Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
В настоящей статье изложен научный подход Дмитрия Сергеевича Чернавского к вопросам моделирования экономических процессов. Излагается история работы Дмитрия Сергеевича на экономическом направлении, представлены ее основные этапы и достижения. Одним из важнейших достижений в области экономического анализа стало предсказание группой ученых, возглавляемых Д. С. Чернавским, основных кризисов, произошедших в нашей стране за последние 20 лет, а именно дефолта 1998 года, кризиса промышленного производства второй половины 2000-х, кризиса 2008 года и последовавшей за ним рецессии. В качестве примера динамического анализа мировых макроэкономических процессов приведена модель функционирования доллара в качестве мировой валюты. На данном конкретном примере показана возможность сеньёража за счет эмиссии доллара и рассчитано «окно возможностей», которое позволяет эмитировать доллары в качестве мировой валюты без ущерба для собственной экономики.
Как пример динамического анализа экономики отдельного государства рассматривается модель развития закрытого общества (без внешних экономических связей) в однопродуктовом приближении. Модель основана на принципах рыночной экономики, то есть динамика цены определяется балансом спроса и предложения. Показано, что в общем случае состояние рыночного равновесия не единственно. Возможно несколько стационарных состояний, отличающихся уровнем производства и потребления. Рассмотрен эффект адресной денежной эмиссии в низкопродуктивном состоянии. Показано, что в зависимости от ее размера и адреса она может привести к переходу в высокопродуктивное состояние и просто вызвать инфляцию без перехода. Обсуждается связь этих результатов с кейнсианским и монетаристским подходами.
Ключевые слова: экономика, кризисы, динамический анализ, доллар, сеньёраж, математическая модель, эмиссия, инфляция, цифровая экономика.The present article sets out the scientific approach of Dmitry Sergeevich Chernavskii to the modelling of economic processes. It recounts the history of works of Dmitry Sergeyevich on the economic front, its milestones and achievements. One of the most important advances in the economic analysis was the prediction by a team of scientists headed by D. S. Chernavskii, the major crises that have occurred in our country over the last 20 years, namely, the default of 1998, the crisis of industrial production in the second half of the 2000s, the 2008 crisis and the ensuing recession. As an example, the dynamic analysis of the global macroeconomic processes shows the model of functioning of the dollar as the world currency. On this particular example shows the possibility of seigniorage due to the issue of the dollar and the calculated “window of opportunity” that allows you to issue dollars as the global currency, without prejudice to its own economy.
A model for the development of a closed society (without external economic relations) in the one-product approach is considered as an example of dynamic analysis of the economy of a separate state. The model is based on the principles of market economy, i.e. the dynamics of prices is determined by the balance of supply and demand. It is shown that in the general case, the state of market equilibrium is not unique. Several steady states with different levels of production and consumption are possible. Effect of addressed emission of money in underproductive state is considered. It is shown that, depending on its size it can lead to the transition to a highly productive condition, and just cause inflation without transition. The relationship of these results with the “Keynesian” and “monetarist” approaches is discussed.
