Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'boundary conditions problem':
Найдено статей: 82
  1. Бураго Н.Г., Никитин И.С.
    Алгоритмы сквозного счета для процессов разрушения
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 645-666

    В работе проведен краткий обзор имеющихся подходов к расчету разрушения твердых тел. Основное внимание уделено алгоритмам, использующим единый подход к расчету деформирования и для неразрушенного, и для разрушенного состояний материала. Представлен термодинамический вывод единых реологических соотношений, учитывающих упругие, вязкие и пластические свойства материалов и описывающих потерю способности сопротивления деформации по мере накопления микроповреждений. Показано, что рассматриваемая математическая модель обеспечивает непрерывную зависимость решения от входных параметров (параметров материальной среды, начальных и граничных условий, параметров дискретизации) при разупрочнении материала.

    Представлены явные и неявные безматричные алгоритмы расчета эволюции деформирования. Неявные схемы реализованы с использованием итераций метода сопряженных градиентов, при этом расчет каждой итерации в точности совпадает с расчетом шага по времени для двухслойных явных схем. Так что алгоритмы решения являются очень простыми.

    Приведены результаты решения типовых задач разрушения твердых деформируемых тел для медленных (квазистатических) и быстрых (динамических) процессов деформации. На основании опыта рас- четов даны рекомендации по моделированию процессов разрушения и обеспечению достоверности численных решений.

    Burago N.G., Nikitin I.S.
    Algorithms of through calculation for damage processes
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 645-666

    The paper reviews the existing approaches to calculating the destruction of solids. The main attention is paid to algorithms using a unified approach to the calculation of deformation both for nondestructive and for the destroyed states of the material. The thermodynamic derivation of the unified rheological relationships taking into account the elastic, viscous and plastic properties of materials and describing the loss of the deformation resistance ability with the accumulation of microdamages is presented. It is shown that the mathematical model under consideration provides a continuous dependence of the solution on input parameters (parameters of the material medium, initial and boundary conditions, discretization parameters) with softening of the material.

    Explicit and implicit non-matrix algorithms for calculating the evolution of deformation and fracture development are presented. Non-explicit schemes are implemented using iterations of the conjugate gradient method, with the calculation of each iteration exactly coinciding with the calculation of the time step for two-layer explicit schemes. So, the solution algorithms are very simple.

    The results of solving typical problems of destruction of solid deformable bodies for slow (quasistatic) and fast (dynamic) deformation processes are presented. Based on the experience of calculations, recommendations are given for modeling the processes of destruction and ensuring the reliability of numerical solutions.

    Просмотров за год: 24.
  2. Гаспарян М.М., Самонов А.С., Сазыкина Т.А., Остапов Е.Л., Сакмаров А.В., Шайхатаров О.К.
    Решатель уравнения Больцмана на неструктурированных пространственных сетках
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 427-447

    Целью данной работы является создание достаточно универсальной вычислительной программы (решателя) кинетического уравнения Больцмана для моделирования течений разреженного газа в устройствах сложной формы. Подробно описывается структура решателя, а его эффективность демонстрируется на примере расчета современной конструкции многотрубочного насоса Кнудсена. Решение уравнения Больцмана выполняется на фиксированных пространственной и скоростной сетках с помощью метода расщепления по физическим процессам. Дифференциальный оператор переноса аппроксимируется методом конечных разностей. Вычисление интеграла столкновений производится на основе консервативного проекционного метода.

    Пространственная неструктурированная сетка строится с помощью внешнего генератора сеток и может включать в себя призмы, тетраэдры, гексаэдры и пирамиды. Сетка сгущается в областях течения с наибольшими градиентами рассчитываемых величин. Трехмерная скоростная сетка состоит из кубических ячеек равного объема.

    Большой объем вычислений требует эффективного распараллеливания алгоритма, что реализовано на основе методики Message Passing Interface (MPI). Передача информации от одного узла MPI к другому осуществляется как разновидность граничного условия — таким образом, каждый MPI узел может хранить только ту часть сетки, которая имеет отношение конкретно к нему.

    В результате получен график разности давлений в двух резервуарах, соединенных многотрубочным насосом Кнудсена в зависимости от числа Кнудсена, т. е. получена численными методами характеристика, ответственная за качество работы термомолекулярного микронасоса. Также показаны распределения давления, температуры и концентрации газа в установившемся состоянии внутри резервуаров и самого микронасоса.

