Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Влияние хвостовых плавников на скорость водного робота, приводимого в движение внутренними подвижными массами
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 869-882В данной работе представлено описание конструкции водного робота, движущегося по поверхности жидкости и приводимого в движение двумя внутренними подвижными массами. Корпус водного робота в сечении имеет форму симметричного крылового профиля с острой кромкой. На данном прототипе две внутренние массы перемещаются по окружностям и приводятся во вращение за счет одного двигателя постоянного тока и зубчатого механизма, передающего вращательный момент от двигателя к каждой массе. В качестве управляющего воздействия используются угловые скорости подвижных масс, а разработанная кинематическая схема передачи вращения от двигателя к подвижным массам позволяет реализовать вращение двух масс с равными по модулю угловыми скоростями, но при этом разным направлением вращения. А также на корпус данного робота имеется возможность устанавливать дополнительные хвостовые плавники различных форм и размеров. Также в работе для данного объекта представлены уравнения движения, записанные в форме уравнений Кирхгофа для движения твердого тела в идеальной жидкости, дополненные слагаемыми вязкого сопротивления. Представлено математическое описание дополнительных сил, действующих на гибкий хвостовой плавник. С разработанным прототипом робота проведены экспериментальные исследования по влиянию различных хвостовых плавников на скорость передвижения в жидкости. В данной работе на робота устанавливались хвостовые плавники одной формы и размеров, при этом обладающие разной жесткостью. Эксперименты проводились в бассейне с водой, над которым устанавливалась камера, на которую были получены видеозаписи всех экспериментов. Дальнейшая обработка видеозаписей позволила получить перемещения объекта, а также его линейные и угловые скорости. В работе показано различие в развиваемых роботом скоростях при движении без хвостового плавника, а также с хвостовыми плавниками, имеющими разную жесткость. Приведено сравнение развиваемых роботом скоростей, полученных в экспериментальных исследованиях, с результатами математического моделирования системы.
Ключевые слова: мобильный робот, водный робот, моделирование движения, экспериментальные исследования. -
Численное моделирование сходящихся сферических ударных волн с нарушенной симметрией
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 59-71На основе гидродинамического 3D-моделирования с использованием уравнения состояния газа твердых сфер Карнахана – Старлинга выполнено исследование развития периодических возмущений сходящейся сферической ударной волны, приводящих к ограничению кумуляции. Метод решения системы уравнений Эйлера на подвижных (сжимающихся) сетках позволяет с высокой точностью проследить эволюцию фронта сходящейся ударной волны в широком диапазоне изменения ее радиуса. Скорость сжатия расчетной сетки адаптируется к движению фронта ударной волны, при этом движение границ расчетной области выбирается из условия сверхзвуковой скорости ее движения относительно среды. Это приводит к тому, что решение на этапе сжатия определяется только начальными данными. Применена схема TVD второго порядка аппроксимации для реконструкции вектора консервативных переменных на границах расчетных ячеек в сочетании со схемой Русанова для расчета численного вектора потоков. Выбор обусловлен сильной тенденцией к проявлению в расчетах численной неустойчивости типа «карбункул», известной для других классов течений. Использование сжимающихся сеток позволило исследовать детальную картину течения на масштабе прекращения кумуляции, что невозможно в рамках метода геометрической динамики ударных волн Уизема (Whitham), применявшегося ранее другими авторами для расчета сходящихся ударных волн. Исследование показало, что ограничение кумуляции связанно с переходом от маховского взаимодействия сегментов сходящейся ударной волны к регулярному вследствие прогрессирующего роста отношения азимутальной скорости на фронте ударной волны к радиальной при уменьшении ее радиуса. Установлено, что это отношение представляется в виде произведения ограниченной осциллирующей функции радиуса и степенной функции радиуса с показателем степени, зависящим от начальной плотности упаковки в модели твердых сфер. Показано, что увеличение параметра плотности упаковки в модели твердых сфер приводит к значительному увеличению давлений, достигаемых в ударной волне с нарушенной симметрией. Впервые в расчете показано, что на масштабе прекращения кумуляции течение сопровождается формированием высокоэнергетичных вихрей, в которые вовлечено вещество, подвергшееся наибольшему ударно-волновому сжатию. Оказывая влияние на процессы тепло- и массопереноса в области наибольшего сжатия, это обстоятельство является важным для актуальных практических применений сходящихся ударных волн в целях инициирования реакций (детонации, фазовых переходов, управляемого термоядерного синтеза).
