Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'complex modeling':
Найдено статей: 200
  1. В работе разработан кластерный метод математического моделирования интервально-стохастических тепловых процессов в сложных технических, в частности электронных, системах (ЭС). В кластерном методе конструкция сложной ЭС представляется в виде тепловой модели, являющейся системой кластеров, каждый из которых содержит ядро, объединяющее в себе тепловыделяющие элементы, попадающие в данный кластер, оболочку кластера и поток среды, протекающий через кластер. Состояние теплового процесса в каждом кластере и в каждый момент времени характеризуется тремя интервально-стохастическими переменными состояния, а именно температурами ядра, оболочки и потока среды. При этом элементы каждого кластера, а именно ядро, оболочка и поток среды, находятся в тепловом взаимодействии между собой и элементами соседних кластеров. В отличие от существующих методов кластерный метод позволяет моделировать тепловые процессы в сложных ЭС с учетом неравномерного распределения температуры в потоке среды нагнетаемой в ЭС, сопряженного характера теплообмена между пото- ком среды в ЭС, ядрами и оболочками кластеров и интервально-стохастического характера тепловых процессов в ЭС, вызванного статистическим технологическим разбросом изготовления и монтажа электронных элементов в ЭС, и случайными флуктуациями тепловых параметров окружающей среды. Математическая модель, описывающая состояния тепловых процессов в кластерной тепловой модели, представляет собой систему интервально-стохастических матрично-блочных уравнений с матричными и векторными блоками, соответствующими кластерам тепловой модели. Решением интервально-стохастических уравнений являются статистические меры переменных состояния тепловых процессов в кластерах — математические ожидания, ковариации между переменными состояния и дисперсии. Методика применения кластерного метода показана на примере реальной ЭС.

    Madera A.G.
    Cluster method of mathematical modeling of interval-stochastic thermal processes in electronic systems
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1023-1038

    A cluster method of mathematical modeling of interval-stochastic thermal processes in complex electronic systems (ES), is developed. In the cluster method, the construction of a complex ES is represented in the form of a thermal model, which is a system of clusters, each of which contains a core that combines the heat-generating elements falling into a given cluster, the cluster shell and a medium flow through the cluster. The state of the thermal process in each cluster and every moment of time is characterized by three interval-stochastic state variables, namely, the temperatures of the core, shell, and medium flow. The elements of each cluster, namely, the core, shell, and medium flow, are in thermal interaction between themselves and elements of neighboring clusters. In contrast to existing methods, the cluster method allows you to simulate thermal processes in complex ESs, taking into account the uneven distribution of temperature in the medium flow pumped into the ES, the conjugate nature of heat exchange between the medium flow in the ES, core and shells of clusters, and the intervalstochastic nature of thermal processes in the ES, caused by statistical technological variation in the manufacture and installation of electronic elements in ES and random fluctuations in the thermal parameters of the environment. The mathematical model describing the state of thermal processes in a cluster thermal model is a system of interval-stochastic matrix-block equations with matrix and vector blocks corresponding to the clusters of the thermal model. The solution to the interval-stochastic equations are statistical measures of the state variables of thermal processes in clusters - mathematical expectations, covariances between state variables and variance. The methodology for applying the cluster method is shown on the example of a real ES.

  2. Минниханов Р.Н., Аникин И.В., Дагаева М.В., Файзрахманов Э.М., Большаков Т.Е.
    Транспортные данные для моделирования эффективной транспортной среды в Республике Татарстан
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 395-404