    Корректность работы солвера проверяется на тестах с распределением температуры газа между двух нагретых до разной температуры пластинок, а также в тесте с сохранением общей массы газа.

    Корректность полученных данных для многотрубочного насоса Кнудсена проверяется на более точных скоростной и пространственной сетках, а также при использовании большего количества столкновений в интеграле столкновений за шаг.

    Gasparyan M.M., Samonov A.S., Sazykina T.A., Ostapov E.L., Sakmarov A.V., Shahatarov O.K.
    The Solver of Boltzmann equation on unstructured spatial grids
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 427-447

    The purpose of this work is to develop a universal computer program (solver) which solves kinetic Boltzmann equation for simulations of rarefied gas flows in complexly shaped devices. The structure of the solver is described in details. Its efficiency is demonstrated on an example of calculations of a modern many tubes Knudsen pump. The kinetic Boltzmann equation is solved by finite-difference method on discrete grid in spatial and velocity spaces. The differential advection operator is approximated by finite difference method. The calculation of the collision integral is based on the conservative projection method.

    In the developed computational program the unstructured spatial mesh is generated using GMSH and may include prisms, tetrahedrons, hexahedrons and pyramids. The mesh is denser in areas of flow with large gradients of gas parameters. A three-dimensional velocity grid consists of cubic cells of equal volume.

    A huge amount of calculations requires effective parallelization of the algorithm which is implemented in the program with the use of Message Passing Interface (MPI) technology. An information transfer from one node to another is implemented as a kind of boundary condition. As a result, every MPI node contains the information about only its part of the grid.

    The main result of the work is presented in the graph of pressure difference in 2 reservoirs connected by a multitube Knudsen pump from Knudsen number. This characteristic of the Knudsen pump obtained by numerical methods shows the quality of the pump. Distributions of pressure, temperature and gas concentration in a steady state inside the pump and the reservoirs are presented as well.

    The correctness of the solver is checked using two special test solutions of more simple boundary problems — test with temperature distribution between 2 planes with different temperatures and test with conservation of total gas mass.

    The correctness of the obtained data for multitube Knudsen pump is checked using denser spatial and velocity grids, using more collisions in collision integral per time step.

    Просмотров за год: 13.
  3. Багаев Р.А., Голубев В.И., Голубева Ю.А.
    Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1061-1067

    One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.

    The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.

    In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.

    Bagaev R.A., Golubev V.I., Golubeva Y.A.
    Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1061-1067

    One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.

    The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.

    In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.

  4. Садин Д.В.
    Приложение гибридного метода крупных частиц к расчету взаимодействия ударной волны со слоем газовзвеси
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1323-1338

    Для модельного неоднородного уравнения переноса с источником выполнен анализ устойчивости линейной гибридной схемы (комбинации противопоточной и центральной аппроксимаций). Получены условия устойчивости, зависящие от параметра гибридности, фактора интенсивности источника (произведения интенсивности на шаг по времени) и весового коэффициента линейной комбинации мощности источника на нижнем и верхнем временном слое. В нелинейном случае для уравнений движения неравновесной по скоростям и температурам газовзвеси расчетным путем подтвержден линейный анализ устойчивости. Установлено, что предельно допустимое число Куранта гибридного метода крупных частиц второго порядка точности по пространству и времени при неявном учете трения и теплообмена между газом и частицами не зависит от фактора интенсивности межфазных взаимодействий, шага расчетной сетки и времен релаксации фаз (K-устойчивость). В традиционном случае явного способа расчета источниковых членов для значений безразмерного фактора интенсивности больше 10 наблюдается катастрофическое (на несколько порядков) снижение предельно допустимого числа Куранта, при котором расчетный шаг по времени становится неприемлемо малым.

    На основе базовых соотношений распада разрыва в равновесной гетерогенной среде получено асимптотически точное автомодельное решение задачи взаимодействия ударной волны со слоем газовзвеси, к которому сходится численное решение двухскоростной двухтемпературной динамики газовзвеси при уменьшении размеровди сперсных частиц.

    Изучены динамика движения скачка уплотнения в газе и его взаимодействия с ограниченным слоем газовзвеси для различных размеров дисперсных частиц: 0.1, 2 и 20 мкм. Задача характеризуется двумя распадами разрывов: отраженной и преломленной ударными волнами на левой границе слоя, отраженной волной разрежения и прошедшим скачком уплотнения на правой контактной границе. Обсуждено влияние релаксационных процессов (безразмерных времен релаксации фаз) на характер течения газовзвеси. Для мелких частиц времена выравнивания скоростей и температур фаз малы, а зоны релаксации являются подсеточными. Численное решение в характерных точках с относительной точностью $O\, (10^{−4})$  сходится к автомодельным решениям.

