Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'алгоритмы':
Найдено статей: 331
  1. Суров В.С.
    Об одной модификации узлового метода характеристик
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 29-44

    Представлен вариант обратного метода характеристик (МОМХ), в алгоритм которого введен дополнительный дробный временной шаг, что позволяет повысить точность вычислений за счет более точной аппроксимации характеристик. Приведены расчетные формулы модифицированного метода для уравнений односкоростной модели газожидкостной смеси, с помощью которого рассчитаны одномерные, а также плоские тестовые задачи, имеющие автомодельные решения. При решении многомерных задач исходная система уравнений расщепляется на ряд одномерных подсистем, для расчета которых применяется обратный метод характеристик с дробным временным шагом. С использованием предложенного метода рассчитаны: одномерная задача распада произвольного разрыва в дисперсной среде; двумерная задача взаимодействия однородного газожидкостного потока с препятствием с присоединенным ударным скачком, а также течение с центрированной волной разрежения. Результаты численных расчетов этих задач сопоставлены с автомодельными решениями и отмечено их удовлетворительное совпадение. На примере задачи Римана с ударным скачком приведено сравнение с рядом консервативных, неконсервативных первого и повышенного порядков точности схем, из которого, в частности, следует, что представленный метод расчета вполне конкурентоспособен. Несмотря на то что применение МОМХ требует в разы больших временных затрат по сравнению с оригинальным обратным методом характеристик (ОМХ), вычисления можно проводить с увеличенным временным шагом и в ряде случаев получать более точные результаты. Отмечено, что метод с дробным временным шагом имеет преимущества в случаях, когда характеристики системы криволинейные. По этой причине для уравнений Эйлера целесообразно использовать ОМХ вместо МОМХ, поскольку в этом случае характеристики в пределах временного шага мало отличаются от прямых линий.

  2. Нефедова О.А., Спевак Л.Ф., Казаков А.Л., Ли М.Г.
    Применение метода нулевого поля для решения двумерного нелинейного уравнения теплопроводности
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1449-1467

    В работе рассмотрена краевая задача о движении тепловой волны для вырождающегося уравнения второго порядка параболического типа со степенной нелинейностью. Краевое условие задает уравнение движения на плоскости нулевого фронта тепловой волны, имеющего форму окружности. Предложен новый численно-аналитический алгоритм, в соответствии с которым решение строится по шагам по времени при разностной схеме дискретизации времени. На каждом шаге рассматривается краевая задача для уравнения Пуассона, к которому сводится исходное уравнение. Фактически она является обратной задачей Коши, в которой исходная граница области решения свободна от граничных условий, а на текущей границе (фронте волны) заданы два условия (Неймана и Дирихле). Решение этой задачи ищется в виде суммы частного решения уравнения Пуассона и решения соответствующего уравнения Лапласа, удовлетворяющего граничным условиям. Поскольку неоднородность зависит от искомой функции и ее производных, решение строится итерационно. Частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Обратная задача Коши для уравнения Лапласа решается методом нулевого поля применительно к круговым областям с круговыми отверстиями. Для таких задач этот метод применяется впервые. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Распараллеливание вычислений позволило эффективно реализовать алгоритм на высокопроизводительных вычислительных системах. На базе алгоритма была создана компьютерная программа. В качестве средства распараллеливания был выбран стандарт параллельного программирования OpenMP для языка программирования C++ как наиболее подходящий для вычислительных программ с параллельными циклами. Эффективность алгоритма и работоспособность программы были проверены сравнением результатов расчетов с известным точным решением, а также с численным решением, полученным авторами ранее с помощью метода граничных элементов. Проведенный вычислительный эксперимент показал хорошую сходимость итерационных процессов и более высокую точность нового алгоритма по сравнению с разработанным ранее. Анализ решений позволил определить наиболее подходящую систему радиальных базисных функций.