    Автоматизированные системы мониторинга городского трафика широко используются для решения различных задач в интеллектуальных транспортных системах различных регионов. Такие системы включают комплексы фотовидеофиксации, видеонаблюдения, управления дорожным трафиком и т. д. Для эффективного управления транспортным потоком и своевременного реагирования на дорожные инциденты необходимы непрерывный сбор и анализ потока информации, поступающей с данных комплексов, формирование прогнозных значений для дальнейшего выявления аномалий. При этом для повышения качества прогноза требуется агрегирование данных, поступающих из различных источников. Это позволяет уменьшить ошибку прогноза, связанную с ошибками и пропусками в исходных данных. В данной статье реализован подход к краткосрочному и среднесрочному прогнозированию транспортных потоков (5, 10, 15 минут) на основе агрегирования данных, поступающих от комплексов фотовидеофиксации и систем видеонаблюдения. Реализован прогноз с использованием различных архитектур рекуррентных нейронных сетей: LSTM, GRU, двунаправленной LSTM с одним и двумя слоями. Работа двунаправленной LSTM исследовалась для 64 и 128 нейронов в каждом слое. Исследовалась ошибка прогноза для различных размеров входного окна (1, 4, 12, 24, 48). Для оценки прогнозной ошибки использована метрика RMSE. В ходе проведенных исследований получено, что наименьшая ошибка прогноза (0.032405) достигается при использовании однослойной рекуррентной нейронной сети LSTM с 64 нейронами и размером входного окна, равном 24.

    Minnikhanov R.N., Anikin I.V., Dagaeva M.V., Faizrakhmanov E.M., Bolshakov T.E.
    Modeling of the effective environment in the Republic of Tatarstan using transport data
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 395-404

    Automated urban traffic monitoring systems are widely used to solve various tasks in intelligent transport systems of different regions. They include video enforcement, video surveillance, traffic management system, etc. Effective traffic management and rapid response to traffic incidents require continuous monitoring and analysis of information from these complexes, as well as time series forecasting for further anomaly detection in traffic flow. To increase the forecasting quality, data fusion from different sources is needed. It will reduce the forecasting error, related to possible incorrect values and data gaps. We implemented the approach for short-term and middle-term forecasting of traffic flow (5, 10, 15 min) based on data fusion from video enforcement and video surveillance systems. We made forecasting using different recurrent neural network architectures: LSTM, GRU, and bidirectional LSTM with one and two layers. We investigated the forecasting quality of bidirectional LSTM with 64 and 128 neurons in hidden layers. The input window size (1, 4, 12, 24, 48) was investigated. The RMSE value was used as a forecasting error. We got minimum RMSE = 0.032405 for basic LSTM with 64 neurons in the hidden layer and window size = 24.

  3. Коганов А.В., Ракчеева Т.А., Приходько Д.И.
    Сравнительный анализ адаптации человека к росту объема зрительной информации в задачах распознавания формальных символов и содержательных изображений
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 571-586

    Мы описываем инженерно-психологический эксперимент, продолжающий исследование способов адаптации человека к росту сложности логических задач методом предъявления серий задач нарастающей сложности, которая определяется объемом исходных данных. Задачи требуют вычислений в ассоциативной или неассоциативной системе операций. По характеру изменения времени решения задачи в зависимости от числа необходимых операций можно делать вывод о чисто последовательном способе решения задач или о подключении к решению дополнительных ресурсов мозга в параллельном режиме. В ранее опубликованной экспериментальной работе человек в процессе решения ассоциативной задачи распознавал цветные картинки с содержательными изображениями. В новом исследовании аналогичная задача решается для абстрактных монохромных геометрических фигур. Анализ результата показал, что для второго случая значительно снижается вероятность перехода испытуемого на параллельный способ обработки зрительной информации. Метод исследования основан на предъявлении человеку задач двух типов. Один тип задач содержит ассоциативные вычисления и допускает параллельный алгоритм решения. Другой тип задач контрольный, содержит задачи, в которых вычисления неассоциативные и параллельные алгоритмы решения неэффективны. Задача распознавания и поиска заданного объекта ассоциативна. Параллельная стратегия значительно ускоряет решение при сравнительно малых дополнительных затратах ресурсов. В качестве контрольной серии задач (для отделения параллельной работы от ускорения последовательного алгоритма) используется, как и в предыдущем эксперименте, неассоциативная задача сравнения в циклической арифметике, представленной в наглядной форме игры «камень, ножницы, бумага». В этой задаче параллельный алгоритм требует работы большого числа процессоров с малым коэффициентом эффективности. Поэтому переход человека на параллельный алгоритм решения этой задачи практически исключен и ускорение обработки входной информации возможно только путем повышения быстродействия. Сравнение зависимости времени решения от объема исходных данных для двух типов задач позволяет выявить четыре типа стратегий адаптации к росту сложности задачи: равномерная последовательная, ускоренная последовательная, параллельные вычисления (там, где это возможно) или неопределенная (для данного метода) стратегия. Уменьшение части испытуемых, которые переходят на параллельную стратегию при кодировании входной информации формальными изображениями, показывает эффективность кодов, вызывающих предметные ассоциации. Они повышают скорость восприятия и переработки информации человеком. Статья содержит предварительную математическую модель, которая объясняет это явление. Она основана на появлении второго набора исходных данных, который возникает у человека в результате узнавания изображенных предметов.