Keywords: the economy, crises, dynamic analysis, dollar, seigniorage, mathematical model, emission, inflation, the digital economy.Просмотров за год: 5. Цитирований: 2 (РИНЦ). -
Синхронные компоненты финансовых временных рядов
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 639-655В статье предлагается метод совместного анализа многомерных финансовых временных рядов, основанный на оценке набора свойств котировок акций в скользящем временном окне и последующем усреднении значений свойств по всем анализируемым компаниям. Основной целью анализа является построение мер совместного поведения временных рядов, реагирующих на возникновение синхронной или когерентной составляющей. Когерентность поведения характеристик сложной системы является важным признаком, позволяющим оценить приближение системы к резким изменениям своего состояния. Фундаментом для поиска предвестников резких изменений является общая идея увеличения корреляции случайных флуктуаций параметров системы по мере ее приближения к критическому состоянию. Приращения временных рядов стоимостей акций имеют выраженный хаотический характер и обладают большой амплитудой индивидуальных помех, на фоне которых слабый общий сигнал может быть выделен лишь на основе его коррелированности в разных скалярных компонентах многомерного временного ряда. Известно, что классические методы анализа, основанные на использовании корреляций между соседними отсчетами, являются малоэффективными при обработке финансовых временных рядов, поскольку с точки зрения корреляционной теории случайных процессов приращения стоимости акций формально имеют все признаки белого шума (в частности, «плоский спектр» и «дельта-образную» автокорреляционную функцию). В связи с этим предлагается перейти от анализа исходных сигналов к рассмотрению последовательностей их нелинейных свойств, вычисленных во временных фрагментах малой длины. В качестве таких свойств используются энтропия вейвлет-коэффициентов при разложении в базис Добеши, показатели мультифрактальности и авторегрессионная мера нестационарности сигнала. Построены меры син- хронного поведения свойств временных рядов в скользящем временном окне с использованием метода главных компонент, значений модулей всех попарных коэффициентов корреляции и множественной спектральной меры когерентности, являющейся обобщением квадратичного спектра когерентности между двумя сигналами. Исследованы акции 16 крупных российских компаний с начала 2010 по конец 2016 годов. С помощью предложенного метода идентифицированы два интервала времени синхронизации российского фондового рынка: с середины декабря 2013 г. по середину марта 2014 г. и с середины октября 2014 г. по середину января 2016 г.
Ключевые слова: финансовые временные ряды, вейвлеты, энтропия, мульти-фракталы, предсказуемость, синхронизация.
Synchronous components of financial time series
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 639-655The article proposes a method of joint analysis of multidimensional financial time series based on the evaluation of the set of properties of stock quotes in a sliding time window and the subsequent averaging of property values for all analyzed companies. The main purpose of the analysis is to construct measures of joint behavior of time series reacting to the occurrence of a synchronous or coherent component. The coherence of the behavior of the characteristics of a complex system is an important feature that makes it possible to evaluate the approach of the system to sharp changes in its state. The basis for the search for precursors of sharp changes is the general idea of increasing the correlation of random fluctuations of the system parameters as it approaches the critical state. The increments in time series of stock values have a pronounced chaotic character and have a large amplitude of individual noises, against which a weak common signal can be detected only on the basis of its correlation in different scalar components of a multidimensional time series. It is known that classical methods of analysis based on the use of correlations between neighboring samples are ineffective in the processing of financial time series, since from the point of view of the correlation theory of random processes, increments in the value of shares formally have all the attributes of white noise (in particular, the “flat spectrum” and “delta-shaped” autocorrelation function). In connection with this, it is proposed to go from analyzing the initial signals to examining the sequences of their nonlinear properties calculated in time fragments of small length. As such properties, the entropy of the wavelet coefficients is used in the decomposition into the Daubechies basis, the multifractal parameters and the autoregressive measure of signal nonstationarity. Measures of synchronous behavior of time series properties in a sliding time window are constructed using the principal component method, moduli values of all pairwise correlation coefficients, and a multiple spectral coherence measure that is a generalization of the quadratic coherence spectrum between two signals. The shares of 16 large Russian companies from the beginning of 2010 to the end of 2016 were studied. Using the proposed method, two synchronization time intervals of the Russian stock market were identified: from mid-December 2013 to mid- March 2014 and from mid-October 2014 to mid-January 2016.
Keywords: financial time series, wavelets, entropy, multi-fractals, predictability, synchronization.Просмотров за год: 12. Цитирований: 2 (РИНЦ). -
Моделирование предкрахового поведения цен на иерархически организованном финансовом рынке
Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 215-222Рассматривается иерархическая модель, предложенная Джохансеном и Сорнеттом, описывающая механизм возникновения логопериодических колебаний, предшествующих финансовым крахам, и проводится ее численный анализ. Предлагаются обобщения данной модели на основе введения зависимость степени влияния агентов друг на друга от ультраметрического расстояния между ними. Наибольшее внимание уделяется вопросу об универсальности критической точки, который исследуется с помощью построения распределений точек краха при различном числе агентов.
Ключевые слова: математическое моделирование, логопериодические колебания и степенной рост, ультраметрическое расстояние, иерархические структуры, финансовые крахи.