    For a non-homogeneous model transport equation with source terms, the stability analysis of a linear hybrid scheme (a combination of upwind and central approximations) is performed. Stability conditions are obtained that depend on the hybridity parameter, the source intensity factor (the product of intensity per time step), and the weight coefficient of the linear combination of source power on the lower- and upper-time layer. In a nonlinear case for the non-equilibrium by velocities and temperatures equations of gas suspension motion, the linear stability analysis was confirmed by calculation. It is established that the maximum permissible Courant number of the hybrid large-particle method of the second order of accuracy in space and time with an implicit account of friction and heat exchange between gas and particles does not depend on the intensity factor of interface interactions, the grid spacing and the relaxation times of phases (K-stability). In the traditional case of an explicit method for calculating the source terms, when a dimensionless intensity factor greater than 10, there is a catastrophic (by several orders of magnitude) decrease in the maximum permissible Courant number, in which the calculated time step becomes unacceptably small.

    On the basic ratios of Riemann’s problem in the equilibrium heterogeneous medium, we obtained an asymptotically exact self-similar solution of the problem of interaction of a shock wave with a layer of gas-suspension to which converge the numerical solution of two-velocity two-temperature dynamics of gassuspension when reducing the size of dispersed particles.

    The dynamics of the shock wave in gas and its interaction with a limited gas suspension layer for different sizes of dispersed particles: 0.1, 2, and 20 ìm were studied. The problem is characterized by two discontinuities decay: reflected and refracted shock waves at the left boundary of the layer, reflected rarefaction wave, and a past shock wave at the right contact edge. The influence of relaxation processes (dimensionless phase relaxation times) to the flow of a gas suspension is discussed. For small particles, the times of equalization of the velocities and temperatures of the phases are small, and the relaxation zones are sub-grid. The numerical solution at characteristic points converges with relative accuracy $O \, (10^{-4})$ to self-similar solutions.

  5. Ветлужский А.Ю.
    Метод самосогласованных уравнений при решении задач рассеяния волн на системах цилиндрических тел
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 725-733

    Рассматривается один из численных методов решения задач рассеяния электромагнитных волн на системах, образованных параллельно ориентированными цилиндрическими элементами, — двумерных фотонных кристаллах. Описываемый метод является развитием метода разделения переменных при решении волнового уравнения. Его суть применительно к дифракционным задачам заключается в представлении поля в виде суммы первичного поля и неизвестного рассеянного на элементах среды вторичного поля. Математическое выражение для последнего записывается в виде бесконечных рядов по элементарным волновым функциям с неизвестными коэффициентами. В частности, поле, рассеянное на $N$ элементах, ищется в виде суммы $N$ дифракционных рядов, в которой один из рядов составлен из волновых функций одного тела, а волновые функции в остальных рядах выражены через собственные волновые функции первого тела при помощи теорем сложения. Далее из удовлетворения граничным условиям на поверхности каждого элемента получаются системы линейных алгебраических уравнений с бесконечным числом неизвестных — искомых коэффициентов разложения, которые разрешаются стандартными способами. Особенностью метода является использование аналитических выражений, описывающих дифракцию на одиночном элементе системы. В отличие от большинства строгих численных методов данный подход при его использовании позволяет получить информацию об амплитудно-фазовых или спектральных характеристиках поля только в локальных точках структуры. Отсутствие необходимости определения параметров поля во всей области пространства, занимаемой рассматриваемой многоэлементной системой, обуславливает высокую эффективность данного метода. В работе сопоставляются результаты расчета спектров пропускания двумерных фотонных кристаллов рассматриваемым методом с экспериментальными данными и численными результатами, полученными с использованием других подходов. Демонстрируется их хорошее согласие.