    Koganov A.V., Rakcheeva T.A., Prikhodko D.I.
    Comparative analysis of human adaptation to the growth of visual information in the tasks of recognizing formal symbols and meaningful images
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 571-586

    We describe an engineering-psychological experiment that continues the study of ways to adapt a person to the increasing complexity of logical problems by presenting a series of problems of increasing complexity, which is determined by the volume of initial data. Tasks require calculations in an associative or non-associative system of operations. By the nature of the change in the time of solving the problem, depending on the number of necessary operations, we can conclude that a purely sequential method of solving problems or connecting additional brain resources to the solution in parallel mode. In a previously published experimental work, a person in the process of solving an associative problem recognized color images with meaningful images. In the new study, a similar problem is solved for abstract monochrome geometric shapes. Analysis of the result showed that for the second case, the probability of the subject switching to a parallel method of processing visual information is significantly reduced. The research method is based on presenting a person with two types of tasks. One type of problem contains associative calculations and allows a parallel solution algorithm. Another type of problem is the control one, which contains problems in which calculations are not associative and parallel algorithms are ineffective. The task of recognizing and searching for a given object is associative. A parallel strategy significantly speeds up the solution with relatively small additional resources. As a control series of problems (to separate parallel work from the acceleration of a sequential algorithm), we use, as in the previous experiment, a non-associative comparison problem in cyclic arithmetic, presented in the visual form of the game “rock, paper, scissors”. In this problem, the parallel algorithm requires a large number of processors with a small efficiency coefficient. Therefore, the transition of a person to a parallel algorithm for solving this problem is almost impossible, and the acceleration of processing input information is possible only by increasing the speed. Comparing the dependence of the solution time on the volume of source data for two types of problems allows us to identify four types of strategies for adapting to the increasing complexity of the problem: uniform sequential, accelerated sequential, parallel computing (where possible), or undefined (for this method) strategy. The Reducing of the number of subjects, who switch to a parallel strategy when encoding input information with formal images, shows the effectiveness of codes that cause subject associations. They increase the speed of human perception and processing of information. The article contains a preliminary mathematical model that explains this phenomenon. It is based on the appearance of a second set of initial data, which occurs in a person as a result of recognizing the depicted objects.

  4. Поляков С.В., Подрыга В.О.
    Исследование нелинейных процессов на границе раздела газового потока имет аллической стенки микроканала
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 781-794

    Работа посвящена исследованию влияния нелинейных процессов в пограничном слое на общий характер течений газа в микроканалах технических систем. Подобное исследование актуально для задач нанотехнологий. Одной из важных задач в этой сфере является анализ потоков газа в микроканалах в случае переходных и сверхзвуковых течений. Результаты этого анализа важны для техники газодинамического напыления и для синтеза новых наноматериалов. Из-за сложности реализации полномасштабных экспериментов на микро- и наномасштабах они чаще всего заменяются компьютерным моделированием. Эффективность компьютерного моделирования достигается как за счет использования новых многомасштабных моделей, так и за счет сочетания сеточных методов и методов частиц. В данной работе мы используем метод молекулярной динамики. Он был применен для исследования установления газового микротечения в металлическом канале. В качестве газовой среды был выбран азот. Металлические стенки микроканалов состояли из атомов никеля. В численных экспериментах были рассчитаны коэффициенты аккомодации на границе между течением газа и металлической стенкой. Исследование микросистемы в пограничном слое позволило сформировать многокомпонентную макроскопическую модель граничных условий. Эта модель была интегрирована в макроскопическое описание течения на основе системы квазигазодинамических уравнений. На основе такой преобразованной газодинамической модели были проведены расчеты микротечения в реальной микросистеме. Результаты были сопоставлены с классическим расчетом течения, не учитывающим нелинейные процессы в пограничном слое. Сравнение показало необходимость использования разработанной модели граничных условий и ее интеграции с классическим газодинамическим подходом.