-
Локализованные волны уравнения $\varphi^4$ в модели с двумя протяженными примесями
Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 437-449В данной работе рассматривается взаимодействие кинка уравнения $\varphi^4$ с двумя протяженными одинаковыми примесями. Протяженная примесь описывается с помощью функции прямоугольного вида. Анализируется случай притягивающей примеси. С помощью аналитических методов рассматривается случай малых амплитуд локализованных волн, когда возможно провести линеаризацию уравнений движения. Для численного решения использовался метод прямых для уравнений в частных производных. Для нахождения частот колебаний, локализованных на примесях волн, используется дискретное преобразование Фурье. Кинк запускался в направлении примесей с разными начальными скоростями. Изменялось также расстояние между двумя примесями. Показано, что при взаимодействии кинка с примесями на них возбуждаются долгоживущие локализованные волны бризерного типа. Исследована их структура и связанная динамика. Определено, как, изменяя параметры примесей и расстояние между ними, можно управлять типом и динамическими параметрами связанных колебаний, локализованных на примесях волн. Найдены возможные решения в виде синфазных, антифазных колебаний, в виде биений. Колебания локализованных волн происходят с излучением волн малой амплитуды. Спектр этих излучений состоит из двух частот. Первая приближенно равна $\sqrt{2}$, что соответствует величине частоты для хвоста воблингбризера уравнения $\varphi^4$. Вторая приближенно равна удвоенной частоте колебаний примесных мод. Найдено (как аналитически, так и численно) наличие двух возможных частот для связанных локализованных колебаний. Показано, что частоты сильно зависят от расстояния между примесями. С увеличением расстояния между примесями частоты сливаются в одну — частоту, полученную для случая одиночной примеси. Найденные численно и аналитически зависимости частот от расстояния между примесями хорошо совпадают для больших расстояний, когда взаимодействие между примесями слабое, и начинают заметно отличаться при малых расстояниях, когда взаимодействие между примесями сильное. Аналитическое значение величин полученных частот всегда больше численных. Показано, что зависимость амплитуды локализованных волн от начальной скорости кинка имеет несколько минимумов и максимумов.
-
Моделирование нелинейных аэроупругих колебаний стенки канала, взаимодействующей с пульсирующим слоем вязкого газа
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 583-600В работе предложена математическая модель аэроупругих колебаний стенки узкого канала, имеющей нелинейно-упругий подвес и взаимодействующей с пульсирующим слоем вязкого газа. В рамках данной модели определены и исследованы аэроупругий отклик стенки канала и соответствующий ему фазовый сдвиг. Сформулированная авторами модель позволяет одновременно исследовать влияние на колебания стенки нелинейной жесткости ее упругого подвеса, сжимаемости и диссипативных свойств газа, а также инерции его движения в канале под действием пульсирующего перепада давления. Модель разработана на базе постановки и решения плоской начально-краевой задачи математической физики, включающей систему уравнений динамики баротропного вязкого газа, уравнения динамики жесткой стенки как одномассового нелинейного осциллятора. Используя метод возмущений, проведен асимптотический анализ задачи с последующим решением уравнений динамики тонкого слоя вязкого газа методом итерации. В результате определен закон распределения давления газа в канале и исходная задача аэроупругости сведена к исследованию обобщенного уравнения Дуффинга. Его решение осуществлено методом гармонического баланса, что позволило определить аэроупругий и фазовый отклики стенки канала в виде неявных функций. Проведено численное исследование данных откликов для оценки влияния инерции движения газа и его сжимаемости, а также сравнение полученных результатов с частными случаями ползущего движения вязкого газа и несжимаемой вязкой жидкости. Результаты проведенного исследования показали важность одновременного учета сжимаемости и инерции движения вязкого газа при моделировании аэроупругих колебаний стенки рассматриваемого канала.
