Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Высокоскоростное внедрение. Дискретно-элементное моделирование и эксперимент
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 937-944В статье представлены результаты численного моделирования и экспериментальные данные по высокоскоростному внедрению ударника в преграду. В расчетах использовалась дискретно-элементная модель, основанная на представлении ударника и преграды совокупностью плотно упакованных взаимосвязанных частиц. Данный класс моделей находит все более широкое применение в задачах высокоскоростного взаимодействия тел. В предыдущих работах авторов рассмотрены вопросы применения дискретно-элементной модели к задаче внедрения металлических шаров в массивные преграды. На основе сравнительного анализа данных вычислительных и физических экспериментов было показано, что для широкого класса задач высокоскоростного внедрения достаточно высокая точность дискретно-элементного моделирования может быть достигнута с использованием двухпараметрического потенциала Леннарда–Джонса. При этом была идентифицирована зависимость энергии межэлементной связи от динамической твердости материалов. Использование построенной таким образом дискретно-элементной модели позволило достаточно точно описать наблюдаемые в экспериментах процессы внедрения ударника в массивную преграду в диапазоне скоростей взаимодействия 500–2500 м/c.
В настоящей работе проводится сравнение результатов дискретно-элементного моделирования с экспериментальными данными по пробитию высокопрочных преград различной толщины стальными ударниками. Использование технологий распараллеливания вычислений на графических процессорах в сочетании со средствами трехмерной визуализации и анимации результатов позволяет получить детальные пространственно-временные картины процесса внедрения и провести сопоставление полученных картин с экспериментальными данными.
Сравнительный анализ экспериментальных и расчетных данных показал достаточно высокую точность дискретно-элементного моделирования для широкого диапазона толщин преград: для тонких преград, пробиваемых с сохранением цельности деформируемого ударника, для преград средней толщины, пробиваемых с практически полной фрагментацией ударника на выходе из преграды, а также для непробиваемых насквозь преград.
Ключевые слова: высокоскоростной удар, дискретно-элементная модель, энергия связи, численное моделирование.Просмотров за год: 13. Цитирований: 4 (РИНЦ). -
Влияние состава угольной пыли на скорость распространения фронта горения по аэровзвеси с неоднородным распределением частиц
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 221-230Задача горения газовзвеси с неоднородным распределением частиц по пространству возникает, например, при сжигании взвеси угольной пыли в камерах сгорания энергетических установок и горелок. Неоднородное распределение частиц по пространству может существенно повлиять на скорость распространения фронта пламени по аэровзвеси угольной пыли. Представляют интерес исследование закономерности распространения фронта горения в газовзвеси при неравномерном распределении концентрации реагирующих частиц в воздухе, а также определение зависимости скорости распространения фронта горения от свойств угольной пыли и неоднородности пространственного ее распределения. Целью настоящей работы является численное исследование влияния неоднородного распределения частиц, а также состава аэровзвеси на скорость распространения фронта горения по аэровзвеси угольной пыли.
Разработана физико-математическая модель горения аэровзвеси угольной пыли с неоднородным распределением частиц угольной пыли по пространству. Физико-математическая постановка задачи учи- тывает выход горючих летучих компонентов из частиц при их нагреве, последующее реагирование летучих компонентов с воздухом, гетерогенную реакцию на поверхности частиц, зависимость коэффициента теплопроводности газа от температуры. Решение задачи проведено численно.
Проведено параметрическое исследование влияния массовой концентрации, содержания летучих компонентов и размера частиц угольной пыли на скорость горения взвеси угольной пыли в воздухе. Показано, что скорость горения больше для частиц с меньшим содержанием летучих компонентов. Сравнение скорости горения для частиц разного радиуса показало, что чем больше радиус частиц, тем меньше скорость горения аэровзвеси. Определено, что частицы с большей массовой концентрацией горят быстрее.
Проведен анализ влияния пространственного распределения частиц на скорость горения аэровзвеси. Показано, что скорость распространения фронта горения по аэровзвеси с неоднородным распределением частиц выше скорости распространения фронта горения по аэровзвеси с однородным распределением частиц. Показано, что неоднородное распределение частиц приводит к искривлению фронта горения. Чем меньше радиус частиц, тем сильнее искривляется фронт горения.
