Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Исследование усредненной модели окислительной регенерации закоксованного катализатора
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 149-161Статья посвящена построению и исследованию усредненной математической модели окислительной регенерации алюмокобальтмолибденового катализатора гидрокрекинга. Окислительная регенерация является эффективным средством восстановления активности катализатора при покрытии его гранул коксовыми отложениями.
Математическая модель указанного процесса представляет собой нелинейную систему обыкновенных дифференциальных уравнений, в которую включены кинетические уравнения для концентраций реагентов и уравнения для учета изменения температуры зерна катализатора и реакционной смеси в результате протекания неизотермических реакций и теплообмена между газом и слоем катализатора. Вследствие гетерогенности процесса окислительной регенерации часть уравнений отличается от стандартных кинетических и построена на основе эмпирических данных. В статье рассмотрена схема химического взаимодействия в процессе регенерации, на основе которой составлены уравнения материального баланса. В ней отражены непосредственное взаимодействие кокса и кислорода с учетом степени покрытия гранулы кокса углерод-водородным и углерод-кислородным комплексами, выделение монооксида и диоксида углерода в процессе горения, а также освобождение кислорода и водорода внутри зерна катализатора. При построении модели учитывается изменение радиуса, а следовательно, и площади поверхности коксовых гранул. Адекватность разработанной усредненной модели подтверждена анализом динамики концентраций веществ и температуры.
В статье приведен численный эксперимент для математической модели окислительной регенерации алюмокобальтмолибденового катализатора гидрокрекинга. Эксперимент проведен с использованием метода Кутты–Мерсона. Этот метод относится к методам семейства Рунге–Кутты, но разработан для решения жестких систем обыкновенных дифференциальных уравнений. Результаты вычислительного эксперимента визуализированы.
В работе приведена динамика концентраций веществ, участвующих в процессе окислительной регенерации. На основании соответствия полученных результатов физико-химическим законам сделан вывод об адекватности построенной математической модели. Проанализирован разогрев зерна катализатора и выделение монооксида углерода при изменении радиуса зерна для различных степеней начальной закоксованности. Дано описание полученных результатов.
В заключении отмечены основные результаты, приведены примеры задач, для решения которых может быть применена разработанная математическая модель.
Ключевые слова: окислительная регенерация катализатора, химическая кинетика, нелинейные системы обыкновенных дифференциальных уравнений, численный метод Кутты–Мерсона.
Investigation of the averaged model of coked catalyst oxidative regeneration
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 149-161The article is devoted to the construction and investigation of an averaged mathematical model of an aluminum-cobalt-molybdenum hydrocracking catalyst oxidative regeneration. The oxidative regeneration is an effective means of restoring the activity of the catalyst when its granules are coating with coke scurf.
The mathematical model of this process is a nonlinear system of ordinary differential equations, which includes kinetic equations for reagents’ concentrations and equations for changes in the temperature of the catalyst granule and the reaction mixture as a result of isothermal reactions and heat transfer between the gas and the catalyst layer. Due to the heterogeneity of the oxidative regeneration process, some of the equations differ from the standard kinetic ones and are based on empirical data. The article discusses the scheme of chemical interaction in the regeneration process, which the material balance equations are compiled on the basis of. It reflects the direct interaction of coke and oxygen, taking into account the degree of coverage of the coke granule with carbon-hydrogen and carbon-oxygen complexes, the release of carbon monoxide and carbon dioxide during combustion, as well as the release of oxygen and hydrogen inside the catalyst granule. The change of the radius and, consequently, the surface area of coke pellets is taken into account. The adequacy of the developed averaged model is confirmed by an analysis of the dynamics of the concentrations of substances and temperature.
The article presents a numerical experiment for a mathematical model of oxidative regeneration of an aluminum-cobalt-molybdenum hydrocracking catalyst. The experiment was carried out using the Kutta–Merson method. This method belongs to the methods of the Runge–Kutta family, but is designed to solve stiff systems of ordinary differential equations. The results of a computational experiment are visualized.
The paper presents the dynamics of the concentrations of substances involved in the oxidative regeneration process. A conclusion on the adequacy of the constructed mathematical model is drawn on the basis of the correspondence of the obtained results to physicochemical laws. The heating of the catalyst granule and the release of carbon monoxide with a change in the radius of the granule for various degrees of initial coking are analyzed. There are a description of the results.
In conclusion, the main results and examples of problems which can be solved using the developed mathematical model are noted.