    Vetluzhsky A.Y.
    Method of self-consistent equations in solving problems of wave scattering on systems of cylindrical bodies
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 725-733

    One of the numerical methods for solving problems of scattering of electromagnetic waves by systems formed by parallel oriented cylindrical elements — two-dimensional photonic crystals — is considered. The method is based on the classical method of separation of variables for solving the wave equation. Тhe essence of the method is to represent the field as the sum of the primary field and the unknown secondary scattered on the elements of the medium field. The mathematical expression for the latter is written in the form of infinite series in elementary wave functions with unknown coefficients. In particular, the field scattered by N elements is sought as the sum of N diffraction series, in which one of the series is composed of the wave functions of one body, and the wave functions in the remaining series are expressed in terms of the eigenfunctions of the first body using addition theorems. From satisfying the boundary conditions on the surface of each element we obtain systems of linear algebraic equations with an infinite number of unknowns — the required expansion coefficients, which are solved by standard methods. A feature of the method is the use of analytical expressions describing diffraction by a single element of the system. In contrast to most numerical methods, this approach allows one to obtain information on the amplitude-phase or spectral characteristics of the field only at local points of the structure. The absence of the need to determine the field parameters in the entire area of space occupied by the considered multi-element system determines the high efficiency of this method. The paper compares the results of calculating the transmission spectra of two-dimensional photonic crystals by the considered method with experimental data and numerical results obtained using other approaches. Their good agreement is demonstrated.

  6. Попов В.С., Попова А.А.
    Моделирование гидроупругих колебаний стенки канала, имеющей нелинейно-упругую опору
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 79-92

    В работе сформулирована математическая модель для исследования нелинейного гидроупругого отклика стенки узкого канала, заполненного пульсирующей вязкой жидкостью, опирающейся на пружину c нелинейной жесткостью. В отличие от известных подходов в рамках предложенной модели осуществлен одновременный учет инерционных и диссипативных свойств вязкой несжимаемой жидкости и нелинейности восстанавливающей силы поддерживающей пружины. Математическая модель представляет собой систему уравнений плоской задачи гидроупругости, включающей уравнения движения вязкой несжимаемой жидкости, с соответствующими краевыми условиями, и уравнение движения стенки канала как одномассовой модели с восстанавливающей силой, имеющей кубическую нелинейность. Динамика вязкой жидкости первоначально исследована в рамках гидродинамической теории смазки, т.е. без учета инерции ее движения. На следующем этапе для учета инерции движения вязкой жидкости использован метод итерации. Найдены законы распределения гидродинамических параметров вязкой жидкости в канале, что позволило определить ее реакцию, действующую на стенку канала. В результате показано, что исходная задача гидроупругости сводится к одному нелинейному уравнению, совпадающему с уравнением Дуффинга. В данном уравнении коэффициент демпфирования определяется физическими свойствами жидкости и геометрическими размерами канала, а учет инерции движения жидкости приводит к появлению дополнительной присоединенной массы, зависящей от тех же параметров. Исследование нелинейного уравнения гидроупругих колебаний проведено методом гармонического баланса для основной частоты пульсаций вязкой жидкости. В результате найден основной гидроупругий отклик стенки канала, опирающейся на пружину с мягкой или жесткой кубической нелинейностью. Численное моделирование гидроупругого отклика стенки канала показало возможность скачкообразного изменения амплитуд ее колебаний, а также дало возможность оценить влияние инерции движения жидкости на частотный диапазон, в котором наблюдаются данные изменения.

    Popov V.S., Popova A.A.
    Modeling of hydroelastic oscillations for a channel wall possessing a nonlinear elastic support
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 79-92

    The paper deals with the mathematical model formulation for studying the nonlinear hydro-elastic response of the narrow channel wall supported by a spring with cubic nonlinearity and interacting with a pulsating viscous liquid filling the channel. In contrast to the known approaches, within the framework of the proposed mathematical model, the inertial and dissipative properties of the viscous incompressible liquid and the restoring force nonlinearity of the supporting spring were simultaneously taken into account. The mathematical model was an equations system for the coupled plane hydroelasticity problem, including the motion equations of a viscous incompressible liquid, with the corresponding boundary conditions, and the channel wall motion equation as a single-degree-of-freedom model with a cubic nonlinear restoring force. Initially, the viscous liquid dynamics was investigated within the framework of the hydrodynamic lubrication theory, i. e. without taking into account the liquid motion inertia. At the next stage, the iteration method was used to take into account the motion inertia of the viscous liquid. The distribution laws of the hydrodynamic parameters for the viscous liquid in the channel were found which made it possible to determine its reaction acting on the channel wall. As a result, it was shown that the original hydroelasticity problem is reduced to a single nonlinear equation that coincides with the Duffing equation. In this equation, the damping coefficient is determined by the liquid physical properties and the channel geometric dimensions, and taking into account the liquid motion inertia lead to the appearance of an added mass. The nonlinear equation study for hydroelastic oscillations was carried out by the harmonic balance method for the main frequency of viscous liquid pulsations. As a result, the primary steady-state hydroelastic response for the channel wall supported by a spring with softening or hardening cubic nonlinearity was found. Numerical modeling of the channel wall hydroelastic response showed the possibility of a jumping change in the amplitudes of channel wall oscillations, and also made it possible to assess the effect of the liquid motion inertia on the frequency range in which these amplitude jumps are observed.