    Polyakov S.V., Podryga V.O.
    A study of nonlinear processes at the interface between gas flow and the metal wall of a microchannel
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 781-794

    The work is devoted to the study of the influence of nonlinear processes in the boundary layer on the general nature of gas flows in microchannels of technical systems. Such a study is actually concerned with nanotechnology problems. One of the important problems in this area is the analysis of gas flows in microchannels in the case of transient and supersonic flows. The results of this analysis are important for the gas-dynamic spraying techique and for the synthesis of new nanomaterials. Due to the complexity of the implementation of full-scale experiments on micro- and nanoscale, they are most often replaced by computer simulations. The efficiency of computer simulations is achieved by both the use of new multiscale models and the combination of mesh and particle methods. In this work, we use the molecular dynamics method. It is applied to study the establishment of a gas microflow in a metal channel. Nitrogen was chosen as the gaseous medium. The metal walls of the microchannels consisted of nickel atoms. In numerical experiments, the accommodation coefficients were calculated at the boundary between the gas flow and the metal wall. The study of the microsystem in the boundary layer made it possible to form a multicomponent macroscopic model of the boundary conditions. This model was integrated into the macroscopic description of the flow based on a system of quasi-gas-dynamic equations. On the basis of such a transformed gas-dynamic model, calculations of microflow in real microsystem were carried out. The results were compared with the classical calculation of the flow, which does not take into account nonlinear processes in the boundary layer. The comparison showed the need to use the developed model of boundary conditions and its integration with the classical gas-dynamic approach.

  5. Токарев А.А., Родин Н.О., Вольперт В.А.
    Бистабильность и затухающие колебания в гомогенной модели вирусной инфекции
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 111-124

    Развитие вирусной инфекции в организме представляет собой сложный процесс, зависящий от конкуренции между размножением вируса в клетках организма-хозяина и иммунным ответом. В данной работе для исследования различных режимов развития инфекции мы анализируем общую математическую модель иммунного ответа организма на вирусную инфекцию. Модель представляет собой систему из двух обыкновенных дифференциальных уравнений, описывающих изменение обезразмеренных концентраций вируса и иммунных клеток. Скорость пролиферации иммунных клеток представлена колоколообразной функцией концентрации вируса. Эта функция возрастает при малых концентрациях вируса, описывая антиген-стимулированную клональную экспансию иммунных клеток, и снижается при достаточно высоких концентрациях вируса, описывая подавление пролиферации иммунных клеток инфекцией. В зависимости от вирулентности вируса, силы иммунного ответа и начальной вирусной нагрузки, модель предсказывает несколько сценариев: (а) инфекция может быть полностью устранена, (б) она может оставаться на низком уровне при высокой концентрации иммунных клеток; (в) иммунная система может быть существенно истощена или (г) полностью истощена, что сопровождается (в, г) высокой концентрацией вируса. Анализ модели показывает, что концентрация вируса может колебаться по мере постепенного приближения к своему равновесному значению. Рассматриваемая модель может быть получена при редукции более общей модели — с дополнительным уравнением для общей вирусной нагрузки, в предположении, что общая вирусная нагрузка является быстрой переменной. В случае медленной кинетики общей вирусной нагрузки следует использовать указанную более общую модель.

    Tokarev A.A., Rodin N.O., Volpert V.A.
    Bistability and damped oscillations in the homogeneous model of viral infection
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 111-124

    The development of a viral infection in the organism is a complex process which depends on the competition race between virus replication in the host cells and the immune response. To study different regimes of infection progression, we analyze the general mathematical model of immune response to viral infection. The model consists of two ODEs for virus and immune cells non-dimensionalized concentrations. The proliferation rate of immune cells in the model is represented by a bell-shaped function of the virus concentration. This function increases for small virus concentrations describing the antigen-stimulated clonal expansion of immune cells, and decreases for sufficiently high virus concentrations describing down-regulation of immune cells proliferation by the infection. Depending on the virus virulence, strength of the immune response, and the initial viral load, the model predicts several scenarios: (a) infection can be completely eliminated, (b) it can remain at a low level while the concentration of immune cells is high; (c) immune cells can be essentially exhausted, or (d) completely exhausted, which is accompanied (c, d) by high virus concentration. The analysis of the model shows that virus concentration can oscillate as it gradually converges to its equilibrium value. We show that the considered model can be obtained by the reduction of a more general model with an additional equation for the total viral load provided that this equation is fast. In the case of slow kinetics of the total viral load, this more general model should be used.