-
Нейросетевая модель распознавания знаков дорожного движения в интеллектуальных транспортных системах
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 429-435В данной статье проводится анализ проблемы распознавания знаков дорожного движения в интеллектуальных транспортных системах. Рассмотрены основные понятия компьютерного зрения и задачи распознавания образов. Самым эффективным и популярным подходом к решению задач анализа и распознавания изображений на данный момент является нейросетевой, а среди возможных нейронных сетей лучше всего показала себя искусственная нейронная сеть сверточной архитектуры. Для решения задачи классификации при распознавании дорожных знаков использованы такие функции активации, как Relu и SoftMax. В работе предложена технология распознавания дорожных знаков. Выбор подхода для решения поставленной задачи на основе сверточной нейронной сети обусловлен возможностью эффективно решать задачу выделения существенных признаков и классификации изображений. Проведена подготовка исходных данных для нейросетевой модели, сформирована обучающая выборка. В качестве платформы для разработки интеллектуальной нейросетевой модели распознавания использован облачный сервис Google Colaboratory с подключенными библиотеками для глубокого обучения TensorFlow и Keras. Разработана и протестирована интеллектуальная модель распознавания знаков дорожного движения. Использованная сверточная нейронная сеть включала четыре каскада свертки и подвыборки. После сверточной части идет полносвязная часть сети, которая отвечает за классификацию. Для этого используются два полносвязных слоя. Первый слой включает 512 нейронов с функцией активации Relu. Затем идет слой Dropout, который используется для уменьшения эффекта переобучения сети. Выходной полносвязный слой включает четыре нейрона, что соответствует решаемой задаче распознавания четырех видов знаков дорожного движения. Оценка эффективности нейросетевой модели распознавания дорожных знаков методом трехблочной кроссалидации показала, что ее ошибка минимальна, следовательно, в большинстве случаев новые образы будут распознаваться корректно. Кроме того, у модели отсутствуют ошибки первого рода, а ошибка второго рода имеет низкое значение и лишь при сильно зашумленном изображении на входе.
Ключевые слова: сверточная нейронная сеть, анализ данных, распознавание дорожных знаков, интеллектуальные транспортные системы.
A neural network model for traffic signs recognition in intelligent transport systems
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 429-435This work analyzes the problem of traffic signs recognition in intelligent transport systems. The basic concepts of computer vision and image recognition tasks are considered. The most effective approach for solving the problem of analyzing and recognizing images now is the neural network method. Among all kinds of neural networks, the convolutional neural network has proven itself best. Activation functions such as Relu and SoftMax are used to solve the classification problem when recognizing traffic signs. This article proposes a technology for recognizing traffic signs. The choice of an approach for solving the problem based on a convolutional neural network due to the ability to effectively solve the problem of identifying essential features and classification. The initial data for the neural network model were prepared and a training sample was formed. The Google Colaboratory cloud service with the external libraries for deep learning TensorFlow and Keras was used as a platform for the intelligent system development. The convolutional part of the network is designed to highlight characteristic features in the image. The first layer includes 512 neurons with the Relu activation function. Then there is the Dropout layer, which is used to reduce the effect of overfitting the network. The output fully connected layer includes four neurons, which corresponds to the problem of recognizing four types of traffic signs. An intelligent traffic sign recognition system has been developed and tested. The used convolutional neural network included four stages of convolution and subsampling. Evaluation of the efficiency of the traffic sign recognition system using the three-block cross-validation method showed that the error of the neural network model is minimal, therefore, in most cases, new images will be recognized correctly. In addition, the model has no errors of the first kind, and the error of the second kind has a low value and only when the input image is very noisy.
-
Исследование моделей турбулентности для расчета сильно закрученного потока в резко расширяющемся канале
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 793-805В настоящей работе проводится сравнение принципиально различных моделей турбулентности для расчета сильно закрученного потока в резко расширяющейся трубе. Данная задача имеет большое значе- ние не только в практике, но и в теоретическом плане, потому что в таком течении возникает очень сложная анизотропная турбулентность с зонами рециркуляции и изучение протекающих процессов позволяет найти ответ на многие вопросы по турбулентности. Рассматриваемое течение хорошо изучено экспериментально. Поэтому она является очень сложной и интересной тестовой задачей для моделей турбулентности. В работе сравниваются численные результаты однопараметрической модели νt-92, метода рейнольдсовых напряжений SSG/LRR-RSM-w2012 и новой двухжидкостной модели. Эти модели очень сильно отличаются между собой, потому что в однопараметрической модели νt-92 используется гипотеза Буссинеска, в модели SSG/LRR-RSM-w2012 для каждого напряжения записывается свое уравнение, а для новой двухжидкостной модели основой является совершенно иной подход к турбулентности. Особенностью подхода к турбулентности для новой двухжидкостной модели заключается в том, что он позволяет получить замкнутую систему уравнений. Сравнение этих моделей проводится не только по соответствию их результатов экспериментальным данным, но и по вычислительным ресурсам, расходуе- мым на численные реализации этих моделей. Поэтому в работе для всех моделей использована одинаковая методика для численного расчета турбулентного закрученного потока при числе Рейнольдса $Re = 3 \cdot 10^4$ и параметре закрутки $S_w=0.6$. В работе показано, что новая двухжидкостная модель является эффективной для исследования турбулентных течений, так как имеет хорошую точность в описании сложных анизотропных турбулентных потоков и достаточно проста для численной реализации.