  7. Русяк И.Г., Тененев В.А., Суфиянов В.Г., Клюкин Д.А.
    Моделирование неравномерного горения и напряженно-деформированного состояния пороховых элементов трубчатого заряда при выстреле
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1281-1300

    Врабо те представлена физико-математическая постановка задач внутренней баллистики артиллерийского выстрела для заряда, состоящего из совокупности пороховых трубок, и их напряженно-деформированного состояния. Горение и движение пучка пороховых трубок по каналу ствола моделируются эквивалентным трубчатым зарядом всестороннего горения. Предполагается, что эквивалентная трубка движется по оси канала ствола. Скорость движения эквивалентного трубчатого заряда и его текущее положение определяются из второго закона Ньютона. При расчете параметров течения использованы двумерные осесимметричные уравнения газовой динамики, для решения которых строится осесимметричная ортогонализированная разностная сетка, адаптирующаяся к условиям течения. Для численного решения системы газодинамических уравнений применяется метод контрольного объема. Параметры газа на границах контрольных объемов определяются с использованием автомодельного решения задачи о распаде произвольного разрыва С. К. Годунова. Напряженно-деформированное состояние моделируется для отдельной горящей пороховой трубки, находящейся в поле нестационарных газодинамических параметров. Расчет газодинамических параметров выстрела осуществляется без учета деформированного состояния пороховых элементов. При данных условиях рассмотрено поведение пороховых элементов при выстреле. Для решения нестационарной задачи упругости используется метод конечных элементов с разбиением области расчета на треугольные элементы. В процессе выгорания пороховой трубки расчетная сетка на каждом временном слое динамической задачи полностью обновляется в связи с изменением границ порохового элемента за счет горения. Представлены временные зависимости параметров внутрибаллистического процесса и напряженно-деформированного состояния пороховых элементов, а также распределения основных параметров течения продуктов горения в различные моменты времени. Установлено, что трубчатые пороховые элементы в процессе выстрела испытывают существенные деформации, которые необходимо учитывать при решении основной задачи внутренней баллистики. Полученные данные дают представления об уровне эквивалентных напряжений, действующих в различных точках порохового элемента. Представленные результаты говорят об актуальности сопряженной постановки задачи газовой динамики и напряженно-деформированного состояния для зарядов, состоящих из трубчатых порохов, поскольку это позволяет по-новому подойти к проектированию трубчатых зарядов и открывает возможность определения параметров, от которых существенно зависят физика процесса горения пороха и, следовательно, динамика процесса выстрела.

    Rusyak I.G., Tenenev V.A., Sufiyanov V.G., Klyukin D.A.
    Simulation of uneven combustion and stress-strain state of powder elements of a tubular charge during firing
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1281-1300

    The paper presents the physical and mathematical formulation of the problems of internal ballistics of an artillery shot for a charge consisting of a set of powder tubes and their stress-strain state. Combustion and movement of a bundle of powder tubes along the barrel channel is modeled by an equivalent tubular charge of all-round combustion. It is assumed that the equivalent tube moves along the axis of the bore. The speed of movement of an equivalent tubular charge and its current position are determined from Newton’s second law. When calculating the flow parameters, two-dimensional axisymmetric equations of gas dynamics were used, for the solution of which an axisymmetric orthogonalized difference grid is constructed, which adapts to the flow conditions. The control volume method is used to numerically solve the system of gas-dynamic equations. The gas parameters at the boundaries of the control volumes are determined using a self-similar solution to the Godunov’s problem of the decay of an arbitrary discontinuity. The stress-strain state is modeled for a separate burning powder tube located in the field of gas-dynamic parameters. The calculation of the gas-dynamic parameters of the shot is carried out without taking into account the deformed state of the powder elements. The behavior of powder elements during firing is considered under these conditions. The finite element method with the division of the calculation area into triangular elements is used to solve the problem of elasticity. In the process of powder tube burnout, the computational grid on each time layer of the dynamic problem is completely updated due to a change in the boundaries of the powder element due to combustion. The paper shows the time dependences of the parameters of the internal ballistics process and the stress-strain state of powder elements, as well as the distribution of the main parameters of the flow of combustion products at different points in time. It has been established that the tubular powder elements during the shot experience significant deformations, which must be taken into account when solving the basic problem of internal ballistics. The data obtained give an idea of the level of equivalent stresses acting at various points of the powder element. The results obtained indicate the relevance of the conjugate formulation of the problem of gas dynamics and the stress-strain state for charges consisting of tubular powders, since this allows a new approach to the design of tubular charges and opens up the possibility of determining the parameters on which the physics of the combustion process of gunpowder significantly depends, therefore, and the dynamics of the shot process.