-
Об одном резольвентном методе интегрирования уравнений свободного движения в среде с квадратичным сопротивлением
Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 265-277Просмотров за год: 1. Цитирований: 6 (РИНЦ).Предложен новый набор ключевых баллистических параметров: b0 = tgθ0, θ0 — угол вылета, Ra — вершинный радиус кривизны траектории и β0 — безразмерный квадрат разворотной скорости, и на его основе разработан новый прием приближенного интегрирования уравнений динамики материальной точки в среде с квадратичным сопротивлением (α = R/mg = 0,5…1,5) при tgθ0 < 0,5. Способ базируется на преобразованиях Лежандра, и он дает формулы с автоматически подстраиваемой точностью как для текущих координат x(b), y(b) и времени t(b), b = tgθ — текущий наклон траектории, так и для основных параметров (время T, дальность L, положение вершины La) траектории в диапазоне, далеко выходящем за малоугловую область прицельной стрельбы. Точность формул выверялась при помощи продукта Maple.
-
Численное исследование транспортных потоков на основе гидродинамических моделей
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 389-412Просмотров за год: 7. Цитирований: 7 (РИНЦ).Целью данной работы является обобщение макроскопических гидродинамических моделей, описывающих автомобильное движение, с помощью алгоритма построения адекватного реальным наблюдаемым условиям уравнения состояния — зависимости давления от плотности транспортного потока, определяемого по экспериментальным данным (возможно, с использованием параметрических решений модельных уравнений). Доказано, что именно вид уравнения состояния, замыкающего систему модельных уравнений и полученного из экспериментально наблюдаемого вида фундаментальной диаграммы — зависимости интенсивности транспортного потока от его плотности, полностью определяет все свойства исследуемой феноменологической
модели. -
Управление динамикой кинка модифицированного уравнения синус-Гордона внешним воздействием с меняющимися параметрами
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 821-834В работе представлены результаты, подтверждающие возможность управления движением кинка модифицированного уравнения синус-Гордона внешним воздействием с изменяющимися параметрами. Рассмотрены три типа внешних воздействий: постоянное, периодическое с постоянной частотой и периодическое частотно-модулированное. С использованием метода Мак-Лафлина–Скотта получены зависимости координаты и скорости кинка от времени при разных значениях параметров внешнего воздействия. Показано, что изменяя параметры, можно регулировать скорость и направление движения кинка.
Ключевые слова: уравнение синус-Гордона, солитоны, кинки, управление динамикой кинка, нелинейная динамика ДНК.Просмотров за год: 2. Цитирований: 4 (РИНЦ). -
Управление движением тела с помощью внутренних масс в вязкой жидкости
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 445-460Просмотров за год: 21. Цитирований: 2 (РИНЦ).Данная статья посвящена изучению самопродвижения тел в жидкости за счет действия внутренних механизмов, без изменения внешней формы тела. В работе представлен обзор теоретических работ, обосновывающих возможностьда нного перемещения в идеальной и вязкой жидкостях.
Рассмотрен частный случай самопродвижения твердого тела по поверхности жидкости за счет движения двух внутренних масс по окружностям. В работе представлена математическая модельдвиж ения твердого тела с подвижными внутренними массами в трехмерной постановке. Данная модельу читывает трехмерные колебания тела при движении, возникающие под действием внешних сил — силы тяжести, силы Архимеда и сил, действующих на тело со стороны вязкой жидкости.
В качестве тела рассмотрен однородный эллиптический цилиндр с килем, расположенным вдоль большей диагонали. Внутри цилиндра расположены две материальные точечные массы, перемещающиеся по окружностям. Центры окружностей лежат на наименьшей диагонали эллипса на равном удалении от центра масс.
Уравнения движения рассматриваемой системы (тело с двумя материальными точками, помещенное в жидкость) представлены в виде уравнений Кирхгофа с добавлением внешних сил и моментов, действующих на тело. Для описания сил сопротивления движению в жидкости выбрана феноменологическая модель вязкого трения, квадратичная по скорости. Коэффициенты сопротивления движению, используемые в модели, определялись экспериментально. Силы, действующие на киль, определялись с помощью численного моделирования колебаний киля в вязкой жидкости с использованием уравнений Навье–Стокса.
В данной работе была проведена экспериментальная проверка предложенной математической модели. Представлено несколько серий экспериментов по самопродвижению тела в жидкости с помощью вращения внутренних масс с разными скоростями вращения. Исследована зависимостьс редней скорости продвижения, размаха поперечных колебаний в зависимости от частоты вращения внутренних масс. Проведено сравнение полученных экспериментальных данных с результатами, полученными в рамках предложенной математической модели.