Ключевые слова: закрученные потоки, осредненные по Рейнольдсу уравнения Навье–Стокса, модель SSG/LRR-RSM-w2012, модель νt-92, новая двухжидкостная модель, прогонка, SIMPLE.
Study of turbulence models for calculating a strongly swirling flow in an abrupt expanding channel
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 793-805In this paper, compared fundamentally different turbulence models for calculating a strongly swirling flow in an abrupt expanding pipe. This task is not only of great importance in practice, but also in theoretical terms. Because in such a flow a very complex anisotropic turbulence with recirculation zones arises and the study of the ongoing processes allows us to find an answer to many questions about turbulence. The flow under consideration has been well studied experimentally. Therefore, it is a very complex and interesting test problem for turbulence models. In the paper compared the numerical results of the one-parameter vt-92 model, the SSG/LRR-RSMw2012 Reynolds stress method and the new two-fluid model. These models are very different from each other. Because the Boussinesq hypothesis is used in the one-parameter vt-92 model, in the SSG/LRR-RSM-w2012 model, its own equation is written for each stress, and for the new two-fluid model, the basis is a completely different approach to turbulence. A feature of the approach to turbulence for the new two-fluid model is that it allows one to obtain a closed system of equations. Comparison of these models is carried out not only by the correspondence of their results with experimental data, but also by the computational resources expended on the numerical implementation of these models. Therefore, in this work, for all models, the same technique was used to numerically calculate the turbulent swirling flow at the Reynolds number $Re=3\cdot 10^4$ and the swirl parameter $S_w=0.6$. In the paper showed that the new two-fluid model is effective for the study of turbulent flows, because has good accuracy in describing complex anisotropic turbulent flows and is simple enough for numerical implementation.
-
Модель для анализа неравенства доходов на основе конечной функциональной последовательности (проблемы адекватности и применения)
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 675-689Рассмотрены вопросы адекватности разработанной ранее автором модели для анализа неравенства доходов, основанной на эмпирически подтвержденной гипотезе о том, что относительные (по отношению к доходу наиболее богатой группы) величины дохода 20% групп населения в совокупном доходе могут быть приближенно представлены в виде конечной функциональной последовательности, каждый член которой зависит от одного параметра — специально определенного показателя неравенства. Показано, что в дополнение к существующим методам анализа неравенства с помощью этой модели можно определить зависимость доли дохода 20%, 10% и более мелких групп населения от уровня неравенства, выявить особенности их изменения при росте неравенства, рассчитать уровень неравенства при известных соотношениях между доходами различных групп населения и др.
В работе приводится более подробное подтверждение адекватности предложенной модели по сравнению с полученными ранее результатами статистического анализа эмпирических данных о распределении доходов между 20%- и 10%-ми группами населения. Оно основано на анализе определенных соотношений между величинами квинтилей и децилей согласно предлагаемой модели. Проверка этих соотношений проведена по совокупности данных для большого числа стран. Полученные оценки подтверждают достаточно высокую точность модели.
Приведены данные, которые подтверждают возможность применения модели для анализа зависимости распределения доходов по группам населения от уровня неравенства, а также для оценки показателя неравенства для вариантов соотношений доходов между различными группами, в том числе когда доход 20% наиболее богатых равен доходу 60% бедных, доходу 40% среднего класса или доходу 80% остального населения, а также когда доход 10% самых богатых равен доходу 40%, 50% или 60% бедных, доходу различных групп среднего класса и др., а также для случаев, когда распределение доходов подчиняется гармоническим пропорциям и когда квинтили и децили, соответствующие среднему классу, достигают максимума. Показано, что доли дохода наиболее богатых групп среднего класса относительно стабильны и имеют максимум при определенных уровнях неравенства.
Полученные с помощью модели результаты могут быть использованы для определения нормативов при разработке политики поэтапного повышении уровня прогрессивного налогообложения с целью перехода к уровню неравенства, характерному для стран с социально ориентированной экономикой.
Ключевые слова: неравенство, доход, модель, распределение, показатель неравенства, адекватность, последовательность.
A model for analyzing income inequality based on a finite functional sequence (adequacy and application problems)
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 675-689The paper considers the adequacy of the model developed earlier by the author for the analysis of income inequality and based on an empirically confirmed hypothesis that the relative (to the income of the richest group) income values of 20% population groups in total income can be represented as a finite functional sequence, each member of which depends on one parameter — a specially defined indicator of inequality. It is shown that in addition to the existing methods of inequality analysis, the model makes it possible to estimate with the help of analytical expressions the income shares of 20%, 10% and smaller groups of the population for different levels of inequality, as well as to identify how they change with the growth of inequality, to estimate the level of inequality for known ratios between the incomes of different groups of the population, etc.
The paper provides a more detailed confirmation of the proposed model adequacy in comparison with the previously obtained results of statistical analysis of empirical data on the distribution of income between the 20% and 10% population groups. It is based on the analysis of certain ratios between the values of quintiles and deciles according to the proposed model. The verification of these ratios was carried out using a set of data for a large number of countries and the estimates obtained confirm the sufficiently high accuracy of the model.
