Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Квазиклассические решения уравнения Гросса–Питаевского, локализованные в окрестности окружности
Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 359-365В квазиклассическом приближении показано, что для конденсата Бозе–Эйнштейна, моделируемого уравнением Гросса–Питаевского с притягивающей нелинейностью при специальной конфигурации внешнего поля магнитной ловушки, возможны неколлапсирующие солитоноподобные волновые функции.
Ключевые слова: уравнение Гросса–Питаевского, бозе-эйнштейновский конденсат, магнитооптическая ловушка.
Semiclassical solutions localized in a neighborhood of a circle for the Gross–Pitaevskii equation
Computer Research and Modeling, 2009, v. 1, no. 4, pp. 359-365Цитирований: 1 (РИНЦ).Non-collapsing soliton-like wave functions are shown to exist in semiclassical approximation for the Bose-Einstein condensate model based on the Gross–Pitaevskii equation with attractive nonlinearity and external field of magnetic trap of special form.
-
Моделирование пространственного сценария перехода к хаосу через разрушение тора в задаче с концентрационно-зависимой диффузией
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 9-31Универсальные сценарии перехода к хаосу в динамических системах к настоящему моменту хорошо изучены. К типичным сценариям относятся каскад бифуркаций удвоения периода (сценарий Фейген-баума), разрушение тора малой размерности (сценарий Рюэля–Такенса) и переход через перемежаемость (сценарий Помо–Манневилля). В более сложных пространственно-распределенных динамических системах нарастающая с изменением параметра сложность поведения по времени тесно переплетается с формированием пространственных структур. Однако вопрос о том, могут ли в каком-то сценарии пространственная и временная оси полностью поменяться ролями, до сих пор остается открытым. В данной работе впервые предлагается математическая модель конвекции–реакции–диффузии, в рамках которой реализуется пространственный аналог перехода к хаосу через разрушение квазипериодического режима в рамках сценария Рюэля–Такенса. Исследуемая физическая система представляет собой два водных раствора кислоты (A) и основания (B), в начальный момент времени разделенных по пространству и помещенных в вертикальную ячейку Хеле–Шоу, находящуюся в статическом поле тяжести. При приведении растворов в контакт начинается фронтальная реакция нейтрализации второго порядка: A + B $\to$ C, которая сопровождается выделением соли (С). Процесс характеризуется сильной зависимостью коэффициентов диффузии реагентов от их концентрации, что приводит к возникновению двух локальных зон пониженной плотности, в которых независимо друг от друга возникают хемоконвективные движения жидкости. Слои, в которых развивается конвекция, все время остаются разделенными прослойкой неподвижной жидкости, но они могут влиять друг на друга посредством диффузии реагентов через прослойку. Формирующаяся хемо-конвективная структура представляет собой модулированную стоячую волну, постепенно разрушающуюся со временем, повторяя последовательность бифуркаций сценария разрушения двумерного тора. Показано, что в ходе эволюции системы пространственная ось, направленная вдоль фронта реакции, выполняет роль времени, а само время играет роль управляющего параметра.
Ключевые слова: пространственный аналог сценария перехода к хаосу, разрушение тора, хемокон-векция, реакция нейтрализации, нелинейная диффузия, смешивающиеся жидкости.