  6. Захаров П.В.
    Эффект нелинейной супратрансмиссии в дискретных структурах: обзор
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 599-617

    В данной работе приводится обзор исследований, посвященных нелинейной супратрансмиссии и сопутствую- щим явлениям. Данный эффект заключается в передаче энергии на частотах, не поддерживаемых рассматриваемыми системами. Супратрансмиссия не зависит от интегрируемости системы, устойчива к демпфированию и различным классамгр аничных условий. Кроме того, нелинейная дискретная среда при некоторых общих условиях, накладываемых на структуру, может создавать неустойчивость, обусловленную внешним периодическим воздействием. Она является порождающимпроце ссом, лежащим в основе нелинейной супратрансмиссии. Это возможно, когда система поддерживает нелинейные моды различной природы, в частности дискретные бризеры. Тогда энергия проникает в систему, как только амплитуда внешнего гармонического возбуждения превышает максимальную амплитуду статического бризера той же частоты.

    Эффект нелинейной супратрансмиссии является важным свойством многих дискретных структур. Необходимыми условиями для его существования являются дискретность и нелинейность среды. Его проявление в системах различной природы говорит о его фундаментальности и значимости. В данном обзоре рассмотрены основные работы, затрагивающие вопрос нелинейной супратрансмисии в различных системах, преимущественно модельных.

    Многими авторскими коллективами ведутся исследования данного эффекта. В первую очередь это модели, описываемые дискретными уравнениями, в том числе sin-Гордона и дискретным нелинейным уравнением Шрёдингера. При этом эффект не является исключительно модельным и проявляет себя в натурных экспериментах в электрических цепях, в нелинейных цепочках осцилляторов, а также в метастабильных модульных метаструктурах. Происходит поэтапное усложнение моделей, что приводит к более глубокому пониманию явления супратрансмиссии, а переход к разупорядоченным и с элементами хаоса структурам позволяет говорить о более тонком проявлении данного эффекта. Численные асимптотические подходы позволяют исследовать нелинейную супратрансмиссию в сложных неинтегрируемых системах. Усложнение всевозможных осцилляторов, как физических, так и электрических, актуально для различных реальных устройств, базирующихся на подобных системах. В том числе в области нанообъектов и транспорта энергии в них посредством рассматриваемого эффекта. К таким системам относятся молекулярные, кристаллические кластеры и наноустройства. В заключении работы приводятся основные тенденции исследований нелинейной супратрансмиссии.

    Zakharov P.V.
    The effect of nonlinear supratransmission in discrete structures: a review
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 599-617

    This paper provides an overview of studies on nonlinear supratransmission and related phenomena. This effect consists in the transfer of energy at frequencies not supported by the systems under consideration. The supratransmission does not depend on the integrability of the system, it is resistant to damping and various classes of boundary conditions. In addition, a nonlinear discrete medium, under certain general conditions imposed on the structure, can create instability due to external periodic influence. This instability is the generative process underlying the nonlinear supratransmission. This is possible when the system supports nonlinear modes of various nature, in particular, discrete breathers. Then the energy penetrates into the system as soon as the amplitude of the external harmonic excitation exceeds the maximum amplitude of the static breather of the same frequency.

    The effect of nonlinear supratransmission is an important property of many discrete structures. A necessary condition for its existence is the discreteness and nonlinearity of the medium. Its manifestation in systems of various nature speaks of its fundamentality and significance. This review considers the main works that touch upon the issue of nonlinear supratransmission in various systems, mainly model ones.

