulate reaction rate parameters correctly, it is necessary to specify the values of two of them, based on additional optimality criteria.
-
Идентификация модели объекта при наличии неизвестных возмущений с широким частотным диапазоном на основе перехода к приращениям сигналов и отбора данных
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 315-337Работа посвящена проблеме создания модели со стационарными параметрами по ретроспективным данным в условиях неизвестных возмущений. Рассматривается случай, когда представительная выборка состояний объекта может быть сформирована с использованием ретроспективных данных, накопленных только в течение значительного интервала времени. При этом допускается, что неизвестные возмущения могут действовать в широком частотном диапазоне и могут иметь низкочастотные и трендовые составляющие. В такой ситуации включение в выборку данных разных временных периодов может привести к противоречиям и чрезвычайно снизить точность модели. В работе дан обзор подходов и способов согласования данных. При этом основное внимание уделено отбору данных. Дана оценка применимости различных вариантов отбора данных как инструмента снижения уровня неопределенности. Предложен метод идентификации модели объекта с самовыравниванием по данным, накопленным за значительный период времени в условиях неизвестных возмущений с широким частотным диапазоном. Метод ориентирован на создание модели со стационарными параметрами, не требующей периодической перенастройки под новые условия. Метод основан на совместном применении отбора данных и представлении данных отдельных периодов времени в виде приращений относительно начального для периода момента времени. Это позволяет уменьшить число параметров, которые характеризуют неизвестные возмущения при минимуме допущений, ограничивающих применение метода. В результате снижается размерность поисковой задачи и минимизируются вычислительные затраты, связанные с настройкой модели. Рассмотрены особенности применения метода при нелинейной модели. Метод использован при разработке модели закрытого охлаждения стали на агрегате непрерывного горячего оцинковании стальной полосы. Модель может использоваться при упреждающем управлении тепловыми процессами и при выборе скорости движения полосы. Показано, что метод делает возможным разработку модели тепловых процессов с секции закрытого охлаждения в условиях неизвестных возмущений, имеющих в том числе низкочастотные составляющие.
Ключевые слова: идентификация, большие данные, глобальная модель, приращения, неизвестные воздействия, отбор данных.
Identification of an object model in the presence of unknown disturbances with a wide frequency range based on the transition to signal increments and data sampling
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 315-337The work is devoted to the problem of creating a model with stationary parameters using historical data under conditions of unknown disturbances. The case is considered when a representative sample of object states can be formed using historical data accumulated only over a significant period of time. It is assumed that unknown disturbances can act in a wide frequency range and may have low-frequency and trend components. In such a situation, including data from different time periods in the sample can lead to inconsistencies and greatly reduce the accuracy of the model. The paper provides an overview of approaches and methods for data harmonization. In this case, the main attention is paid to data sampling. An assessment is made of the applicability of various data sampling options as a tool for reducing the level of uncertainty. We propose a method for identifying a self-leveling object model using data accumulated over a significant period of time under conditions of unknown disturbances with a wide frequency range. The method is focused on creating a model with stationary parameters that does not require periodic reconfiguration to new conditions. The method is based on the combined use of sampling and presentation of data from individual periods of time in the form of increments relative to the initial point in time for the period. This makes it possible to reduce the number of parameters that characterize unknown disturbances with a minimum of assumptions that limit the application of the method. As a result, the dimensionality of the search problem is reduced and the computational costs associated with setting up the model are minimized. It is possible to configure both linear and, in some cases, nonlinear models. The method was used to develop a model of closed cooling of steel on a unit for continuous hot-dip galvanizing of steel strip. The model can be used for predictive control of thermal processes and for selecting strip speed. It is shown that the method makes it possible to develop a model of thermal processes from a closed cooling section under conditions of unknown disturbances, including low-frequency components.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"