Modeling the spatial scenario of the transition to chaos via torus breakup in the problem with concentration-dependent diffusion
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 9-31In the last decades, universal scenarios of the transition to chaos in dynamic systems have been well studied. The scenario of the transition to chaos is defined as a sequence of bifurcations that occur in the system under the variation one of the governing parameters and lead to a qualitative change in dynamics, starting from the regular mode and ending with chaotic behavior. Typical scenarios include a cascade of period doubling bifurcations (Feigenbaum scenario), the breakup of a low-dimensional torus (Ruelle–Takens scenario), and the transition to chaos through the intermittency (Pomeau–Manneville scenario). In more complicated spatially distributed dynamic systems, the complexity of dynamic behavior growing with a parameter change is closely intertwined with the formation of spatial structures. However, the question of whether the spatial and temporal axes could completely exchange roles in some scenario still remains open. In this paper, for the first time, we propose a mathematical model of convection–diffusion–reaction, in which a spatial transition to chaos through the breakup of the quasi–periodic regime is realized in the framework of the Ruelle–Takens scenario. The physical system under consideration consists of two aqueous solutions of acid (A) and base (B), initially separated in space and placed in a vertically oriented Hele–Shaw cell subject to the gravity field. When the solutions are brought into contact, the frontal neutralization reaction of the second order A + B $\to$ C begins, which is accompanied by the production of salt (C). The process is characterized by a strong dependence of the diffusion coefficients of the reagents on their concentration, which leads to the appearance of two local zones of reduced density, in which chemoconvective fluid motions develop independently. Although the layers, in which convection develops, all the time remain separated by the interlayer of motionless fluid, they can influence each other via a diffusion of reagents through this interlayer. The emerging chemoconvective structure is the modulated standing wave that gradually breaks down over time, repeating the sequence of the bifurcation chain of the Ruelle–Takens scenario. We show that during the evolution of the system one of the spatial axes, directed along the reaction front, plays the role of time, and time itself starts to play the role of a control parameter.
-
Клеточно-автоматные методы решения классических задач математической физики на гексагональной сетке. Часть 1
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 167-186Статья носит методический характер и посвящена решению трех классических уравнений математической физики (Лапласа, диффузии и волнового) простейшими численными схемами в формулировке клеточных автоматов (КА). Особое внимание уделяется законам сохранения вещества и неприятному эффекту избыточной гексагональной симметрии (ИГС).
Делается вывод о том, что по сравнению с классическими конечно-разностными методами, хотя локальная функция перехода (ЛФП) КА терминологически эквивалентна шаблону вычислительной двухслоевой явной схемы, различие состоит в замене матричных (direct) методов (например, метода прогонки для трехдиагональной матрицы) итерационными. Из этого следуют более жесткие требования к дискретизации условий для граничных КА-ячеек.
Для гексагональной сетки и консервативных граничных условий записана корректная ЛФП для граничных ячеек, справедливая, по крайней мере, для границ прямоугольной и круговой формы. Предложена идея разделения ЛФП на internal, boundary и postfix. На примере этой задачи заново осмыслено значение числа Куранта–Леви как соотношения скорости сходимости КА к решению задачи, данному на фиксированный момент времени, и скорости изменения самого решения в динамике.
Ключевые слова: клеточные автоматы с непрерывными значениями, гексагональная сетка, конечно-разностные методы, уравнения в частных производных.
Cellular automata methods in mathematical physics classical problems solving on hexagonal grid. Part 1
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 167-186Просмотров за год: 6.The paper has methodical character; it is devoted to three classic partial differential equations (Laplace, Diffusion and Wave) solution using simple numerical methods in terms of Cellular Automata. Special attention was payed to the matter conservation law and the offensive effect of excessive hexagonal symmetry.
It has been shown that in contrary to finite-difference approach, in spite of terminological equivalence of CA local transition function to the pattern of computing double layer explicit method, CA approach contains the replacement of matrix technique by iterative ones (for instance, sweep method for three diagonal matrixes). This suggests that discretization of boundary conditions for CA-cells needs more rigid conditions.
The correct local transition function (LTF) of the boundary cells, which is valid at least for the boundaries of the rectangular and circular shapes have been firstly proposed and empirically given for the hexagonal grid and the conservative boundary conditions. The idea of LTF separation into «internal», «boundary» and «postfix» have been proposed. By the example of this problem the value of the Courant-Levy constant was re-evaluated as the CA convergence speed ratio to the solution, which is given at a fixed time, and to the rate of the solution change over time.