    Many teams of authors are studying this effect. First of all, these are models described by discrete equations, including sin-Gordon and the discrete Schr¨odinger equation. At the same time, the effect is not exclusively model and manifests itself in full-scale experiments in electrical circuits, in nonlinear chains of oscillators, as well as in metastable modular metastructures. There is a gradual complication of models, which leads to a deeper understanding of the phenomenon of supratransmission, and the transition to disordered structures and those with elements of chaos structures allows us to talk about a more subtle manifestation of this effect. Numerical asymptotic approaches make it possible to study nonlinear supratransmission in complex nonintegrable systems. The complication of all kinds of oscillators, both physical and electrical, is relevant for various real devices based on such systems, in particular, in the field of nano-objects and energy transport in them through the considered effect. Such systems include molecular and crystalline clusters and nanodevices. In the conclusion of the paper, the main trends in the research of nonlinear supratransmission are given.

  7. Pham C.T., Phan M.N., Tran T.T.
    Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 927-938

    Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.

    To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.

    Pham C.T., Phan M.N., Tran T.T.
    Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 927-938

    Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.

    To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.

  8. Курушина С.Е., Федорова Е.А., Гуровская Ю.А.
    Методика анализа шумоиндуцированных явлений в двухкомпонентных стохастических системах реакционно-диффузионного типа со степенной нелинейностью
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 277-291

    В работе построена и исследуется обобщенная модель, описывающая двухкомпонентные системы реакционно-диффузионного типа со степенной нелинейностью и учитывающая влияние внешних шумов. Для анализа обобщенной модели разработана методология, включающая в себя линейный анализ устойчивости, нелинейный анализ устойчивости и численное моделирование эволюции системы. Методика проведения линейного анализа опирается на базовые подходы, в которых для получения характеристического уравнения используется матрица линеаризации. Нелинейный анализ устойчивости проводится с точностью до моментов третьего порядка включительно. Для этого функции, описывающие динамику компонент, раскладываются в ряд Тейлора до слагаемых третьего порядка. Затем с помощью теоремы Новикова проводится процедура усреднения. В результате полученные уравнения образуют бесконечную иерархично подчиненную структуру, которую в определенный момент необходимо прервать. Для этого пренебрегаем вкладом слагаемых выше третьего порядка как в самих уравнениях, так и при построении уравнений моментов. Полученные уравнения образуют набор линейных уравнений, из которых формируется матрица устойчивости. Эта матрица имеет довольно сложную структуру, в связи с чем ее решение может быть получено только численно. Для проведения численного исследования эволюции системы выбран метод переменных направлений. Из-за наличия в анализируемой системе стохастической части метод был модифицирован таким образом, что на целых слоях проводится генерация случайных полей с заданным распределением и функцией корреляции, отвечающих за шумовой вклад в общую нелинейность. Апробация разработанной методологии проведена на предложенной Barrio et al. модели реакции – диффузии, по результатам исследования которой им показана схожесть получаемых структур с пигментацией рыб. В настоящей работе внимание сосредоточено на анализе поведения системы в окрестности ненулевой стационарной точки. Изучена зависимость действительной части собственных значений от волнового числа. В линейном анализе получена область значений волновых чисел, при которых возникает неустойчивость Тьюринга. Нелинейный анализ и численное моделирование эволюции системы проводятся для параметров модели, которые, напротив, находятся вне области неустойчивости Тьюринга. В рамках нелинейного анализа найдены интенсивности аддитивного шума, при которых, несмотря на отсутствие условий для возникновения диффузионной неустойчивости, система переходит в неустойчивое состояние. Результаты численного моделирования эволюции апробируемой модели демонстрируют процесс образования пространственных структур тьюрингового типа при воздействии на нее аддитивного шума.