Modeling the behavior proceeding market crash in a hierarchically organized financial market
Computer Research and Modeling, 2011, v. 3, no. 2, pp. 215-222Просмотров за год: 1.We consider the hierarchical model of financial crashes introduced by A. Johansen and D. Sornette which reproduces the log-periodic power law behavior of the price before the critical point. In order to build the generalization of this model we introduce the dependence of an influence exponent on an ultrametric distance between agents. Much attention is being paid to a problem of critical point universality which is investigated by comparison of probability density functions of the crash times corresponding to systems with various total numbers of agents.
-
О некоторых свойствах коротковолновой статистики временных рядов FOREX
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 657-669Финансовая математика является одним из наиболее естественных приложений для статистического анализа временных рядов. Действительно, финансовые временные ряды являются порождением одновременной деятельности большого числа различных экономических агентов, что дает основания ожидать, что к ним могут быть применимы методы статистической физики и теории случайных процессов.
В настоящей работе проведен статистический анализ временных рядов для пар валют на рынке FOREX. Особый интерес представляет сравнение поведения временного ряда как функции, с одной стороны, физического времени и, с другой стороны, условного торгового времени, измеряемого в числе элементарных актов изменения цены (тиков). Экспериментально наблюдаемая статистика рассмотренных временных рядов (пар валют «евро–доллар» для первых половин 2007 и 2009 годов и «британский фунт–доллар» для 2007 года) радикально отличается в зависимости от выбора способа измерения времени. Так, при измерении времени в единицах тиков распределение приращений цены может быть хорошо описано нормальным распределением уже на масштабе порядка десяти тиков. При этом при измерении приращений цены как функции реального физического времени распределение приращений продолжает радикально отличаться от нормального, вплоть до масштабов порядка минут и даже часов.
Для объяснения этого явления нами исследованы статистические свойства элементарных приращений по цене и по времени. В частности, показано, что распределение времени между тиками для всех трех рассмотренных временных рядов имеет длинные (1-2 порядка по времени) степенные хвосты с экспоненциальным обрезанием на больших временах. Получены приближенные выражения для распределений времен ожидания для всех трех рассмотренных случаев. Другие статистические характеристики временного ряда (распределение элементарных изменений цены, парные корреляционные функции для приращений цены и для времен ожидания) демонстрируют достаточно простое поведение. Таким образом, именно аномально широкое распределение времен ожидания играет наиболее важную роль в наблюдаемом отклонении распределения приращений от нормального. В связи с этим результатом мы обсуждаем возможность применения модели случайного процесса с непрерывным временем (continuous time random walk, CTRW) для описания временных рядов FOREX.
Ключевые слова: временной ряд FOREX, распределение времен ожидания, распределение вероятностей с тяжелыми хвостами, корреляционный анализ временных рядов, случайное блуждание в непрерывном времени.
On some properties of short-wave statistics of FOREX time series
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 657-669Просмотров за год: 10.Financial mathematics is one of the most natural applications for the statistical analysis of time series. Financial time series reflect simultaneous activity of a large number of different economic agents. Consequently, one expects that methods of statistical physics and the theory of random processes can be applied to them.
In this paper, we provide a statistical analysis of time series of the FOREX currency market. Of particular interest is the comparison of the time series behavior depending on the way time is measured: physical time versus trading time measured in the number of elementary price changes (ticks). The experimentally observed statistics of the time series under consideration (euro–dollar for the first half of 2007 and for 2009 and British pound – dollar for 2007) radically differs depending on the choice of the method of time measurement. When measuring time in ticks, the distribution of price increments can be well described by the normal distribution already on a scale of the order of ten ticks. At the same time, when price increments are measured in real physical time, the distribution of increments continues to differ radically from the normal up to scales of the order of minutes and even hours.