-
Бикомпактные схемы для задач газовой динамики: обобщение на сложные расчетные области методом свободной границы
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 487-504Работа посвящена использованию бикомпактных схем для численного решения эволюционных уравнений гиперболического типа. Основным преимуществом схем этого класса является сочетание двух положительных свойств: пространственной аппроксимации высокого четного порядка на шаблоне, всегда занимающем одну ячейку сетки, и спектрального разрешения, лучшего по сравнению с классическими компактными конечно-разностными схемами того же порядка пространственной аппроксимации. Рассматривается одна особенность бикомпактных схем — жесткая привязка их пространственной аппроксимации к декартовым сеткам (с ячейками-параллелепипедами в трехмерном случае). Она делает затруднительным применение бикомпактных схем к решению задач в сложных расчетных областях в рамках подхода неструктурированных сеток. Предлагается решать эту проблему путем применения известных методов аппроксимации границ сложной формы и соответствующих им краевых условий на декартовых сетках. Обобщение бикомпактных схем на задачи в геометрически сложных областях проводится на примере задач газовой динамики и уравнений Эйлера. В качестве конкретного метода, позволяющего учесть на декартовых сетках влияние твердых границ произвольной формы на течение газа, выбирается метод свободной границы. Приводится краткое описание этого метода, выписываются его уравнения. Для них строятся бикомпактные схемы четвертого порядка аппроксимации по пространству с локально-одномерным расщеплением. Компенсационный поток метода свободной границы дискретизируется со вторым порядком точности. Для интегрирования по времени в получаемых схемах применяются неявный метод Эйлера и $L$-устойчивый жестко-точный трехстадийный однократно диагонально-неявный метод Рунге–Кутты третьего порядка точности. Разработанные бикомпактные схемы тестируются на трех двумерных задачах: о стационарном сверхзвуковом обтекании с числом Маха, равным трем, одного круглого цилиндра и группы изт рех круглых цилиндров, а также о нестационарном взаимодействии плоской ударной волны и круглого цилиндра в канале с плоскопараллельными стенками. Полученные результаты хорошо согласуются с результатами других работ: твердые тела физически корректно влияют на поток газа, давление в контрольных точках на поверхностях тел рассчитывается с точностью, в целом отвечающей выбранному разрешению сетки и уровню численной диссипации.
Ключевые слова: газовая динамика, метод свободной границы, декартовы сетки, бикомпактные схемы, высокоточные схемы, неявные схемы.
Bicompact schemes for gas dynamics problems: introducing complex domains using the free boundary method
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 487-504This work is dedicated to application of bicompact schemes to numerical solution of evolutionary hyperbolic equations. The main advantage of this class of schemes lies in combination of two beneficial properties: the first one is spatial approximation of high even order on a stencil that always occupies only one mesh cell; the second one is spectral resolution which is better in comparison to classic compact finite-difference schemes of the same order of spatial approximation. One feature of bicompact schemes is considered: their spatial approximation is rigidly tied to Cartesian meshes (with parallelepiped-shaped cells in three-dimensional case). This feature makes rather challenging any application of bicompact schemes to problems with complex computational domains as treated in the framework of unstructured meshes. This problem is proposed to be solved using well-known methods for treating complex-shaped boundaries and their corresponding boundary conditions on Cartesian meshes. The generalization of bicompact schemes on problems in geometrically complex domains is made in case of gas dynamics problems and Euler equations. The free boundary method is chosen as a particular tool to introduce the influence of arbitrary-shaped solid boundaries on gas flows on Cartesian meshes. A brief description of this method is given, its governing equations are written down. Bicompact schemes of fourth order of approximation in space with locally one-dimensional splitting are constructed for equations of the free boundary method. Its compensation flux is discretized with second order of accuracy. Time stepping in the obtained schemes is done with the implicit Euler method and the third order accurate $L$-stable stiffly accurate three-stage singly diagonally implicit Runge–Kutta method. The designed bicompact schemes are tested on three two-dimensional problems: stationary supersonic flows with Mach number three past one circular cylinder and past three circular cylinders; the non-stationary interaction of planar shock wave with a circular cylinder in a channel with planar parallel walls. The obtained results are in a good agreement with other works: influence of solid bodies on gas flows is physically correct, pressure in control points on solid surfaces is calculated with the accuracy appropriate to the chosen mesh resolution and level of numerical dissipation.