Ключевые слова: аэровзвесь, горение, выделение летучих компонентов, скорость распространения пламени.Просмотров за год: 18. -
Моделирование анизотропной конвекции бинарной жидкости, насыщающей пористую среду
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 801-816В предположении анизотропии свойств жидкости и среды моделируется возникновение гравитационной конвекции в пористом прямоугольнике, насыщенном теплопроводной жидкостью с примесью и подогреваемом снизу. Рассматривается плоская задача на основе уравнений Дарси – Буссинеска для бинарной жидкости с учетом эффекта Соре. Устанавливаются условия, при которых система уравнений относительно функции тока, отклонений температуры и концентрации от равновесного состояния является косимметричной и возможно ответвление от механического равновесия непрерывного семейства стационарных движений.
Показано, что в условиях существования косимметрии имеются подобласти параметров, для которых критические значения температурного и концентрационного чисел Рэлея находятся по явным формулам. Для случая монотонной неустойчивости механического равновесия выведены формулы критических чисел Рэлея и приведены результаты подтверждающих вычислений.
Развита конечно-разностная дискретизация задачи второго порядка точности по пространственным переменным, сохраняющая косимметричность исследуемой системы. С помощью разработанной численной схемы проведен анализ устойчивости механического равновесия при различных комбинациях управляющих параметров.
На плоскости температурного и концентрационного чисел Рэлея представлены нейтральные кривые устойчивости механического равновесия и рассчитаны участки колебательной неустойчивости. Установлена зависимость от параметров термодиффузии концентрационного числа Рэлея, при котором колебательная неустойчивость предшествует монотонной. В общей ситуации, когда не выполняются условия косимметрии, выведенные формулы критических чисел Рэлея могут быть использованы для оценки порогов возникновения конвекции.
Ключевые слова: конвекция, бинарная жидкость, пористая среда, эффект Соре, анизотропия, косимметрия, метод конечных разностей.Просмотров за год: 27. -
Моделирование смешанной конвекции жидкости с переменной вязкостью в частично пористом горизонтальном канале с источником тепловыделения
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 95-107Просмотров за год: 34.Проведено численное исследование нестационарных режимов смешанной конвекции в открытом частично пористом горизонтальном канале при наличии тепловыделяющего элемента. Наружные поверхности горизонтальных стенок конечной толщины являлись адиабатическими. В канале находилась ньютоновская теплопроводная жидкость, вязкость которой зависит от температуры по экспоненцильному закону. Дискретный тепловыделяющий теплопроводный элемент расположен внутри нижней стенки канала. Температура жидкости равна температуре твердого скелета внутри пористой вставки, и расчеты ведутся в рамках модели теплового равновесия. Пористая вставка изотропна, однородна и проницаема для жидкости. Для моделирования пористой среды использована модель Дарси–Бринкмана. Математическая модель, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости – температура» на основе приближения Буссинеска, реализована численно с помощью метода конечных разностей. Уравнения дисперсии завихренности и энергии решались на основе локально-одномерной схемы А.А. Самарского. Диффузионные слагаемые аппроксимировались центральными разностями, конвективные — с использованием монотонной аппроксимации А.А. Самарского. Разностные уравнения решались методом прогонки. Разностное уравнение Пуассона для функции тока решалось отдельно, с применением метода последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. Разработанная вычислительная модель была протестирована на множестве равномерных сеток, а также верифицирована путем сравнения полученных результатов при решении модельной задачи с данными других авторов.
Численные исследования нестационарных режимов смешанной конвекции жидкости с переменной вязкостью в горизонтальном канале с тепловыделяющим источником были проведены при следующих значениях безразмерных параметров: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Все распределения изолиний функции тока и температуры, а также зависимости среднего числа Нуссельта и средней температуры были получены в стационарном режиме, когда наблюдается установление картины течения и теплопереноса. В результате анализа установлено, что введение пористой вставки позволяет интенсифицировать теплосъем с поверхности источника энергии. Увеличение размеров пористой ставки, а также использование рабочих сред с разными теплофизическими характеристиками приводят к снижению температуры в источнике энергии.