To explain this phenomenon, we investigate the statistical properties of elementary increments in price and time. In particular, we show that the distribution of time between ticks for all three time series has a long (1-2 orders of magnitude) power-law tails with exponential cutoff at large times. We obtained approximate expressions for the distributions of waiting times for all three cases. Other statistical characteristics of the time series (the distribution of elementary price changes, pair correlation functions for price increments and for waiting times) demonstrate fairly simple behavior. Thus, it is the anomalously wide distribution of the waiting times that plays the most important role in the deviation of the distribution of increments from the normal. As a result, we discuss the possibility of applying a continuous time random walk (CTRW) model to describe the FOREX time series.
-
Моделирование динамики экономических систем с неопределенными параметрами
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 261-276В статье проводится краткий анализ разработанных робастных методов управления, а также исследование практических аспектов их использования для управления экономическими системами с неопределенными параметрами. Рассматриваются особенности использования разработанных методов управления системами при наличии структурированной неопределенности применительно к задачам стабилизации цены на мировом рынке нефти, а также инфляции в макроэкономических системах. В первом случае с использованием специально разработанной модели ставится задача определения такого управления, которое обеспечивает минимальное отклонение цены нефти от желаемого уровня. Во втором случае решается задача формирования стабилизирующего управления, обеспечивающего в среднесрочной перспективе минимальное отклонение инфляции от желаемого уровня (на основе агрегированной макроэкономической модели среднесрочного развития США).
В результате вычислительных экспериментов найдены предельные уровни неопределенности параметров и законы обратной связи, при которых используемый в работе подход обеспечивает стабилизируемость реальных экономических систем. Проведенные расчеты показывают, что полученные оценки предельных уровней неопределенности параметров являются достаточно консервативными. С помощью метода статистических испытаний исследуется динамика цены на нефть, а также показателя инфляции в условиях найденных предельных уровней неопределенности параметров при использовании рассчитанных робастных законов управления, в случае наихудшего и наилучшего сценариев. Полученные результаты показывают, что рассчитанные робастные законы управления могут быть успешно применены и при большей степени неопределенности параметров исследуемых моделей, чем гарантируется при найденных предельных уровнях неопределенности.
Ключевые слова: экономические системы, стабилизация, робастные методы, неопределенные параметры, структурированная неопределенность.
Uncertainty factor in modeling dynamics of economic systems
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 261-276Просмотров за год: 39.Analysis and practical aspects of implementing developed in the control theory robust control methods in studying economic systems is carried out. The main emphasis is placed on studying results obtained for dynamical systems with structured uncertainty. Practical aspects of implementing such results in control of economic systems on the basis of dynamical models with uncertain parameters and perturbations (stabilization of price on the oil market and inflation in macroeconomic systems) are discussed. With the help of specially constructed aggregate model of oil price dynamics studied the problem of finding control which provides minimal deviation of price from desired levels over middle range period. The second real problem considered in the article consists in determination of stabilizing control providing minimal deviation of inflation from desired levels (on the basis of constructed aggregate macroeconomic model of the USA over middle range period).
Upper levels of parameters uncertainty and control laws guaranteeing stabilizability of the real considered economic systems have been found using the robust method of control with structured uncertainty. At the same time we have come to the conclusion that received estimates of parameters uncertainty upper levels are conservative. Monte-Carlo experiments carried out for the article made it possible to analyze dynamics of oil price and inflation under received limit levels of models parameters uncertainty and under implementing found robust control laws for the worst and the best scenarios. Results of these experiments show that received robust control laws may be successfully used under less stringent uncertainty constraints than it is guaranteed by sufficient conditions of stabilization.
-
Моделирование процессов миграции населения: методы и инструменты (обзор)
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1205-1232Миграция оказывает существенное влияние на формирование демографической структуры населения территорий, состояние региональных и локальных рынков труда. Быстрое изменение численности трудоспособного населения той или иной территории из-за миграционных процессов приводит к дисбалансу спроса и предложения на рынках труда, изменению демографической структуры населения. Миграция во многом является отражением социально-экономических процессов, происходящих в обществе. Поэтому становятся актуальными вопросы, связанные с изучением факторов миграции, направления, интенсивности и структуры миграционных потоков, прогнозированием их величины.