Data are presented that confirm the possibility of using the model to analyze the dependence of income distribution by population groups on the level of inequality, as well as to estimate the inequality indicator for income ratios between different groups, including variants when the income of the richest 20% is equal to the income of the poor 60 %, income of the middle class 40% or income of the rest 80% of the population, as well as when the income of the richest 10% is equal to the income of the poor 40 %, 50% or 60%, to the income of various middle class groups, etc., as well as for cases, when the distribution of income obeys harmonic proportions and when the quintiles and deciles corresponding to the middle class reach a maximum. It is shown that the income shares of the richest middle class groups are relatively stable and have a maximum at certain levels of inequality.
The results obtained with the help of the model can be used to determine the standards for developing a policy of gradually increasing the level of progressive taxation in order to move to the level of inequality typical of countries with social oriented economy.
-
Физический анализ и математическое моделирование параметров области взрыва, произведенного в разреженной ионосфере
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 817-833В работе выполнен физический и численный анализ динамики и излучения продуктов взрыва, образующихся при проведении российско-американского эксперимента в ионосфере с использованием взрывного генератора на основе гексогена и тротила. Основное внимание уделяется анализу взаимосвязи излучения возмущенной области с динамикой процессов взрывчатого вещества и плазменной струи на поздней стадии. Проанализирован подробный химический состав продуктов взрыва и определены начальные концентрации наиболее важных молекул, способных излучать в инфракрасном диапазоне спектра, и приведены их излучательные константы. Определены начальная температура продуктов взрыва и показатель адиабаты. Проанализирован характер взаимопроникновения атомов и молекул сильно разреженной ионосферы в сферически расширяющееся облако продуктов. Разработана приближенная математическая модель динамики продуктов взрыва в условиях подмешивания к ним разреженного воздуха ионосферы и рассчитаны основные термодинамические характеристики системы. Показано, что на время 0,3–3 с происходит существенное повышение температуры разлетающейся смеси в результате ее торможения. Для анализа и сравнения на основе лагранжевого подхода разработан численный алгоритм решения двухобластной газодинамической задачи, в которой продукты взрыва и фоновый газ разделены контактной границей. Требовалось выполнение специальных условий на контактной границе при ее движении в покоящемся газе. В данном случае существуют определенные трудности в описании параметров продуктов взрыва вблизи контактной границы, что связано с большим различием в размерах массовых ячеек продуктов взрыва и фона из-за перепада плотности на 13 порядков. Для сокращения времени расчета данной задачи в области продуктов взрыва применялась неравномерная расчетная сетка. Расчеты выполнялись с различными показателями адиабаты. Получены результаты, наиболее важным из которых является температура, хорошо согласуется с результатами, полученными по методике, приближенно учитывающей взаимопроникновение. Получено поведение во времени коэффициентов излучения ИК-активных молекул в широком диапазоне спектра. Данное поведение качественно согласуется с экспериментами по ИК-свечению разлетающихся продуктов взрыва.
Ключевые слова: ионосфера, численное моделирование, активный геофизический эксперимент, взрывной генератор, высокоскоростная плазменная струя, инфракрасное излучение, плазма, ионизация, околоземное пространство, кинетика.
Physical analysis and mathematical modeling of the parameters of explosion region produced in a rarefied ionosphere
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 817-833The paper presents a physical and numerical analysis of the dynamics and radiation of explosion products formed during the Russian-American experiment in the ionosphere using an explosive generator based on hexogen (RDX) and trinitrotoluene (TNT). The main attention is paid to the radiation of the perturbed region and the dynamics of the products of explosion (PE). The detailed chemical composition of the explosion products is analyzed and the initial concentrations of the most important molecules capable of emitting in the infrared range of the spectrum are determined, and their radiative constants are given. The initial temperature of the explosion products and the adiabatic exponent are determined. The nature of the interpenetration of atoms and molecules of a highly rarefied ionosphere into a spherically expanding cloud of products is analyzed. An approximate mathematical model of the dynamics of explosion products under conditions of mixing rarefied ionospheric air with them has been developed and the main thermodynamic characteristics of the system have been calculated. It is shown that for a time of 0,3–3 sec there is a significant increase in the temperature of the scattering mixture as a result of its deceleration. In the problem under consideration the explosion products and the background gas are separated by a contact boundary. To solve this two-region gas dynamic problem a numerical algorithm based on the Lagrangian approach was developed. It was necessary to fulfill special conditions at the contact boundary during its movement in a stationary gas. In this case there are certain difficulties in describing the parameters of the explosion products near the contact boundary which is associated with a large difference in the size of the mass cells of the explosion products and the background due to a density difference of 13 orders of magnitude. To reduce the calculation time of this problem an irregular calculation grid was used in the area of explosion products. Calculations were performed with different adiabatic exponents. The most important result is temperature. It is in good agreement with the results obtained by the method that approximately takes into account interpenetration. The time behavior of the IR emission coefficients of active molecules in a wide range of the spectrum is obtained. This behavior is qualitatively consistent with experiments for the IR glow of flying explosion products.