  8. Долуденко А.Н., Куликов Ю.М., Савельев А.С.
    Хаотизация течения под действием объемной силы
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 883-912

    В предлагаемой статье приводятся результаты аналитического и компьютерного исследования хаотической эволюции регулярного поля скорости, возникающего под действием крупномасштабной гармонической вынуждающей силы. Авторами получено аналитическое решение для функции тока течения и ее производных величин (скорости, завихренности, кинетической энергии, энстрофии и палинстрофии). Проведено численное моделирование эволюции течения с помощью пакета программ OpenFOAM (на основе модели несжимаемой среды), а также двух собственных реализаций, использующих приближение слабой сжимаемости (схемы КАБАРЕ и схемы МакКормака). Расчеты проводились на последовательности вложенных сеток с 642, 1282, 2562, 5122, 10242 ячейками для двух характерных (асимптотических) чисел Рейнольдса Rea, характеризующих ламинарную и турбулентную эволюцию течения соответственно. Моделирование показало, что разрушение аналитического решения происходит в обоих случаях. Энергетические характеристики течения обсуждаются на основе кривых энергии, а также скоростей диссипации. Для самой подробной сетки эта величина оказывается на несколько порядков меньше своего гидродинамического (вязкого) аналога. Разрушение регулярной структуры течения наблюдается для любого из численных методов, в том числе на поздних стадиях ламинарной эволюции, когда полученные распределения близки к аналитическим значениям. Можно предположить, что предпосылкой к развитию неустойчивости выступает ошибка, накапливаемая в процессе счета. Эта ошибка приводит к неравномерностям в распределении завихренности и, как следствие, к появлению вихрей различной интенсивности, взаимодействие которых приводит к хаотизации течения. Для исследования процессов производства завихренности мы использовали две интегральные величины, определяемые на ее основе, — интегральные энстрофию ($\zeta$) и палинстрофию $(P)$. Постановка задачи с периодическими граничными условиями позволяет установить простую связь между этими величинами. Кроме того, $\zeta$ может выступать в качестве меры вихреразрешающей способности численного метода, а палинстрофия определяет степень производства мелкомасштабной завихренности.

    Doludenko A.N., Kulikov Y.M., Saveliev A.S.
    Сhaotic flow evolution arising in a body force field
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 883-912

    This article presents the results of an analytical and computer study of the chaotic evolution of a regular velocity field generated by a large-scale harmonic forcing. The authors obtained an analytical solution for the flow stream function and its derivative quantities (velocity, vorticity, kinetic energy, enstrophy and palinstrophy). Numerical modeling of the flow evolution was carried out using the OpenFOAM software package based on incompressible model, as well as two inhouse implementations of CABARET and McCormack methods employing nearly incompressible formulation. Calculations were carried out on a sequence of nested meshes with 642, 1282, 2562, 5122, 10242 cells for two characteristic (asymptotic) Reynolds numbers characterizing laminar and turbulent evolution of the flow, respectively. Simulations show that blow-up of the analytical solution takes place in both cases. The energy characteristics of the flow are discussed relying upon the energy curves as well as the dissipation rates. For the fine mesh, this quantity turns out to be several orders of magnitude less than its hydrodynamic (viscous) counterpart. Destruction of the regular flow structure is observed for any of the numerical methods, including at the late stages of laminar evolution, when numerically obtained distributions are close to analytics. It can be assumed that the prerequisite for the development of instability is the error accumulated during the calculation process. This error leads to unevenness in the distribution of vorticity and, as a consequence, to the variance vortex intensity and finally leads to chaotization of the flow. To study the processes of vorticity production, we used two integral vorticity-based quantities — integral enstrophy ($\zeta$) and palinstrophy $(P)$. The formulation of the problem with periodic boundary conditions allows us to establish a simple connection between these quantities. In addition, $\zeta$ can act as a measure of the eddy resolution of the numerical method, and palinstrophy determines the degree of production of small-scale vorticity.