Для анализа, прогнозирования миграционных процессов и оценки их последствий часто используется математический инструментарий, позволяющий с нужной точностью моделировать миграционные процессы для различных территорий на основе имеющихся статистических данных. В последние годы как в России, так и в зарубежных странах появилось много научных работ, посвященных моделированию внутренних и внешних миграционных потоков с использованием математических методов. Следовательно, для формирования целостной картины основных тенденций и направлений исследований в этой области возникла необходимость в систематизации наиболее часто используемых методов и инструментов моделирования.
В представленном обзоре на основе анализа современных отечественных и зарубежных публикаций представлены основные подходы к моделированию миграции, основные составляющие методологии моделирования миграционных процессов — этапы, методы, модели и классификация моделей. Обзор содержит два раздела: методы моделирования миграционных процессов и модели миграции. В первом разделе приведено описание основных методов, используемых в процессе разработки моделей — эконометрических, клеточных автоматов, системно-динамических, вероятностных, балансовых, оптимизации и кластерного анализа. Во втором — выделены и описаны наиболее часто встречающиеся классы моделей — регрессионные, агент-ориентированные, имитационные, оптимизационные, веро- ятностные, балансовые, динамические и комбинированные. Рассмотрены особенности, преимущества и недостатки различных типов моделей миграционных процессов, проведен их сравнительный анализ и разработаны общие рекомендации по выбору математического инструментария для моделирования.
Ключевые слова: миграция, миграционные процессы, модели миграции, методы, регрессионные модели, клеточные автоматы, агент-ориентированные модели, балансовые модели, динамические модели.
Migration processes modelling: methods and tools (overview)
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1205-1232Migration has a significant impact on the shaping of the demographic structure of the territories population, the state of regional and local labour markets. As a rule, rapid change in the working-age population of any territory due to migration processes results in an imbalance in supply and demand on labour markets and a change in the demographic structure of the population. Migration is also to a large extent a reflection of socio-economic processes taking place in the society. Hence, the issues related to the study of migration factors, the direction, intensity and structure of migration flows, and the prediction of their magnitude are becoming topical issues these days.
Mathematical tools are often used to analyze, predict migration processes and assess their consequences, allowing for essentially accurate modelling of migration processes for different territories on the basis of the available statistical data. In recent years, quite a number of scientific papers on modelling internal and external migration flows using mathematical methods have appeared both in Russia and in foreign countries in recent years. Consequently, there has been a need to systematize the currently most commonly used methods and tools applied in migration modelling to form a coherent picture of the main trends and research directions in this field.
The presented review considers the main approaches to migration modelling and the main components of migration modelling methodology, i. e. stages, methods, models and model classification. Their comparative analysis was also conducted and general recommendations on the choice of mathematical tools for modelling were developed. The review contains two sections: migration modelling methods and migration models. The first section describes the main methods used in the model development process — econometric, cellular automata, system-dynamic, probabilistic, balance, optimization and cluster analysis. Based on the analysis of modern domestic and foreign publications on migration, the most common classes of models — regression, agent-based, simulation, optimization, probabilistic, balance, dynamic and combined — were identified and described. The features, advantages and disadvantages of different types of migration process models were considered.