-
Расчет излучения в ударном слое спускаемого космического аппарата с учетом деталей спектра фотонов
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 579-594Расчет переноса излучения в ударном слое космического аппарата вызывает значительные трудности из-за сложной многорезонансной зависимости макросечения поглощения излучения от энергий фотонов. В работе исследована сходимость двух приближенных методов осреднения спектров излучения к точному поточечному (line-by-line) расчету. Первым из приближенных методов является широко используемое многогрупповое приближение, вторым — метод лебеговского осреднения, относящийся к методам сокращения числа расчетных точек спектра за счет объединения точек с равновеликим поглощением. Показано, что с увеличением числа групп метод лебеговского осреднения сходится к точному решению значительно быстрее многогруппового приближения. Оказалось, что 100–150 лебеговых групп достаточно для достижения точности line-by-line-расчета даже в ударном слое в высоких слоях атмосферы, где линии поглощения узки. При этом объем вычислений сокращается более чем на четыре порядка. Выполнена серия расчетов функции распределения излучения в двумерном ударном слое, возникающем при обтекании сферы и затупленного конуса, с использованием приближения локально плоского слоя и метода лебеговского осреднения энергий фотонов. Показано, что излучение ударной волны становится все более сильным при увеличении размера космического аппарата, как в значениях падающего потока энергии на поверхности тела, так и в скорости обмена энергией с газодинамическим потоком, причем не только в точке торможения.
Ключевые слова: перенос энергии излучением, ударный слой, многогрупповое приближение, метод лебеговского осреднения, поточечный расчет спектра, приближение локально плоского слоя.
Calculation of radiation in shockwave layer of a space vehicle taking into account details of photon spectrum
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 579-594Просмотров за год: 8. Цитирований: 1 (РИНЦ).Calculations of radiation transport in the shockwave layer of a descent space vehicle cause essential difficulties due to complex multi-resonance dependence of the absorption macroscopic cross sections from the photon energy. The convergence of two approximate spectrum averaging methods to the results of exact pointwise spectrum calculations is investigated. The first one is the well known multigroup method, the second one is the Lebesgue averaging method belonging to methods of the reduction of calculation points by means of aggregation of spectral points which are characterized by equal absorption strength. It is shown that convergence of the Lebesgue averaging method is significantly faster than the multigroup approach as the number of groups is increased. The only 100–150 Lebesgue groups are required to achieve the accuracy of pointwise calculations even in the shock layer at upper atmosphere with sharp absorption lines. At the same time the number of calculations is reduced by more than four order. Series of calculations of the radiation distribution function in 2D shock layer around a sphere and a blunt cone were performed using the local flat layer approximation and the Lebesgue averaging method. It is shown that the shock wave radiation becomes more significant both in value of the energy flux incident on the body surface and in the rate of energy exchange with the gas-dynamic flow in the case of increasing of the vehicle’s size.
-
Исследование формирования структур Тьюринга под влиянием волновой неустойчивости
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 397-412Рассматривается классическая для нелинейной динамики модель «брюсселятор», дополненная третьей переменной, играющей роль быстро диффундирующего ингибитора. Модель исследуется в одномерном случае в области параметров, где проявляются два типа диффузионной неустойчивости однородного стационарного состояния системы: волновая неустойчивость, приводящая к самопроизвольному формированию автоволн, и неустойчивость Тьюринга, приводящая к самопроизвольному формированию стационарных диссипативных структур, или структур Тьюринга. Показано, что благодаря субкритическому характеру бифуркации Тьюринга взаимодействие двух неустойчивостей в данной системе приводит к самопроизвольному формированию стационарных диссипативных структур еще до прохождения бифуркации Тьюринга. В ответ на различные случайные шумовые возмущения пространственно-однородного стационарного состояния в исследуемой параметрической области в окрестности точки двойной бифуркации в системе могут устанавливаться различные режимы: как чистые, состоящие только из стационарных или только автоволновых диссипативных структур, так и смешанные, при которых разные режимы проявляются в разных участках расчетного пространства. В рассматриваемой параметрической области система является мультистабильной и проявляет высокую чувствительность к начальным шумовым условиям, что приводит к размытию границ между качественно разными режимами. При этом даже в зоне доминирования смешанных режимов с преобладанием структур Тьюринга значительную вероятность имеет установление чистого автоволнового режима. В случае установившихся смешанных режимов достаточно сильное локальное возмущение в участке расчетного пространства, где проявляется автоволновой режим, может инициировать локальное формирование новых стационарных диссипативных структур. Локальное возмущение стационарного однородного состояния в исследуемой области параметрического пространства приводит к качественно схожей карте устоявшихся режимов, при этом зона доминирования чистых автоволновых режимов расширяется с увеличением амплитуды локального возмущения. В двумерном случае в системе не устанавливаются смешанные режимы. При эволюции системы в случае появления локальных структур Тьюринга под воздействием автоволнового режима со временем они заполняют все расчетное пространство.