  9. Калашников С.В., Кривощапов А.А., Митин А.Л., Николаев Н.В.
    Расчетные исследования аэродинамических характеристик тематической модели летательного аппарата схемы «летающее крыло» с помощью программного комплекса FlowVision
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 67-74

    Модернизация методики аэродинамического эксперимента на современном уровне подразумевает создание математических моделей аэродинамических труб (электронных АДТ), предназначенных для вычислительного сопровождения экспериментальных исследований. Применение электронных АДТ в перспективе способно обеспечить получение достоверных аэродинамических характеристик летательных аппаратов по результатам исследования их моделей в аэродинамических трубах, согласования результатов, полученных на разных экспериментальных установках, сравнения расчетов моделей в безграничном потоке с учетом влияния подвесных устройств и границ потока в рабочей части экспериментальной установки.

    Решение данной задачи требует создания научного задела, что, в свою очередь, подразумевает выполнение экспериментальных методических исследований и обширного комплекса расчетных исследований на основе численного решения осредненных по Рейнольдсу уравнений Навье–Стокса с применением суперкомпьютерных технологий. При этом на различных этапах расчетных исследований необходимо моделировать не только летательный аппарат, но и комплексную геометрию рабочей части аэродинамической трубы и подвесных устройств, что требует дополнительных методических расчетов. Также определенные трудности может представлять моделирование ламинарно-турбулентного перехода на поверхности модели, который в большинстве случаев имеет место в условиях эксперимента.

    В данной работе представлены результаты расчетов аэродинамических характеристик тематической модели летательного аппарата схемы «летающее крыло» в безграничном потоке при разных углах атаки, полученные в рамках первого этапа работы по созданию математической модели рабочей части аэродинамической трубы Т-102 ЦАГИ. Расчеты выполнялись с использованием двухпараметрической k–ε модели турбулентности со специальными пристеночными функциями, приспособленными для расчета отрывных течений. В рамках данной работы исследовались основные продольные аэродинамические характеристики, было выполнено сравнение с результатами экспериментальных исследований в аэродинамической трубе Т-102 ЦАГИ с учетом погрешностей.

    Kalashnikov S.V., Krivoschapov A.A., Mitin A.L., Nikolaev N.V.
    Computational investigation of aerodynamic performance of the generic flying-wing aircraft model using FlowVision computational code
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 67-74

    Modern approach to modernization of the experimental techniques involves design of mathematical models of the wind-tunnel, which are also referred to as Electronic of Digital Wind-Tunnels. They are meant to supplement experimental data with computational analysis. Using Electronic Wind-Tunnels is supposed to provide accurate information on aerodynamic performance of an aircraft basing on a set of experimental data, to obtain agreement between data from different test facilities and perform comparison between computational results for flight conditions and data with the presence of support system and test section.

    Completing this task requires some preliminary research, which involves extensive wind-tunnel testing as well as RANS-based computational research with the use of supercomputer technologies. At different stages of computational investigation one may have to model not only the aircraft itself but also the wind-tunnel test section and the model support system. Modelling such complex geometries will inevitably result in quite complex vertical and separated flows one will have to simulate. Another problem is that boundary layer transition is often present in wind-tunnel testing due to quite small model scales and therefore low Reynolds numbers.

    In the current article the first stage of the Electronic Wind-Tunnel design program is covered. This stage involves computational investigation of aerodynamic characteristics of the generic flying-wing UAV model previously tested in TsAGI T-102 wind-tunnel. Since this stage is preliminary the model was simulated without taking test-section and support system geometry into account. The boundary layer was considered to be fully turbulent.

    For the current research FlowVision computational code was used because of its automatic grid generation feature and stability of the solver when simulating complex flows. A two-equation k–ε turbulence model was used with special wall functions designed to properly capture flow separation. Computed lift force and drag force coefficients for different angles-of-attack were compared to the experimental data.