-
Модель двухуровневой межгрупповой конкуренции
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 355-368Еще в середине позапрошлого десятилетия ученые, изучавшие функционирование сообществ насекомых, выделили 4 основных паттерна организационной структуры таких сообществ. (i) Сотрудничество более развито в группах с сильным родством. (ii) Кооперация у видов с большими размерами колоний зачастую развита больше, чем у видов с малыми размерами колоний. Причем в колониях малого размера зачастую наблюдаются больший внутренний репродуктивный конфликт и меньшая морфологическая и поведенческая специализация. (iii) В пределах одного вида численность выводка (т. е. в некотором смысле эффективность) на душу населения обычно снижается по мере увеличения размера колонии. (iv) Развитая кооперация, склонная проявляться при ограниченности ресурсов и жесткой межгрупповой конкуренции. Думая о функционировании группы организмов как о двухуровневом рынке конкуренции, в котором в процессе индивидуального отбора особи сталкиваются с проблемой распределения своей энергии между инвестициями в межгрупповую конкуренцию и инвестициями во внутригрупповую конкуренцию, т. е. внутреннюю борьбу за долю ресурсов, полученных в результате межгрупповой конкуренции, можно сопоставить подобной биологической ситуации экономический феномен coopetition — кооперацию конкурирующих агентов с целью в дальнейшем конкурентно поделить выигранный вследствие кооперации ресурс. В рамках экономических исследований были показаны эффекты, аналогичные (ii): в рамках соревнования большой и маленькой групп оптимальной стратегией большой будет полное выдавливание второй группы и монополизация рынка (т. е. большие группы склонны действовать кооперативно); (iii) существуют условия, при которых размер группы оказывает негативное влияние на продуктивность каждого ее индивида (такой эффект называется парадоксом размера группы, или эффект Рингельмана). Общей идеей моделирования подобных эффектов является идея пропорциональности: каждый индивид (особь / рациональный агент) решает, какую долю своих сил инвестировать в межгрупповую конкуренцию, а какую — во внутригрупповую. При этом выигрыш группы должен быть пропорционален ее суммарным инвестициям в конкуренцию, тогда как выигрыш индивида пропорционален его вкладу во внутривидовую борьбу. Несмотря на распространенность эмпирических наблюдений, до сих пор не была введена теоретико-игровая модель, в которой можно было бы подтвердить наблюдаемые эмпирически эффекты. В рамках данной работы предлагается модель, которая устраняет проблемы ранее существующих, а моделирование равновесных по Нэшу состояний в рамках предложенной модели позволяет пронаблюдать перечисленные выше эффекты в ходе численных экспериментов.
Ключевые слова: теоретико-игровые модели, равновесие по Нэшу, эволюционное моделирование, конкуперация.
The model of two-level intergroup competition
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 355-368At the middle of the 2000-th, scientists studying the functioning of insect communities identified four basic patterns of the organizational structure of such communities. (i) Cooperation is more developed in groups with strong kinship. (ii) Cooperation in species with large colony sizes is often more developed than in species with small colony sizes. And small-sized colonies often exhibit greater internal reproductive conflict and less morphological and behavioral specialization. (iii) Within a single species, brood size (i. e., in a sense, efficiency) per capita usually decreases as colony size increases. (iv) Advanced cooperation tends to occur when resources are limited and intergroup competition is fierce. Thinking of the functioning of a group of organisms as a two-level competitive market in which individuals face the problem of allocating their energy between investment in intergroup competition and investment in intragroup competition, i. e., an internal struggle for the share of resources obtained through intergroup competition, we can compare such a biological situation with the economic phenomenon of “coopetition” — the cooperation of competing agents with the goal of later competitively dividing the resources won in consequence In the framework of economic researches the effects similar to (ii) — in the framework of large and small group competition the optimal strategy of large group would be complete squeezing out of the second group and monopolization of the market (i. e. large groups tend to act cooperatively) and (iii) — there are conditions, in which the size of the group has a negative impact on productivity of each of its individuals (this effect is called the paradox of group size or Ringelman effect). The general idea of modeling such effects is the idea of proportionality — each individual (an individual/rational agent) decides what share of his forces to invest in intergroup competition and what share to invest in intragroup competition. The group’s gain must be proportional to its total investment in competition, while the individual’s gain is proportional to its contribution to intra-group competition. Despite the prevalence of empirical observations, no gametheoretic model has yet been introduced in which the empirically observed effects can be confirmed. This paper proposes a model that eliminates the problems of previously existing ones and the simulation of Nash equilibrium states within the proposed model allows the above effects to be observed in numerical experiments.
-
Подход к оценке динамики уровня консолидированности отраcли
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 129-140В данной статье нами предложен новый подход к анализу эконометрических параметров отрасли для уровня консолидированности отрасли. Исследование базируется на простой модели управления отраслью в соответствии с моделью из теории автоматического управления. Состояние отрасли оценивается на основе ежеквартальных эконометрических параметров получаемых в обезличенном виде от каждой компании отрасли через налогового регулятора.
Предложен подход к анализу отрасли, который не предусматривает отслеживания эконометрических показателей каждой компании, но рассматривает параметры всех компаний отрасли, как единого объекта.