  3. Дорн Ю.В., Шитиков О.М.
    Идентификация парадокса Браесса в модели стабильной динамики
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 35-51

    В работе исследуется поиск неэффективных ребер в модели стабильной динамики Нестрова–де Пальмы (2003). Для этой цели мы доказываем несколько общих теорем о свойствах равновесия, в том числе о том, что условие равенства стоимостей для всех используемых маршрутов может быть распространено на все пути, задействующие ребра из равновесных маршрутов. В работе показывается, что стандартная постановка задачи о поиске ребер, удаление которых приводит к уменьшению стоимости проезда для всех участников, не имеет практического смысла, так как одно и то же ребро может быть как эффективным, так и неэффективным (в зависимости от загрузки сети). В работе мы вводим понятие неэффективного ребра, опираясь на чувствительность суммарных издержек водителей к издержкам на ребре. В работе приводятся алгоритм поиска неэффективных ребер и результаты численных экспериментов для транспортной сети города Анахайм.

  4. Морозов А.Ю., Ревизников Д.Л.
    Параметрическая идентификация динамических систем на основе внешних интервальных оценок фазовых переменных
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 299-314

    Важную роль при построении математических моделей динамических систем играют обратные задачи, к которым, в частности, относится задача параметрической идентификации. В отличие от классических моделей, оперирующих точечными значениями, интервальные модели дают ограничения сверху и снизу на исследуемые величины. В работе рассматривается интерполяционный подход к решению интервальных задач параметрической идентификации динамических систем для случая, когда экспериментальные данные представлены внешними интервальными оценками. Цель предлагаемого подхода заключается в нахождении такой интервальной оценки параметров модели, при которой внешняя интервальная оценка решения прямой задачи моделирования содержала бы экспериментальные данные или минимизировала бы отклонение от них. В основе подхода лежит алгоритм адаптивной интерполяции для моделирования динамических систем с интервальными неопределенностями, позволяющий в явном виде получать зависимость фазовых переменных от параметров системы. Сформулирована задача минимизации расстояния между экспериментальными данными и модельным решением в пространстве границ интервальных оценок параметров модели. Получено выражение для градиента целевой функции. На репрезентативном наборе задач продемонстрированы эффективность и работоспособность предлагаемого подхода.

  5. Шушко Н.И., Барашов Е.Б., Красоткин С.А., Лемтюжникова Д.В.
    Новый алгоритм объединения решений подзадач в задаче коммивояжера
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 45-58

    Традиционные методы решения задачи коммивояжера не являются эффективными для задач высокой размерности из-за их высокой вычислительной сложности. Одним из эффективных способов решения этой проблемы является декомпозиционный подход, который включает в себя три основных этапа: кластеризацию вершин, решение подзадач внутри каждого кластера и последующее объединение полученных решений в итоговое. В данной статье основное внимание уделяется третьему этапу — объединению циклов решений подзадач, поскольку этому этапу не всегда уделяется должное внимание, что приводит к менее точному итоговому решению. В статье предлагается новый модифицированный алгоритм Сигала для объединения циклов. Для оценки его эффективности проводится сравнение с двумя алгоритмами объединения циклов: метод соединения средних точек ребер и алгоритм на основе близости центроидов кластеров. Исследуется зависимость качества решения подзадач на алгоритмы объединения циклов. Модифицированный алгоритм Сигала выполняет попарное объединение кластеров, минимизируя количество пересечений и общее расстояние. Метод центроидов ориентирован на соединение кластеров на основе близости центроидов, а алгоритм с использованием средних точек оценивает расстояние между средними точками ребер. Также были рассмотрены два типа кластеризации: алгоритмы k-means и affinity propagation. Для проверки эффективности предложенного алгоритма были проведены численные эксперименты на наборе данных TSPLIB с различным количеством городов. В исследовании анализируются ошибки, вызванные порядком объединения кластеров, качеством решения подзадач и количеством кластеров. Эксперименты показали, что модифицированный алгоритм Сигала демонстрирует наименьшую медиану итогового расстояния и наиболее устойчивые результаты по сравнению с другими методами. Результаты указывают на большую устойчивость качества конечного решения, полученным модифицированным алгоритмом Сигала, от последовательности объединения кластеров. Повышение качества решения подзадачи обычно приводит к линейному улучшению конечного решения, но используемый алгоритм объединения редко влияет на степень этого улучшения.