    Kurushina S.E., Fedorova E.A., Gurovskaia I.A.
    Technique for analyzing noise-induced phenomena in two-component stochastic systems of reaction – diffusion type with power nonlinearity
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 277-291

    The paper constructs and studies a generalized model describing two-component systems of reaction – diffusion type with power nonlinearity, considering the influence of external noise. A methodology has been developed for analyzing the generalized model, which includes linear stability analysis, nonlinear stability analysis, and numerical simulation of the system’s evolution. The linear analysis technique uses basic approaches, in which the characteristic equation is obtained using a linearization matrix. Nonlinear stability analysis realized up to third-order moments inclusively. For this, the functions describing the dynamics of the components are expanded in Taylor series up to third-order terms. Then, using the Novikov theorem, the averaging procedure is carried out. As a result, the obtained equations form an infinite hierarchically subordinate structure, which must be truncated at some point. To achieve this, contributions from terms higher than the third order are neglected in both the equations themselves and during the construction of the moment equations. The resulting equations form a set of linear equations, from which the stability matrix is constructed. This matrix has a rather complex structure, making it solvable only numerically. For the numerical study of the system’s evolution, the method of variable directions was chosen. Due to the presence of a stochastic component in the analyzed system, the method was modified such that random fields with a specified distribution and correlation function, responsible for the noise contribution to the overall nonlinearity, are generated across entire layers. The developed methodology was tested on the reaction – diffusion model proposed by Barrio et al., according to the results of the study, they showed the similarity of the obtained structures with the pigmentation of fish. This paper focuses on the system behavior analysis in the neighborhood of a non-zero stationary point. The dependence of the real part of the eigenvalues on the wavenumber has been examined. In the linear analysis, a range of wavenumber values is identified in which Turing instability occurs. Nonlinear analysis and numerical simulation of the system’s evolution are conducted for model parameters that, in contrast, lie outside the Turing instability region. Nonlinear analysis found noise intensities of additive noise for which, despite the absence of conditions for the emergence of diffusion instability, the system transitions to an unstable state. The results of the numerical simulation of the evolution of the tested model demonstrate the process of forming spatial structures of Turing type under the influence of additive noise.

  9. Мизгулин В.В., Косульников В.В., Кадушников Р.М.
    Оптимизационный подход к имитационному моделированию микроструктур
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 597-606

    В работе предложен оптимизационный подход к имитационному моделированию микроструктур. Решены задачи оптимизации функции пористости, поиска оптимальной модели гранулометрического состава и введен критерий качества моделирования. Проведена проверка адекватности предложенных методов на примерах и предложена регрессионная модель качества имитационного моделирования микроструктур. Актуальным приложением предложенного подхода является задача 3D-реконструкции микроструктуры керна. Полученные результаты дают основания для продолжения исследований в выбранном направлении.

    Mizgulin V.V., Kosulnikov V.V., Kadushnikov R.M.
    The optimization approach to simulation modeling of microstructures
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 597-606

    The paper presents an optimization approach to microstructure simulation. Porosity function was optimized by numerical method, grain-size model was optimized by complex method based on criteria of model quality. Methods have been validated on examples. Presented new regression model of model quality. Actual application of proposed method is 3D reconstruction of core sample microstructure. Presented results suggest to prolongation of investigations. 

    Просмотров за год: 4. Цитирований: 7 (РИНЦ).
  10. Хавинсон М.Ю., Кулаков М.П.
    Математическое моделирование динамики численности разновозрастных занятых в экономике региона
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 441-454

    В статье рассматривается нелинейная модель динамики численности разновозрастных занятых в экономике региона, построенная по принципам базового моделирования в эконофизике. Продемонстрированы сложные режимы динамики модели, накладывающие фундаментальные ограничения на средне- и долгосрочный прогноз численности занятых в регионе. По аналогии с биофизическим подходом предложена классификация социальных взаимодействий разновозрастных работников. Приведен модельный анализ оценки уровня занятости среди возрастных групп населения. Верификация модели проведена на статистических данных Еврейской автономной области.

    Khavinson M.J., Kulakov M.P.
    Mathematical modeling of the population dynamics of different age-group workers in the regional economy
    Computer Research and Modeling, 2014, v. 6, no. 3, pp. 441-454

    The article deals with the nonlinear model of population dynamics of different ages workers in the regional economy. The model is built on the principles underlying modeling in econophysics. The authors demonstrate the complex dynamics of the model regimes that impose fundamental limits on medium- and long-term forecast of employment in a region. By analogy with the biophysical approach the authors propose a classification of social interactions of the different age-group workers. The model analysis is given for the level of employment among age groups. The verification of the model performs on the statistical data of the Jewish Autonomous Region.

    Просмотров за год: 4. Цитирований: 15 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.