    Просмотров за год: 10. Цитирований: 1 (РИНЦ).
  10. Жлуктов С.В., Аксёнов А.А., Савицкий Д.В.
    Высокорейнольдсовые расчеты турбулентного теплопереноса в программном комплексе FlowVision
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 461-481

    В работе представлена модель тепловых пристеночных функций FlowVision (WFFV), позволяющая моделировать неизотермические течения жидкости и газа около твердых поверхностей на относительно грубых сетках с использованием различных моделей турбулентности. Настоящая работа продолжает исследование по разработке модели пристеночных функций, применимой в широком диапазоне значений величины y+. Модель WFFV предполагает гладкие профили касательной составляющей скорости, турбулентной вязкости, температуры и турбулентной теплопроводности около твердой поверхности. В работе исследуется возможность использования простой алгебраической модели для вычисления переменного турбулентного числа Прандтля, входящего в модель WFFV в качестве параметра. Результаты удовлетворительные. Обсуждаются особенности реализации модели WFFV в программном комплексе FlowVision. В частности, обсуждается граничное условие для уравнения энергии, используемое в высокорейнольдсовых расчетах неизотермических течений. Граничное условие выводится для уравнения энергии, записанного через термодинамическую энтальпию, и для уравнения энергии, записанного через полную энтальпию. Возможности модели демонстрируются на двух тестовых задачах: течение несжимаемой жидкости около пластины и сверхзвуковое течение газа около пластины (M = 3).

    Анализ литературы показывает, что в экспериментальных данных и, как следствие, в эмпирических корреляциях для числа Стэнтона (безразмерного теплового потока) присутствует существенная неопределенность. Результаты расчетов дают основание полагать, что значения параметров модели WFFV, автоматически задаваемые в программе по умолчанию, позволяют рассчитывать тепловые потоки на твердых протяженных поверхностях с инженерной погрешностью. В то же время очевидно, что невозможно изобрести универсальные пристеночные функции. По этой причине управляющие параметры модели WFFV выведены в интерфейс FlowVision. При необходимости пользователь может настраивать модель на нужный класс течений.

    Предлагаемая модель пристеночных функций совместима со всеми реализованными в программном комплексе FlowVision моделями турбулентности: Смагоринского, Спаларта–Аллмараса, SST $k-\omega$, $k-\varepsilon$ стандартной, $k-\varepsilon$ Abe Kondoh Nagano, $k-\varepsilon$ квадратичной и $k-\varepsilon$ FlowVision.

    Zhluktov S.V., Aksenov A.A., Savitskiy D.V.
    High-Reynolds number calculations of turbulent heat transfer in FlowVision software
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 461-481

    This work presents the model of heat wall functions FlowVision (WFFV), which allows simulation of nonisothermal flows of fluid and gas near solid surfaces on relatively coarse grids with use of turbulence models. The work follows the research on the development of wall functions applicable in wide range of the values of quantity y+. Model WFFV assumes smooth profiles of the tangential component of velocity, turbulent viscosity, temperature, and turbulent heat conductivity near a solid surface. Possibility of using a simple algebraic model for calculation of variable turbulent Prandtl number is investigated in this study (the turbulent Prandtl number enters model WFFV as parameter). The results are satisfactory. The details of implementation of model WFFV in the FlowVision software are explained. In particular, the boundary condition for the energy equation used in high-Reynolds number calculations of non-isothermal flows is considered. The boundary condition is deduced for the energy equation written via thermodynamic enthalpy and via full enthalpy. The capability of the model is demonstrated on two test problems: flow of incompressible fluid past a plate and supersonic flow of gas past a plate (M = 3).

    Analysis of literature shows that there exists essential ambiguity in experimental data and, as a consequence, in empirical correlations for the Stanton number (that being a dimensionless heat flux). The calculations suggest that the default values of the model parameters, automatically specified in the program, allow calculations of heat fluxes at extended solid surfaces with engineering accuracy. At the same time, it is obvious that one cannot invent universal wall functions. For this reason, the controls of model WFFV are made accessible from the FlowVision interface. When it is necessary, a user can tune the model for simulation of the required type of flow.

    The proposed model of wall functions is compatible with all the turbulence models implemented in the FlowVision software: the algebraic model of Smagorinsky, the Spalart-Allmaras model, the SST $k-\omega$ model, the standard $k-\varepsilon$ model, the $k-\varepsilon$ model of Abe, Kondoh, Nagano, the quadratic $k-\varepsilon$ model, and $k-\varepsilon$ model FlowVision.

    Просмотров за год: 23.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.