-
Исследование свойств материала пластины лазерным ультразвуком при помощи анализа кратных волн
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 653-673Просмотров за год: 3.Ультразвуковое исследование свойств материалов является прецизионным методом определения их упругих и прочностных свойств в связи с маленькой по сравнению с толщиной пластины длиной волны, образующейся в материале после воздействия лазерным пучком. В данной работе подробно рассмотрены волновые процессы, возникающие в ходе проведения этих измерений. Показано, что полноволновое численное моделирование позволяет детально изучать типы волн, геометрические характеристики их профиля, скорость прихода волн в различные точки, выявлять типы волн, измерения по которым оптимальны для исследований образца с заданными материалом и формой, разрабатывать методики измерений.
Для осуществления полноволнового моделирования в данной работе был применен сеточно-характеристический метод на структурированных сетках и решалась гиперболическая система уравнений, описывающая распространение упругих волн в материале рассматриваемой пластины конечной толщины на конкретном примере отношения толщины к ширине 1:10.
Для моделирования упругого фронта, возникшего в пластине от воздействия лазерного пучка, предложена соответствующая постановка задачи. Выполнено сравнение возникающих при ее использовании волновых эффектов со случаем точечного источника и с данными физических экспериментов о распространении лазерного ультразвука в металлических пластинах.
Проведено исследование, на основании которого были выявлены характерные геометрические особенности рассматриваемых волновых процессов. Исследованы основные типы упругих волн, возникающие в процессе воздействия лазерного пучка, проанализирована возможность их использования для исследования свойств материалов и предложен метод, основанный на анализе кратных волн. Проведено тестирование предложенного метода по изучению свойств пластины при помощи кратных волн на синтетических данных, показавшее хорошие результаты.
Следует отметить, что большая часть исследований кратных волн направлена на разработку методов их подавления. Кратные волны не используются для обработки результатов ультразвуковых исследований в связи со сложностью их выявления в регистрируемых данных физического эксперимента.
За счет применения полноволнового моделирования и анализа пространственных динамических волновых процессов в данной работе кратные волны рассмотрены подробно и предложено деление материалов на три класса, позволяющее использовать кратные волны для получения информации о материале пластины.
Основными результатами работы являются разработанные постановки задачи для численного моделирования исследования пластин конечной толщины лазерным ультразвуком; выявленные особенности волновых явлений, возникающих в пластинах конечной толщины; разработанная методика исследования свойств пластины на основе кратных волн; разработанная классификация материалов.
Результаты исследований, приведенные в настоящей работе, могут быть интересны для разработок не только в области ультразвуковых исследований материалов, но и в области сейсмической разведки земных недр, так как предложенный подход может быть расширен на более сложные случаи гетерогенных сред и применен в геофизике.
-
Численное моделирование распространения сейсмических волн в моделях с ледовым полем в зоне арктического шельфа
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 73-82В зоне арктического шельфа расположены огромные запасы углеводородов. Проведение исследовательских работ на данной территории осложняется наличием различных ледовых образований, например айсбергов, торосов, ледовых полей. Во время проведения сейсморазведочных работ последние из выше перечисленных ледовых образований, ледовые поля, вносят в сейсмограммы многочисленные отражения сейсмического сигнала от границ «лед–вода» и «лед–воздух», распространяющиеся по всей поверхности льда. Данные многочисленные отражения необходимо учитывать при анализе сейсмограмм, а также уметь их исключать с целью получения отраженных волн от нижележащих геологических слоев, включая залежи углеводородов.
В работе решается задача о распространении сейсмических волн в неоднородной среде. Геологические среды описываются системами уравнений линейной упругости и акустики. Представлено подробное описание численного решения данных систем уравнений с помощью сеточно-характеристического метода. Для решения конечных одномерных уравнений переноса, к которым приводятся системы, применяется схема Русанова третьего порядка точности. В работе рассматривается способ подавления многочисленных отражений во льду путем заглубления источника сейсмического сигнала вплоть до границы с водой. Такой способ подавления кратных волн часто используется в реальных геологических работах. Представлены результаты численных расчетов распространения сейсмических волн в моделях с заглубленным источником импульса, а также в моделях с сейсмическим источником на поверхности льда для трехмерного случая. Результатами численного моделирования являются волновые картины, графики значений продольной компоненты скорости и сейсмограммы для двух рассматриваемых постановок задач. В работе проводится анализ влияния различных постановок источника на уменьшение продольных компонент скорости в слое льда, на результирующие сейсмограммы и волновые поля. Делается вывод о том, что заглубление источника только ухудшает конечный результат при условии помещения источника и приемников сигнала на границе «лед–вода». Уменьшение продольных компонент скорости во льду показала постановка источника на поверхности льда.