Investigation of Turing structures formation under the influence of wave instability
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 397-412Просмотров за год: 21.A classical for nonlinear dynamics model, Brusselator, is considered, being augmented by addition of a third variable, which plays the role of a fast-diffusing inhibitor. The model is investigated in one-dimensional case in the parametric domain, where two types of diffusive instabilities of system’s homogeneous stationary state are manifested: wave instability, which leads to spontaneous formation of autowaves, and Turing instability, which leads to spontaneous formation of stationary dissipative structures, or Turing structures. It is shown that, due to the subcritical nature of Turing bifurcation, the interaction of two instabilities in this system results in spontaneous formation of stationary dissipative structures already before the passage of Turing bifurcation. In response to different perturbations of spatially uniform stationary state, different stable regimes are manifested in the vicinity of the double bifurcation point in the parametric region under study: both pure regimes, which consist of either stationary or autowave dissipative structures; and mixed regimes, in which different modes dominate in different areas of the computational space. In the considered region of the parametric space, the system is multistable and exhibits high sensitivity to initial noise conditions, which leads to blurring of the boundaries between qualitatively different regimes in the parametric region. At that, even in the area of dominance of mixed modes with prevalence of Turing structures, the establishment of a pure autowave regime has significant probability. In the case of stable mixed regimes, a sufficiently strong local perturbation in the area of the computational space, where autowave mode is manifested, can initiate local formation of new stationary dissipative structures. Local perturbation of the stationary homogeneous state in the parametric region under investidation leads to a qualitatively similar map of established modes, the zone of dominance of pure autowave regimes being expanded with the increase of local perturbation amplitude. In two-dimensional case, mixed regimes turn out to be only transient — upon the appearance of localized Turing structures under the influence of wave regime, they eventually occupy all available space.
-
Локализованные нелинейные волны уравнения синус-Гордона в модели с тремя протяженными примесями
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 855-868В работе с помощью аналитических и численных методов рассматривается задача о структуре и динамике связанных локализованных нелинейных волн в модели синус-Гордона с тремя одинаковыми притягивающими протяженными примесями, которые моделируются пространственной неоднородностью периодического потенциала. Найдены два возможных типа связанных нелинейных локализованных волн — бризерного и солитонного. Проведен анализ влияния параметров системы и начальных условий на структуру локализованных волн, их амплитуду и частоту. Связанные колебания локализованных волн бризерного типа, как и для случая точечных примесей, представляет собой сумму трех гармонических колебаний: синфазного, синфазно-антифазного и антифазного типа. Частотный анализ локализованных на примесях волн, которые были получены в ходе численного эксперимента, выполнялся с помощью дискретного преобразования Фурье. Для анализа локализованных волн бризерного типа применялся численный метод конечных разностей. Для проведения качественно анализа полученных численных результатов задача решалась аналитически для случая малых амплитуд локализованных на примесях колебаний. Показано, что при определенных параметрах примеси (глубина, ширина) можно получить локализованные волны солитонного типа. Найдены области значений параметров системы, в которых существуют локализованные волны определенного типа, а также область перехода от бризерных к солитонным типам колебаний. Были определены значения глубины и ширины примеси, при которых наблюдается переход от бризерного к солитонному типу локализованных колебаний. Были получены и рассмотрены различные сценарии колебаний солитонного типа с отрицательными и положительными значениями амплитуд на всех трех примесях, а также и смешанные случаи. Показано, что в случае расстояния между примесями много меньше единицы отсутствует переходная область, в которой зарождающийся бризер после потери энергии на излучение переходит в солитон. Показано, что рассмотренная модель может быть использована, например, для описания динамики волн намагниченности в мультислойных магнетиках.