-
Мировая динамика как объект моделирования (к пятидесятилетию первого доклада Римскому клубу)
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1371-1394В последней четверти ХХ века характер глобального демографического и экономического развития стал быстро изменяться: непрерывно ускорявшийся рост основных характеристик, имевший место на протяжении предыдущих двухсот лет, сменился на резкое их торможение. В условиях этих изменений возрастает роль долгосрочного прогноза мировой динамики. При этом прогноз должен основываться не на инерционном проецировании прошлых тенденций в будущие периоды, а на математическом моделировании фундаментальных закономерностей исторического развития. В статье изложены предварительные результаты исследований по математическому моделированию и прогнозированию мировой демографо-экономической динамики, основанные на таком подходе. Предложены базовые динамические уравнения, отражающие эту динамику, обоснована модификация этих уравнений применительно к разным историческим эпохам. Для каждой исторической эпохи на основе анализа соответствующей ей системы уравнений определялся фазовый портрет и проводился анализ его особенностей. На основе этого анализа делались выводы о закономерностях мирового развития в рассматриваемый период.
Показано, что для моделирования исторической динамики важным является математическое описание развития технологий. Предложен способ описания технологической динамики, на основе которого предложены соответствующие математические уравнения.
Рассмотрены три стадии исторического развития: стадия аграрного общества (до начала XIX века), стадия индустриального общества (XIX–ХХ века) и современная эпоха. Предложенная математическая модель показывает, что для аграрного общества характерна циклическая демографо-экономическая динамика, в то время как для индустриального общества характерен рост демографических и экономических характеристик, близкий к гиперболическому.
Результаты математического моделирования показали, что человечество в настоящее время переходит на принципиально новую фазу исторического развития. Происходит торможение роста и переход человеческого общества в новое фазовое состояние, облик которого еще не определен. Рассмотрены различные варианты дальнейшего развития.
World dynamics as an object of modeling (for the fiftieth anniversary of the first report to the Club of Rome)
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1371-1394In the last quarter of the twentieth century, the nature of global demographic and economic development began to change rapidly: the continuously accelerating growth of the main characteristics that took place over the previous two hundred years was replaced by a sharp slowdown. In the context of these changes, the role of a long-term forecast of global dynamics is increasing. At the same time, the forecast should be based not on inertial projection of past trends into future periods, but on mathematical modeling of fundamental patterns of historical development. The article presents preliminary results of research on mathematical modeling and forecasting of global demographic and economic dynamics based on this approach. The basic dynamic equations reflecting this dynamics are proposed, the modification of these equations in relation to different historical epochs is justified. For each historical epoch, based on the analysis of the corresponding system of equations, a phase portrait was determined and its features were analyzed. Based on this analysis, conclusions were drawn about the patterns of world development in the period under review.
It is shown that mathematical description of technology development is important for modeling historical dynamics. A method for describing technological dynamics is proposed, on the basis of which the corresponding mathematical equations are proposed.
Three stages of historical development are considered: the stage of agrarian society (before the beginning of the XIX century), the stage of industrial society (XIX–XX centuries) and the modern era. The proposed mathematical model shows that an agrarian society is characterized by cyclical demographic and economic dynamics, while an industrial society is characterized by an increase in demographic and economic characteristics close to hyperbolic.
The results of mathematical modeling have shown that humanity is currently moving to a fundamentally new phase of historical development. There is a slowdown in growth and the transition of human society into a new phase state, the shape of which has not yet been determined. Various options for further development are considered.
-
Методика расчета обледенения воздушных судов в широком диапазоне климатических и скоростных параметров. Применение в рамках норм летной годности НЛГ-25
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 957-978Сертификация самолетов транспортной категории для эксплуатации в условияхо бледенения в России ранее проводилась в рамках требований приложения С к «Авиационным правилам» (АП-25). Во введенном в действие с 2023 года, взамен АП-25, документе «Нормы летной годности» (НЛГ-25) добавлено и приложение О. Отличительной особенностью приложения О является необходимость проведения расчетов в условиях большой водности и с крупными каплями воды (500 мкм и более). При таких параметрах дисперсного потока определяющими становятся такие физические процессы, как срыв и разбрызгивание пленки воды при попадании в нее крупных капель. Поток дисперсной среды в такиху словиях является существенно полидисперсным. В данной работе описываются модификации методики расчета обледенения самолетов IceVision, реализованной на базе программного комплекса FlowVision, необходимые для проведения расчетов обледенения самолетов в рамках приложения О.
Главное отличие методики IceVision от известных подходов заключается в использовании технологии Volume of fluid (VOF — объем жидкости в ячейке) для отслеживания изменения формы льда. Внешнее обтекание самолета рассчитывается одновременно с нарастанием льда и его прогревом. Лед присутствует в расчетной области явно, в нем решается уравнение теплопереноса. В отличие от лагранжевых подходов, в IceVision эйлерова расчетная сетка не перестраивается полностью. Изменение объема льда сопровождается только модификацией ячеек сетки, через которые проходит контактная поверхность.