-
Анализ диссипативных свойств гибридного метода крупных частиц для структурно сложных течений газа
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 757-772Изучаются вычислительные свойства параметрического класса конечно-объемных схем с настраиваемыми диссипативными свойствами с расщеплением по физическим процессам на лагранжев, эйлеров и заключительный этапы (гибридный метод крупных частиц). Метод обладает вторым порядком аппроксимации по пространству и времени на гладких решениях. Регуляризация численного решения на лагранжевом этапе осуществляется нелинейной коррекцией искусственной вязкости, величина которой, независимо от разрешения сетки, стремится к нулю вне зоны разрывови экстремумовв решении. На эйлеровом и заключительном этапе вначале реконструируются примитивные переменные (плотность, скорость и полная энергия) путем взвешенной ограничителем потоков аддитивной комбинации противопоточной и центральной аппроксимаций. Затем из них формируются численные дивергентные потоки. При этом выполняются дискретные аналоги законов сохранения.
Выполнен анализ диссипативных свойств метода с использованием известных ограничителей вязкости и потоков, а также их линейной комбинации. Разрешающая способность схемы и качество численных решений продемонстрированы на примерах двумерных тестов с обтеканием ступеньки потоком газа с числами Маха 3, 10 и 20, двойным маховским отражением сильной ударной волны и с импульсным сжатием газа. Изучено влияние схемной вязкости метода на численное воспроизведение неустойчивости на контактных поверхностях газов. Установлено, что уменьшение уровня диссипативных свойств схемы в задаче с импульсным сжатием газа приводит к разрушению симметричного решения и формированию хаотической неустойчивости на контактной поверхности.
Численные решения сопоставлены с результатами других авторов, полученных по схемам повышенного порядка аппроксимации: КАБАРЕ, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge–Kutta Discontinuous Galerkin), с гибридной взвешенной нелинейной интерполяцией CCSSR-HW4 и CCSSR-HW6. К достоинствам гибридного метода крупных частиц относятся расширенные возможности решения задач гиперболического и смешанного типов, хорошее соотношение диссипативных и дисперсионных свойств, сочетание алгоритмической простоты и высокой разрешающей способности в задачах со сложной ударно-волновой структурой, развитием неустойчивости и вихреобразованием на контактных границах.
-
Численное моделирование распространения прямоточных волн внутрипластового горения в инверсном режиме
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 993-1006Одной из перспективных технологий повышения нефтеотдачи при разработке нетрадиционных нефтяных пластов является метод термогазового воздействия. Метод основан на закачке в пласт кислородосодержащей смеси и ее трансформации в высокоэффективный смешивающийся с пластовой нефтью вытесняющий агент за счет самопроизвольных внутрипластовых окислительных процессов. В ряде случаев этот метод обладает большим потенциалом по сравнению с другими способами повышения нефтеотдачи. В данной работе рассматриваются некоторые вопросы распространения волн внутрипластового горения. В зависимости от параметров коллектора и закачиваемой смеси такие волны могут распространяться в различных режимах. В данной работе рассматривается только прямоточный инверсный режим распространения. В этом режиме волна горения распространяется в направлении течения окислителя и фронт реакции отстает от тепловой волны, в которой вещество (углеводородные фракции, пористый скелет и др.) прогреваются до температур, достаточных для протекания реакции окисления. В работе представлены результаты аналитического исследования и численного моделирования структуры инверсной волны внутрипластового горения при двухфазном течении в пористом слое. Сделаны упрощающие предположения о теплофизических свойствах флюидных фаз, которые позволяют, с одной стороны, сделать модель внутрипластового горения обозримой для анализа, а с другой — передать основные особенности этого процесса. Рассмотрено решение типа «бегущая волна» и указаны условия его реализации. Выделено два режима распространения инверсных волн внутрипластового горения: гидродинамический и кинетический. Численное моделирование распространения волны внутрипластового горения проводилось с помощью термогидродинамического симулятора, разработанного для численного интегрирования неизотермических многокомпонентных фильтрационных течений, сопровождающихся фазовыми переходами и химическими реакциями.