Localized nonlinear waves of the sine-Gordon equation in a model with three extended impurities
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 855-868In this work, we use analytical and numerical methods to consider the problem of the structure and dynamics of coupled localized nonlinear waves in the sine-Gordon model with three identical attractive extended “impurities”, which are modeled by spatial inhomogeneity of the periodic potential. Two possible types of coupled nonlinear localized waves are found: breather and soliton. The influence of system parameters and initial conditions on the structure, amplitude, and frequency of localized waves was analyzed. Associated oscillations of localized waves of the breather type as in the case of point impurities, are the sum of three harmonic oscillations: in-phase, in-phase-antiphase and antiphase type. Frequency analysis of impurity-localized waves that were obtained during a numerical experiment was performed using discrete Fourier transform. To analyze localized breather-type waves, the numerical finite difference method was used. To carry out a qualitative analysis of the obtained numerical results, the problem was solved analytically for the case of small amplitudes of oscillations localized on impurities. It is shown that, for certain impurity parameters (depth and width), it is possible to obtain localized solitontype waves. The ranges of values of the system parameters in which localized waves of a certain type exist, as well as the region of transition from breather to soliton types of oscillations, have been found. The values of the depth and width of the impurity at which a transition from the breather to the soliton type of localized oscillations is observed were determined. Various scenarios of soliton-type oscillations with negative and positive amplitude values for all three impurities, as well as mixed cases, were obtained and considered. It is shown that in the case when the distance between impurities much less than one, there is no transition region where which the nascent breather, after losing energy through radiation, transforms into a soliton. It is shown that the considered model can be used, for example, to describe the dynamics of magnetization waves in multilayer magnets.
-
Численное моделирование когерентных и турбулентных структур излучения методом нелинейных интегральных отображений
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 979-992Распространение устойчивых когерентных образований электромагнитного поля в нелинейных средах с меняющимися в пространстве параметрами может быть описано в рамках итераций нелинейных интегральных преобразований. Показано что для ряда актуальных геометрий задач нелинейной оптики численное моделирование путем сведения к динамическим системам с дискретным временем и непрерывными пространственными переменными, основанное на итерациях локальных нелинейных отображений Фейгенбаума и Икеды, а также нелокальных диффузионно-дисперсионных линейных интегральных преобразований, эквивалентно в довольно широком диапазоне параметров дифференциальным уравнениям в частных производных типа Гинзбурга–Ландау. Такие нелокальные отображения, представляющие собой при численной реализации произведения матричных операторов, оказываются устойчивыми численно-разностными схемами, обеспечивают быструю сходимость и адекватную аппроксимацию решений. Реалистичность данного подхода позволяет учитывать влияние шумов на нелинейную динамику путем наложения на расчетный массив чисел при каждой итерации пространственного шума, задаваемого в виде многомодового случайного процесса, и производить отбор устойчивых волновых конфигураций. Нелинейные волновые образования, описываемые данным методом, включают оптические фазовые сингулярности, пространственные солитоны и турбулентные состояния с быстрым затуханием корреляций. Определенный интерес представляют полученные данным численным методом периодические конфигурации электромагнитного поля, возникающие в результате фазовой синхронизации, такие как оптические решетки и самоорганизованные вихревые кластеры.
Ключевые слова: дискретные отображения, интегральные преобразования, солитоны, вихри, фронты переключения, вихревые решетки, хаос, турбулентность.