В версии IceVision 2.0 реализован учет срыва водяной пленки, а также отскока и разбрызгивания падающих капель на поверхности самолета и льда. Диаметр вторичных капель рассчитывается с использованием известных эмпирических корреляций. Скорость течения пленки воды по поверхности определяется с учетом действия аэродинамических сил, силы тяжести, градиента гидростатического давления и силы поверхностного натяжения. Результатом учета поверхностного натяжения является эффект поперечного стягивания пленки, приводящий к образованию потоков воды в форме ручейков и ледяных отложений в виде гребнеобразных наростов. На поверхности льда выполняется балансовое соотношение, учитывающее энергию падающих капель, теплообмен между льдом и воздухом, теплоту кристаллизации, испарения, сублимации и конденсации. В работе приводятся результаты решения тестовых и модельных расчетных задач, демонстрирующие эффективность методики IceVision и достоверность полученных результатов.
Methodology of aircraft icing calculation in a wide range of climate and speed parameters. Applicability within the NLG-25 airworthiness standards
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 957-978Certifying a transport airplane for the flights under icing conditions in Russia was carried out within the framework of the requirements of Annex С to the AP-25 Aviation Rules. In force since 2023 to replace AP-25 the new Russian certification document “Airworthiness Standards” (NLG-25) proposes the introduction of Appendix O. A feature of Appendix O is the need to carry out calculations in conditions of high liquid water content and with large water drops (500 microns or more). With such parameters of the dispersed flow, such physical processes as the disruption and splashing of a water film when large drops enter it become decisive. The flow of a dispersed medium under such conditions is essentially polydisperse. This paper describes the modifications of the IceVision technique implemented on the basis of the FlowVision software package for the ice accretion calculations within the framework of Appendix O.
The main difference between the IceVision method and the known approaches is the use of the Volume of fluid (VOF) technology to the shape of ice changes tracking. The external flow around the aircraft is calculated simultaneously with the growth of ice and its heating. Ice is explicitly incorporated in the computational domain; the heat transfer equation is solved in it. Unlike the Lagrangian approaches, the Euler computational grid is not completely rebuilt in the IceVision technique: only the cells containing the contact surface are changed.
The IceVision 2.0 version accounts for stripping the film, as well as bouncing and splashing of falling drops at the surfaces of the aircraft and ice. The diameter of secondary droplets is calculated using known empirical correlations. The speed of the water film flow over the surface is determined taking into account the action of aerodynamic forces, gravity, hydrostatic pressure gradient and surface tension force. The result of taking into account surface tension is the effect of contraction of the film, which leads to the formation of water flows in the form of rivulets and ice deposits in the form of comb-like growths. An energy balance relation is fulfilled on the ice surface that takes into account the energy of falling drops, heat exchange between ice and air, the heat of crystallization, evaporation, sublimation and condensation. The paper presents the results of solving benchmark and model problems, demonstrating the effectiveness of the IceVision technique and the reliability of the obtained results.
-
Численно-аналитическое моделирование гравитационного линзирования электромагнитных волн в случайно-неоднородной космической плазме
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 433-443Для интерпретации данных измерений астрофизических прецизионных инструментов нового поколения разработан аппарат численно-аналитического моделирования характеристик распространения электромагнитных волн в хаотической космической плазме с учетом эффектов гравитации. Задача распространения волн в искривленном (римановом) пространстве решена в евклидовом пространстве путем введения эффективного показателя преломления вакуума, выраженного через потенциал тяготения. Задавая различные модели плотности распределения массы астрофизических объектов и решая уравнение Пуассона, можно рассчитать гравитационный потенциал и вычислить эффективный показатель преломления вакуума. В предположении аддитивности вкладов различных объектов в общее гравитационное поле предложена приближенная модель эффективного показателя преломления. Считая пространственные масштабы показателя преломления много больше длины волны, расчет характеристик электромагнитных волн в поле тяготения астрофизических объектов проводится в приближении геометрической оптики. В основу численно-аналитического аппарата моделирования траекторных характеристик волн положены лучевые дифференциальные уравнения в форме Эйлера. Хаотические неоднородности космической плазмы заданы моделью пространственной корреляционной функции показателя преломления. Расчеты рефракционного рассеяния волн выполнены в приближении метода возмущений. Получены интегральные выражения для статистических моментов боковых отклонений лучей в картинной плоскости наблюдателя. С помощью аналитических преобразований интегралы для моментов сведены к системе обыкновенных дифференциальных уравнений первого порядка для совместного численного расчета средних и среднеквадратичных отклонений лучей. Приведены результаты численно-аналитического моделирования траекторной картины распространения электромагнитных волн в межзвездной среде с учетом воздействий полей тяготения космических объектов и рефракционного рассеяния волн на неоднородностях показателя преломления окружающей плазмы. На основе результатов моделирования сделана количественная оценка условий стохастического замывания эффектов гравитационного линзирования электромагнитных волн в различных частотных диапазонах. Показано, что рабочие частоты метрового диапазона длин волн представляют собой условную низкочастотную границу для наблюдений эффекта гравитационного линзирования в стохастической космической плазме. Предложенный аппарат численно-аналитического моделирования можно использовать для анализа структуры электромагнитного излучения квазаров, прошедшего группу галактик.