Ежеквартальными эконометрическими параметрами для каждой компании отрасли являются доход, количество работников, налоги и сборы, уплачиваемые в бюджет, доход от продажи лицензионных прав на программное обеспечение.
Был использован ABC-метод анализа модифицированный до ABCD-метода (D — компании с нулевым вкладом в соответствующую отраслевую метрику) для различных отраслевых метрик. Были построены Парето-кривые для множества эконометрических параметров отрасли.
Для оценки степени монополизированности отрасли был рассчитан индекс Херфиндаля – Хиршмана (ИХХ) для наиболее чувствительных метрик отрасли. С использованием ИХХ было показано что пандемия COVID-19 не привела к существенным изменениям уровня монополизированности российской ИТ-отрасли.
В качестве наиболее наглядного подхода к отображению отрасли было предложено использовать диаграмму рассеяния в сочетании с присвоением компаниям отрасли цвета в соответствии с их позицией на Парето-кривой. Также продемонстрирован эффект влияния процедуры аккредитации путем отображения отрасли в формате диаграммы рассеяния c красно-черным отображением аккредитованных и неаккредитованных компаний, соответственно.
И заключительным результатом, отраженным в статье является предложение использования процедуры сквозной идентификации при организации цепочек поставок программного обеспечения с целью контроля структуры рынка программного обеспечения. Этот подход позволяет избежать множественного учета при продаже лицензий на программное обеспечение в рамках цепочек поставок.
Результаты работы могут быть положены в основу дальнейшего анализа ИТ-отрасли и перехода к агентному моделированию отрасли.
Approach to Estimating the Dynamics of the Industry Consolidation Level
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 129-140In this article we propose a new approach to the analysis of econometric industry parameters for the industry consolidation level. The research is based on the simple industry automatic control model. The state of the industry is measured by quarterly obtained econometric parameters from each industry’s company provided by the tax control regulator. An approach to analysis of the industry, which does not provide for tracking the economy of each company, but explores the parameters of the set of all companies as a whole, is proposed. Quarterly obtained econometric parameters from each industry’s company are Income, Quantity of employers, Taxes, and Income from Software Licenses. The ABC analysis method was modified by ABCD analysis (D — companies with zero-level impact to industry metrics) and used to make the results obtained for different indicators comparable. Pareto charts were formed for the set of econometric indicators.
To estimate the industry monopolization, the Herfindahl – Hirschman index was calculated for the most sensitive companies metrics. Using the HHI approach, it was proved that COVID-19 does not lead to changes in the monopolization of the Russian IT industry.
As the most visually obvious approach to the industry visualization, scattering diagrams in combination with the Pareto graph colors were proposed. The affect of the accreditation procedure is clearly observed by scattering diagram in combination with red/black dots for accredited and nonaccredited companies respectively.
The last reported result is the proposal to use the Licenses End-to-End Product Identification as the market structure control instrument. It is the basis to avoid the multiple accounting of the licenses reselling within the chain of software distribution.
The results of research could be the basis for future IT industry analysis and simulation on the agent based approach.
-
Является ли тик элементарным прыжком в схеме случайных блужданий на фондовом рынке?
Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 219-223В работе экспериментально исследовалось среднее время между элементарными прыжками доходности различных акций на российском фондовом рынке. Исходя из скейлинга плотности распределения доходностей на разных временных масштабах, удалось показать, что элементарным прыжком в модели случайных блужданий для доходностей финансовых инструментов является единичное изменение цены (тик), соответствующее совершению одной сделки с инструментом на фондовой бирже.
Is a tick an elementary jump in a random walks scheme on the stock market?
Computer Research and Modeling, 2010, v. 2, no. 2, pp. 219-223Просмотров за год: 3. Цитирований: 1 (РИНЦ).In this paper average times between elementary jumps of stock returns on the Russian market were experimentally studied. Considering the scaling of the probability density function of stock returns on different time intervals it is shown that an elementary jump in the random walks scheme for financial instrument returns is a unit price change (tick) that corresponds to a single deal on the stock market.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"