Numerical investigation of coherent and turbulent structures of light via nonlinear integral mappings
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 979-992The propagation of stable coherent entities of an electromagnetic field in nonlinear media with parameters varying in space can be described in the framework of iterations of nonlinear integral transformations. It is shown that for a set of geometries relevant to typical problems of nonlinear optics, numerical modeling by reducing to dynamical systems with discrete time and continuous spatial variables to iterates of local nonlinear Feigenbaum and Ikeda mappings and nonlocal diffusion-dispersion linear integral transforms is equivalent to partial differential equations of the Ginzburg–Landau type in a fairly wide range of parameters. Such nonlocal mappings, which are the products of matrix operators in the numerical implementation, turn out to be stable numerical- difference schemes, provide fast convergence and an adequate approximation of solutions. The realism of this approach allows one to take into account the effect of noise on nonlinear dynamics by superimposing a spatial noise specified in the form of a multimode random process at each iteration and selecting the stable wave configurations. The nonlinear wave formations described by this method include optical phase singularities, spatial solitons, and turbulent states with fast decay of correlations. The particular interest is in the periodic configurations of the electromagnetic field obtained by this numerical method that arise as a result of phase synchronization, such as optical lattices and self-organized vortex clusters.
Keywords: discrete maps, integral transforms, solitons, vortices, switching waves, vortex lattices, chaos, turbulence. -
Расчет структуры ударной волны в газовой смеси на основе уравнения Больцмана с контролем точности
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1107-1123В работе проведено исследование структуры ударной волны в бинарной газовой смеси на основе прямого решения кинетического уравнения Больцмана. Для вычисления интеграла столкновений в кинетическом уравнении используется консервативный проекционный метод. Детально описаны применяемые расчетные формулы и методика вычислений. В качестве потенциала взаимодействия молекул используется модель твердых сфер. Численное моделирование проводится с использованием разработанной программно-моделирующей среды, которая позволяет исследовать стационарные и нестационарные течения газовых смесей в различных режимах и для произвольной геометрии задачи. Моделирование выполняется на системе кластерной архитектуры. За счет использования технологий распараллеливания кода достигается значительное ускорение вычислений. С фиксированной точностью, контролируемой параметрами моделирования, получены распределения макроскопических величин компонентов смеси по фронту ударной волны. Расчеты выполнены для различных соотношений молекулярных масс и чисел Маха. Достигнута общая точность моделирования не менее 1% по локальным значениям концентрации и температуры и 3% по ширине фронта ударной волны. Проведено сравнение полученных результатов с существующими расчетными данными. Представленные в данной работе результаты имеют теоретическое значение, а также могут служить в качестве тестового расчета, поскольку они получены с использованием точного уравнения Больцмана.
Ключевые слова: динамика разреженных газов, бинарные газовые смеси, кинетическое уравнение Больцмана, проекционный метод, численное моделирование, структура ударной волны.
Computation of a shock wave structure in a gas mixture based on the Boltzmann equation with accuracy control
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1107-1123In this paper, the structure of a shock wave in a binary gas mixture is studied on the basis of direct solution of the Boltzmann kinetic equation. The conservative projection method is used to evaluate the collision integral in the kinetic equation. The applied evaluation formulas and numerical methods are described in detail. The model of hard spheres is used as an interaction potential of molecules. Numerical simulation is performed using the developed simulation environment software, which makes it possible to study both steady and non-steady flows of gas mixtures in various flow regimes and for an arbitrary geometry of the problem. Modeling is performed on a cluster architecture. Due to the use of code parallelization technologies, a significant acceleration of computations is achieved. With a fixed accuracy controlled by the simulation parameters, the distributions of macroscopic characteristics of the mixture components through the shock wave front were obtained. Computations were conducted for various ratios of molecular masses and Mach numbers. The total accuracy of at least 1% for the local values of molecular density and temperature and 3% for the shock front width was achieved. The obtained results were compared with existing computation data. The results presented in this paper are of theoretical significance, and can serve as a test computation, since they are obtained using the exact Boltzmann equation.