  6. В работе предлагается подход, позволяющий организовать оперативный контроль за интенсивностью действия источника выбросов в атмосферу. Восстановление неизвестной интенсивности источника загрязнения атмосферы производится по измерениям концентрации примеси в отдельных стационарных точках. Для решения обратной задачи использовались методы шаговой регуляризации и последовательной функциональной аппроксимации. Решение представлено в форме цифрового фильтра в смысле Хэмминга. Описан алгоритм выбора регуляризирующего параметра r для метода функциональной аппроксимации. Работа продолжает исследования, представленные в [1,2].

    Просмотров за год: 2.
  7. Вражнов Д.А., Шаповалов А.В., Николаев В.В.
    Симметрии дифференциальных уравнений в задачах компьютерного зрения
    Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 369-376

    В данной работе приводится обобщение подхода к построению инвариантных векторов признаков изображений в задачах распознавания образов. Базовым элементом предлагаемого алгоритма является замена обычно применяемого гауссова фильтра исходного изображения сверткой функции изображения с функцией Грина эволюционного оператора, наследующей свойства симметрий этого оператора. Применение обобщенной фильтрации позволяет выделять дополнительные характеристики инвариантных векторов признаков.

    Просмотров за год: 8. Цитирований: 4 (РИНЦ).
  8. Дунюшкин Д.Ю.
    Метод формирования тестовых сигналов для корреляционной идентификации нелинейных систем
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 721-733

    Разработан и протестирован новый метод формирования тестовых сигналов для корреляционной идентификации нелинейных динамических систем методом Ли–Шетцена. Для коррекции моментных функций тестовых сигналов применен численный алгоритм оптимизации Гаусса–Ньютона. В экспериментах получены тестовые воздействия длиной до 40 000 точек, позволяющие определять ядра Винера 2-го порядка с линейным разрешением до 32 точек, ядра Винера 3-го порядка с линейным разрешением до 12 точек, ядра Винера 4-го порядка с линейным разрешением до 8 точек.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  9. Заика Ю.В., Костикова Е.К.
    Моделирование термодесорбции и водородопроницаемости
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 679-703

    В контексте проблем водородной и термоядерной энергетики ведутся интенсивные исследования свойств изотопов водорода. Математические модели позволяют уточнять физико-химические представления о взаимодействии водорода с конструкционными материалами, выделять лимитирующие факторы. Классических моделей диффузии часто недостаточно. Статья посвящена моделям и численному решению краевых задач термодесорбции и водородопроницаемости с учетом динамики нелинейных сорбционно-десорбционных процессов на поверхности и обратимого захвата атомов водорода в объеме. Алгоритмы основаны на разностных аппроксимациях. Представлены результаты компьютерного моделирования потока водорода из конструкционного материала.

    Просмотров за год: 3.
  10. Дударов С.П., Диев А.Н., Федосова Н.А., Кольцова Э.М.
    Моделирование свойств конструкционного композитного материала, армированного углеродными нанотрубками, с использованием перцептронных комплексов
    Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 253-262

    Использование алгоритмов, основанных на нейронных сетях, может оказаться неэффективным при малых объемах экспериментальных данных. Авторы статьи рассматривают решение данной проблемы на примере моделирования свойств керамического композита, армированного углеродными нанотрубками, с помощью перцептронного комплекса. Такой подход позволил получить математическое описание объекта исследования при минимальном объеме и неполноте исходной информации, полученной в ходе экспериментов (объем необходимой экспериментальной выборки уменьшился в 2–3.3 раза). В статье рассмотрены различные варианты структур перцептронных комплексов. Выявлено, что наиболее подходящей структурой обладает перцептронный комплекс с проскоком двух входных переменных. Относительная ошибка составила всего 6%. Выбранный перцептронный комплекс показал свою эффективность для предсказания свойств керамического композита. Относительные ошибки по выходным компонентам составили 0.3%, 4.2%, 0.4%, 2.9% и 11.8%.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.