-
Приложение гибридного метода крупных частиц к расчету взаимодействия ударной волны со слоем газовзвеси
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1323-1338Для модельного неоднородного уравнения переноса с источником выполнен анализ устойчивости линейной гибридной схемы (комбинации противопоточной и центральной аппроксимаций). Получены условия устойчивости, зависящие от параметра гибридности, фактора интенсивности источника (произведения интенсивности на шаг по времени) и весового коэффициента линейной комбинации мощности источника на нижнем и верхнем временном слое. В нелинейном случае для уравнений движения неравновесной по скоростям и температурам газовзвеси расчетным путем подтвержден линейный анализ устойчивости. Установлено, что предельно допустимое число Куранта гибридного метода крупных частиц второго порядка точности по пространству и времени при неявном учете трения и теплообмена между газом и частицами не зависит от фактора интенсивности межфазных взаимодействий, шага расчетной сетки и времен релаксации фаз (K-устойчивость). В традиционном случае явного способа расчета источниковых членов для значений безразмерного фактора интенсивности больше 10 наблюдается катастрофическое (на несколько порядков) снижение предельно допустимого числа Куранта, при котором расчетный шаг по времени становится неприемлемо малым.
На основе базовых соотношений распада разрыва в равновесной гетерогенной среде получено асимптотически точное автомодельное решение задачи взаимодействия ударной волны со слоем газовзвеси, к которому сходится численное решение двухскоростной двухтемпературной динамики газовзвеси при уменьшении размеровди сперсных частиц.
Изучены динамика движения скачка уплотнения в газе и его взаимодействия с ограниченным слоем газовзвеси для различных размеров дисперсных частиц: 0.1, 2 и 20 мкм. Задача характеризуется двумя распадами разрывов: отраженной и преломленной ударными волнами на левой границе слоя, отраженной волной разрежения и прошедшим скачком уплотнения на правой контактной границе. Обсуждено влияние релаксационных процессов (безразмерных времен релаксации фаз) на характер течения газовзвеси. Для мелких частиц времена выравнивания скоростей и температур фаз малы, а зоны релаксации являются подсеточными. Численное решение в характерных точках с относительной точностью $O\, (10^{−4})$ сходится к автомодельным решениям.
Ключевые слова: гибридный метод крупных частиц, устойчивость, газовзвесь, релаксация, жесткость, автомодельное решение. -
Метод тяжелого шарика с усреднением
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 277-308Методы оптимизации первого порядка являются важным рабочим инструментов для широкого спектра современных приложений в разных областях, среди которых можно выделить экономику, физику, биологию, машинное обучение и управление. Среди методов первого порядка особого внимания заслуживают ускоренные (моментные) методы в силу их практической эффективности. Метод тяжелого шарика (heavy-ball method — HB) — один из первых ускоренных методов. Данный метод был разработан в 1964 г., и для него был проведен анализ сходимости для квадратичных сильно выпуклых функций. С тех пор были предложены и проанализированы разные варианты HB. В частности, HB известен своей простотой реализации и эффективностью при решении невыпуклых задач. Однако, как и другие моментные методы, он имеет немонотонное поведение; более того, при сходимости HB с оптимальными параметрами наблюдается нежелательное явление, называемое пик-эффектом. Чтобы решить эту проблему, в этой статье мы рассматриваем усредненную версию метода тяжелого шарика (averaged heavy-ball method — AHB). Мы показываем, что для квадратичных задач AHB имеет меньшее максимальное отклонение от решения, чем HB. Кроме того, для общих выпуклых и сильно выпуклых функций доказаны неускоренные скорости глобальной сходимости AHB, его версии WAHB cо взвешенным усреднением, а также для AHB с рестартами R-AHB. Насколько нам известно, такие гарантии для HB с усреднением не были явно доказаны для сильно выпуклых задач в существующих работах. Наконец, мы проводим несколько численных экспериментов для минимизации квадратичных и неквадратичных функций, чтобы продемонстрировать преимущества использования усреднения для HB. Кроме того, мы также протестировали еще одну модификацию AHB, называемую методом tail-averaged heavy-ball (TAHB). В экспериментах мы наблюдали, что HB с правильно настроенной схемой усреднения сходится быстрее, чем HB без усреднения, и имеет меньшие осцилляции.
Ключевые слова: методы первого порядка, выпуклая оптимизация, ускоренные градиентные методы, глобальная сходимость.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