-
Локализованные волны уравнения $\varphi^4$ в модели с двумя протяженными примесями
Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 437-449В данной работе рассматривается взаимодействие кинка уравнения $\varphi^4$ с двумя протяженными одинаковыми примесями. Протяженная примесь описывается с помощью функции прямоугольного вида. Анализируется случай притягивающей примеси. С помощью аналитических методов рассматривается случай малых амплитуд локализованных волн, когда возможно провести линеаризацию уравнений движения. Для численного решения использовался метод прямых для уравнений в частных производных. Для нахождения частот колебаний, локализованных на примесях волн, используется дискретное преобразование Фурье. Кинк запускался в направлении примесей с разными начальными скоростями. Изменялось также расстояние между двумя примесями. Показано, что при взаимодействии кинка с примесями на них возбуждаются долгоживущие локализованные волны бризерного типа. Исследована их структура и связанная динамика. Определено, как, изменяя параметры примесей и расстояние между ними, можно управлять типом и динамическими параметрами связанных колебаний, локализованных на примесях волн. Найдены возможные решения в виде синфазных, антифазных колебаний, в виде биений. Колебания локализованных волн происходят с излучением волн малой амплитуды. Спектр этих излучений состоит из двух частот. Первая приближенно равна $\sqrt{2}$, что соответствует величине частоты для хвоста воблингбризера уравнения $\varphi^4$. Вторая приближенно равна удвоенной частоте колебаний примесных мод. Найдено (как аналитически, так и численно) наличие двух возможных частот для связанных локализованных колебаний. Показано, что частоты сильно зависят от расстояния между примесями. С увеличением расстояния между примесями частоты сливаются в одну — частоту, полученную для случая одиночной примеси. Найденные численно и аналитически зависимости частот от расстояния между примесями хорошо совпадают для больших расстояний, когда взаимодействие между примесями слабое, и начинают заметно отличаться при малых расстояниях, когда взаимодействие между примесями сильное. Аналитическое значение величин полученных частот всегда больше численных. Показано, что зависимость амплитуды локализованных волн от начальной скорости кинка имеет несколько минимумов и максимумов.
Localized waves of the $\varphi^4$ equation in models with two extended impurities
Computer Research and Modeling, 2025, v. 17, no. 3, pp. 437-449In this paper, we consider the interaction of a kink of the $\varphi^4$ equation with two identical extended impurities. An extended impurity is described using a rectangular function. The case of an attractive impurity is analyzed. Using analytical methods, we consider the case of small amplitudes of localized waves, when it is possible to linearize the equations of motion. For the numerical solution, the method of lines for partial differential equations was used. To find the oscillation frequencies of waves localized on impurities, the discrete Fourier transform is used. The kink was launched in the direction of the impurities with different initial velocities. The distance between the two impurities was also varied. It is shown that when a kink interacts with impurities, long-lived localized breather-type waves are excited on them. Their structure and coupled dynamics are investigated. It is determined how, by changing the parameters of the impurities and the distance between them, it is possible to control the type and dynamic parameters of the coupled oscillations of the waves localized on the impurities. Possible solutions in the form of in-phase, antiphase oscillations, in the form of beats are found. The oscillations of localized waves occur with the emission of small-amplitude waves. The spectrum of these emissions consists of two frequencies. The first is approximately equal to $\sqrt{2}$, which corresponds to the frequency value for the wobbling breather tail of the $\varphi^4$ equation. The second is approximately equal to the doubled frequency of impurity mode oscillations. The presence of two possible frequencies for coupled localized oscillations is found both analytically and numerically. It is shown that the frequencies strongly depend on the distance between impurities. With increasing distance between impurities, the frequencies merge into one — frequency obtained for the case of a single impurity. The dependences of the frequencies on the distance between impurities found numerically and analytically coincide well for large distances, when the interaction between impurities is weak, and begin to differ noticeably at small distances, when the interaction between impurities is strong. The analytical value of the obtained frequencies is always greater than the numerical ones. It is shown that the dependence of the amplitude of localized waves on the initial kink velocity has several minima and maxima.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"