Ключевые слова: математическое моделирование, асимптотические разложения, электромагнитные волны, гравитационное поле, космическая плазма, численные методы, стохастические процессы, лучевое приближение.
Numerical-analytical modeling of gravitational lensing of the electromagnetic waves in random-inhomogeneous space plasma
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 433-443Instrument of numerical-analytical modeling of characteristics of propagation of electromagnetic waves in chaotic space plasma with taking into account effects of gravitation is developed for interpretation of data of measurements of astrophysical precision instruments of new education. The task of propagation of waves in curved (Riemann’s) space is solved in Euclid’s space by introducing of the effective index of refraction of vacuum. The gravitational potential can be calculated for various model of distribution of mass of astrophysical objects and at solution of Poisson’s equation. As a result the effective index of refraction of vacuum can be evaluated. Approximate model of the effective index of refraction is suggested with condition that various objects additively contribute in total gravitational field. Calculation of the characteristics of electromagnetic waves in the gravitational field of astrophysical objects is performed by the approximation of geometrical optics with condition that spatial scales of index of refraction a lot more wavelength. Light differential equations in Euler’s form are formed the basis of numerical-analytical instrument of modeling of trajectory characteristic of waves. Chaotic inhomogeneities of space plasma are introduced by model of spatial correlation function of index of refraction. Calculations of refraction scattering of waves are performed by the approximation of geometrical optics. Integral equations for statistic moments of lateral deviations of beams in picture plane of observer are obtained. Integrals for moments are reduced to system of ordinary differential equations the firsts order with using analytical transformations for cooperative numerical calculation of arrange and meansquare deviations of light. Results of numerical-analytical modeling of trajectory picture of propagation of electromagnetic waves in interstellar space with taking into account impact of gravitational fields of space objects and refractive scattering of waves on inhomogeneities of index of refraction of surrounding plasma are shown. Based on the results of modeling quantitative estimation of conditions of stochastic blurring of the effect of gravitational lensing of electromagnetic waves at various frequency ranges is performed. It’s shown that operating frequencies of meter range of wavelengths represent conditional low-frequency limit for observational of the effect of gravitational lensing in stochastic space plasma. The offered instrument of numerical-analytical modeling can be used for analyze of structure of electromagnetic radiation of quasar propagating through group of galactic.
-
Распознавание эффектов и механизма действия препаратов на основе анализа внутричерепной ЭЭГ с помощью методов глубокого обучения
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 755-772Прогнозирование новых свойств лекарственных средств является основной задачей в рамках решения проблем полифармакологии, репозиционирования, а также изучения биологически активных веществ на доклиническом этапе. Идентификация фармакологических эффектов и взаимодействий «препарат – мишень» с использованием машинного обучения (включая методы глубокого обучения) набирает популярность в последние годы.
Цель работы состояла в разработке метода распознавания психотропных эффектов и механизма действия (взаимодействий препарата с мишенью) на основании анализа биоэлектрической активности мозга с применением технологий искусственного интеллекта.
Выполнялась регистрация электроэнцефалографических (ЭЭГ) сигналов крыс (4 канала, частота дискретизации — 500 Гц) после введения психотропных препаратов (габапентин, диазепам, карбамазепин, прегабалин, эсликарбазепин, феназепам, ареколин, коразол, пикротоксин, пилокарпин, хлоралгидрат). Сигналы (эпохи продолжительностью 2 с) преобразовывались в изображения $(2000 \times 4)$ и затем поступали на вход автоэнкодера. Выходные данные слоя «бутылочного горлышка» классифицировались и кластеризовались (с применением алгоритма t-SNE), а затем вычислялись расстояния между кластерами в пространстве параметров. В качестве альтернативны использовался подход, основанный на извлечении признаков с размерной редукцией при помощи метода главных компонент и классификацией методом опорных векторов с ядерной функцией (kSVM). Модели валидировались путем 5-кратной кроссвалидации.
Точность классификации для 11 препаратов, полученная в ходе кросс-валидации, достигала $0,580 \pm 0,021$, что значительно превышает точность случайного классификатора, которая составляла $0,091 \pm 0,045$ $(p < 0,0001)$, и точность kSVM, равную $0,441 \pm 0,035$ $(p < 0,05)$. Получены t-SNE-карты параметров «бутылочного горлышка» сигналов интракраниальной ЭЭГ. Определена относительная близость кластеров сигналов в параметрическом пространстве.