-
Моделирование анизотропной конвекции бинарной жидкости, насыщающей пористую среду
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 801-816В предположении анизотропии свойств жидкости и среды моделируется возникновение гравитационной конвекции в пористом прямоугольнике, насыщенном теплопроводной жидкостью с примесью и подогреваемом снизу. Рассматривается плоская задача на основе уравнений Дарси – Буссинеска для бинарной жидкости с учетом эффекта Соре. Устанавливаются условия, при которых система уравнений относительно функции тока, отклонений температуры и концентрации от равновесного состояния является косимметричной и возможно ответвление от механического равновесия непрерывного семейства стационарных движений.
Показано, что в условиях существования косимметрии имеются подобласти параметров, для которых критические значения температурного и концентрационного чисел Рэлея находятся по явным формулам. Для случая монотонной неустойчивости механического равновесия выведены формулы критических чисел Рэлея и приведены результаты подтверждающих вычислений.
Развита конечно-разностная дискретизация задачи второго порядка точности по пространственным переменным, сохраняющая косимметричность исследуемой системы. С помощью разработанной численной схемы проведен анализ устойчивости механического равновесия при различных комбинациях управляющих параметров.
На плоскости температурного и концентрационного чисел Рэлея представлены нейтральные кривые устойчивости механического равновесия и рассчитаны участки колебательной неустойчивости. Установлена зависимость от параметров термодиффузии концентрационного числа Рэлея, при котором колебательная неустойчивость предшествует монотонной. В общей ситуации, когда не выполняются условия косимметрии, выведенные формулы критических чисел Рэлея могут быть использованы для оценки порогов возникновения конвекции.
Ключевые слова: конвекция, бинарная жидкость, пористая среда, эффект Соре, анизотропия, косимметрия, метод конечных разностей.Просмотров за год: 27. -
Приложение гибридного метода крупных частиц к расчету взаимодействия ударной волны со слоем газовзвеси
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1323-1338Для модельного неоднородного уравнения переноса с источником выполнен анализ устойчивости линейной гибридной схемы (комбинации противопоточной и центральной аппроксимаций). Получены условия устойчивости, зависящие от параметра гибридности, фактора интенсивности источника (произведения интенсивности на шаг по времени) и весового коэффициента линейной комбинации мощности источника на нижнем и верхнем временном слое. В нелинейном случае для уравнений движения неравновесной по скоростям и температурам газовзвеси расчетным путем подтвержден линейный анализ устойчивости. Установлено, что предельно допустимое число Куранта гибридного метода крупных частиц второго порядка точности по пространству и времени при неявном учете трения и теплообмена между газом и частицами не зависит от фактора интенсивности межфазных взаимодействий, шага расчетной сетки и времен релаксации фаз (K-устойчивость). В традиционном случае явного способа расчета источниковых членов для значений безразмерного фактора интенсивности больше 10 наблюдается катастрофическое (на несколько порядков) снижение предельно допустимого числа Куранта, при котором расчетный шаг по времени становится неприемлемо малым.
На основе базовых соотношений распада разрыва в равновесной гетерогенной среде получено асимптотически точное автомодельное решение задачи взаимодействия ударной волны со слоем газовзвеси, к которому сходится численное решение двухскоростной двухтемпературной динамики газовзвеси при уменьшении размеровди сперсных частиц.
Изучены динамика движения скачка уплотнения в газе и его взаимодействия с ограниченным слоем газовзвеси для различных размеров дисперсных частиц: 0.1, 2 и 20 мкм. Задача характеризуется двумя распадами разрывов: отраженной и преломленной ударными волнами на левой границе слоя, отраженной волной разрежения и прошедшим скачком уплотнения на правой контактной границе. Обсуждено влияние релаксационных процессов (безразмерных времен релаксации фаз) на характер течения газовзвеси. Для мелких частиц времена выравнивания скоростей и температур фаз малы, а зоны релаксации являются подсеточными. Численное решение в характерных точках с относительной точностью $O\, (10^{−4})$ сходится к автомодельным решениям.
Ключевые слова: гибридный метод крупных частиц, устойчивость, газовзвесь, релаксация, жесткость, автомодельное решение.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