В настоящем исследовании представлен оригинальный метод биопотенциал-опосредованного прогнозирования эффектов и механизма действия (взаимодействия лекарственного средства с мишенью). Метод использует сверточные нейронные сети в сочетании с модифицированным алгоритмом избирательной редукции параметров. ЭЭГ-сигналы, зарегистрированные после введения препаратов, были представлены в едином пространстве параметров в сжатой форме. Полученные данные указывают на возможность распознавания паттернов нейронального отклика в ответ на введение различных психотропных препаратов с помощью предложенного нейросетевого классификатора и кластеризации.
Ключевые слова: глубокое обучение, машинное обучение, ЭЭГ, сверточная нейронная сеть, классификация, кластеризация, прогнозирование взаимодействия препарата с мишенью.
Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.
The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.
Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.
The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.
The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.
-
Моделирование реологических характеристик водных суспензий на основе наноразмерных частиц диоксида кремния
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1217-1252Реологическое поведение водных суспензий на основе наноразмерных частиц диоксида кремния сильно зависит от динамической вязкости, которая непосредственно влияет на применение наножидкостей. Целью данной работы являются разработка и валидация моделей для прогнозирования динамической вязкости от независимых входных параметров: концентрации диоксида кремния SiO2, кислотности рН, а также скорости сдвига $\gamma$. Проведен анализ влияния состава суспензии на ее динамическую вязкость. Выявлены статистически однородные по составу группы суспензий, в рамках которых возможна взаимозаменяемость составов. Показано, что при малых скоростях сдвига реологические свойства суспензий существенно отличаются от свойств, полученных на более высоких скоростях. Установлены значимые положительные корреляции динамической вязкости суспензии с концентрацией SiO2 и кислотностью рН, отрицательные — со скоростью сдвига $\gamma$. Построены регрессионные модели с регуляризацией зависимости динамической вязкости $\eta$ от концентраций SiO2, NaOH, H3PO4, ПАВ (поверхностно-активное вещество), ЭДА (этилендиамин), скорости сдвига $\gamma$. Для более точного прогнозирования динамической вязкости были обучены модели с применением алгоритмов нейросетевых технологий и машинного обучения (многослойного перцептрона MLP, сети радиальной базисной функции RBF, метода опорных векторов SVM, метода случайного леса RF). Эффективность построенных моделей оценивалась с использованием различных статистических метрик, включая среднюю абсолютную ошибку аппроксимации (MAE), среднюю квадратическую ошибку (MSE), коэффициент детерминации $R^2$, средний процент абсолютного относительного отклонения (AARD%). Модель RF показала себя как лучшая модель на обучающей и тестовой выборках. Определен вклад каждой компоненты в построенную модель, показано, что наибольшее влияние на динамическую вязкость оказывает концентрация SiO2, далее кислотность рН и скорость сдвига $\gamma$. Точность предлагаемых моделей сравнивается с точностью ранее опубликованных в литературе моделей. Результаты подтверждают, что разработанные модели можно рассматривать как практический инструмент для изучения поведения наножидкостей, в которых используются водные суспензии на основе наноразмерных частиц диоксида кремния.
Ключевые слова: наножидкость, концентрация SiO$_2$, кислотность рН, динамическая вязкость, регрессия, нейронные сети, машинное обучение.
Modeling of rheological characteristics of aqueous suspensions based on nanoscale silicon dioxide particles
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1217-1252The rheological behavior of aqueous suspensions based on nanoscale silicon dioxide particles strongly depends on the dynamic viscosity, which affects directly the use of nanofluids. The purpose of this work is to develop and validate models for predicting dynamic viscosity from independent input parameters: silicon dioxide concentration SiO2, pH acidity, and shear rate $\gamma$. The influence of the suspension composition on its dynamic viscosity is analyzed. Groups of suspensions with statistically homogeneous composition have been identified, within which the interchangeability of compositions is possible. It is shown that at low shear rates, the rheological properties of suspensions differ significantly from those obtained at higher speeds. Significant positive correlations of the dynamic viscosity of the suspension with SiO2 concentration and pH acidity were established, and negative correlations with the shear rate $\gamma$. Regression models with regularization of the dependence of the dynamic viscosity $\eta$ on the concentrations of SiO2, NaOH, H3PO4, surfactant (surfactant), EDA (ethylenediamine), shear rate γ were constructed. For more accurate prediction of dynamic viscosity, the models using algorithms of neural network technologies and machine learning (MLP multilayer perceptron, RBF radial basis function network, SVM support vector method, RF random forest method) were trained. The effectiveness of the constructed models was evaluated using various statistical metrics, including the average absolute approximation error (MAE), the average quadratic error (MSE), the coefficient of determination $R^2$, and the average percentage of absolute relative deviation (AARD%). The RF model proved to be the best model in the training and test samples. The contribution of each component to the constructed model is determined. It is shown that the concentration of SiO2 has the greatest influence on the dynamic viscosity, followed by pH acidity and shear rate γ. The accuracy of the proposed models is compared to the accuracy of models previously published. The results confirm that the developed models can be considered as a practical tool for studying the behavior of nanofluids, which use aqueous suspensions based on nanoscale particles of silicon dioxide.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





