Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'initial problem':
Найдено статей: 106
  1. Попов В.С., Попова А.А.
    Моделирование гидроупругих колебаний стенки канала, имеющей нелинейно-упругую опору
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 79-92

    В работе сформулирована математическая модель для исследования нелинейного гидроупругого отклика стенки узкого канала, заполненного пульсирующей вязкой жидкостью, опирающейся на пружину c нелинейной жесткостью. В отличие от известных подходов в рамках предложенной модели осуществлен одновременный учет инерционных и диссипативных свойств вязкой несжимаемой жидкости и нелинейности восстанавливающей силы поддерживающей пружины. Математическая модель представляет собой систему уравнений плоской задачи гидроупругости, включающей уравнения движения вязкой несжимаемой жидкости, с соответствующими краевыми условиями, и уравнение движения стенки канала как одномассовой модели с восстанавливающей силой, имеющей кубическую нелинейность. Динамика вязкой жидкости первоначально исследована в рамках гидродинамической теории смазки, т.е. без учета инерции ее движения. На следующем этапе для учета инерции движения вязкой жидкости использован метод итерации. Найдены законы распределения гидродинамических параметров вязкой жидкости в канале, что позволило определить ее реакцию, действующую на стенку канала. В результате показано, что исходная задача гидроупругости сводится к одному нелинейному уравнению, совпадающему с уравнением Дуффинга. В данном уравнении коэффициент демпфирования определяется физическими свойствами жидкости и геометрическими размерами канала, а учет инерции движения жидкости приводит к появлению дополнительной присоединенной массы, зависящей от тех же параметров. Исследование нелинейного уравнения гидроупругих колебаний проведено методом гармонического баланса для основной частоты пульсаций вязкой жидкости. В результате найден основной гидроупругий отклик стенки канала, опирающейся на пружину с мягкой или жесткой кубической нелинейностью. Численное моделирование гидроупругого отклика стенки канала показало возможность скачкообразного изменения амплитуд ее колебаний, а также дало возможность оценить влияние инерции движения жидкости на частотный диапазон, в котором наблюдаются данные изменения.

    Popov V.S., Popova A.A.
    Modeling of hydroelastic oscillations for a channel wall possessing a nonlinear elastic support
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 79-92

    The paper deals with the mathematical model formulation for studying the nonlinear hydro-elastic response of the narrow channel wall supported by a spring with cubic nonlinearity and interacting with a pulsating viscous liquid filling the channel. In contrast to the known approaches, within the framework of the proposed mathematical model, the inertial and dissipative properties of the viscous incompressible liquid and the restoring force nonlinearity of the supporting spring were simultaneously taken into account. The mathematical model was an equations system for the coupled plane hydroelasticity problem, including the motion equations of a viscous incompressible liquid, with the corresponding boundary conditions, and the channel wall motion equation as a single-degree-of-freedom model with a cubic nonlinear restoring force. Initially, the viscous liquid dynamics was investigated within the framework of the hydrodynamic lubrication theory, i. e. without taking into account the liquid motion inertia. At the next stage, the iteration method was used to take into account the motion inertia of the viscous liquid. The distribution laws of the hydrodynamic parameters for the viscous liquid in the channel were found which made it possible to determine its reaction acting on the channel wall. As a result, it was shown that the original hydroelasticity problem is reduced to a single nonlinear equation that coincides with the Duffing equation. In this equation, the damping coefficient is determined by the liquid physical properties and the channel geometric dimensions, and taking into account the liquid motion inertia lead to the appearance of an added mass. The nonlinear equation study for hydroelastic oscillations was carried out by the harmonic balance method for the main frequency of viscous liquid pulsations. As a result, the primary steady-state hydroelastic response for the channel wall supported by a spring with softening or hardening cubic nonlinearity was found. Numerical modeling of the channel wall hydroelastic response showed the possibility of a jumping change in the amplitudes of channel wall oscillations, and also made it possible to assess the effect of the liquid motion inertia on the frequency range in which these amplitude jumps are observed.

  2. Сидоренко Д.А., Уткин П.С.
    Численное исследование динамики движения тела квадратной формы в сверхзвуковом потоке за ударной волной
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 755-766

    В ряде фундаментальных и прикладных задач возникает необходимость описания динамики движения частиц сложной формы в высокоскоростном потоке газа. В качестве примера можно привести движение угольных частиц за фронтом сильной ударной волныв о время взрыва в угольной шахте. Статья посвящена численному моделированию динамики поступательного и вращательного движения тела квадратной формык ак модельного примера частицы более сложной, чем круглая, формы, в сверхзвуковом потоке за проходящей ударной волной. Постановка задачи приближенно соответствует натурным экспериментам В. М. Бойко и С. В. Поплавского (ИТПМ СО РАН).

    Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием разработанного ранее и верифицированного метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величиныш ага, расчет динамики движения тела (определение силыи момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. Для расчета численного потока через ребра ячеек, пересекаемых границами тела, используется двухволновое приближение при решении задачи Римана и схема Стигера – Уорминга.

    Движение квадрата со стороной 6 мм инициировалось прохождением ударной волныс числом Маха 3,0, распространяющейся в плоском канале длиной 800 мм и шириной 60 мм. Канал был заполнен воздухом при пониженном давлении. Рассматривалась различная начальная ориентация квадрата относительно оси канала. Обнаружено, что начальное положение квадрата стороной поперек потока является менее устойчивым при его движении, чем начальное положение диагональю поперек потока. В этом расчетные результаты качественно соответствуют экспериментальным наблюдениям. Для промежуточных начальных положений квадрата описан типичный режим его движения, состоящий из колебаний, близких к гармоническим, переходящих во вращение с постоянной средней угловой скоростью. В процессе движения квадрата наблюдается в среднем монотонное уменьшение расстояния между центром масс и центром давления до нуля.

    Sidorenko D.A., Utkin P.S.
    Numerical study of the dynamics of motion of a square body in a supersonic flow behind a shock wave
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 755-766

    In a number of fundamental and practical problems, it is necessary to describe the dynamics of the motion of complexshaped particles in a high-speed gas flow. An example is the movement of coal particles behind the front of a strong shock wave during an explosion in a coal mine. The paper is devoted to numerical simulation of the dynamics of translational and rotational motion of a square-shaped body, as an example of a particle of a more complex shape than a round one, in a supersonic flow behind a passing shock wave. The formulation of the problem approximately corresponds to the experiments of Professor V. M. Boiko and Professor S. V. Poplavski (ITAM SB RAS).

    Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method which was developed and verified earlier. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. To calculate numerical fluxes through the edges of the cell intersected by the boundaries of the body, we use a two-wave approximation for solving the Riemann problem and the Steger – Warming scheme.

    The movement of a square with a side of 6 mm was initiated by the passage of a shock wave with a Mach number of 3,0 propagating in a flat channel 800 mm long and 60 mm wide. The channel was filled with air at low pressure. Different initial orientation of the square relative to the channel axis was considered. It is found that the initial position of the square with its side across the flow is less stable during its movement than the initial position with a diagonal across the flow. In this case, the calculated results qualitatively correspond to experimental observations. For the intermediate initial positions of a square, a typical mode of its motion is described, consisting of oscillations close to harmonic, turning into rotation with a constant average angular velocity. During the movement of the square, there is an average monotonous decrease in the distance between the center of mass and the center of pressure to zero.

  3. Грачев В.А., Найштут Ю.С.
    Прогнозирование потери несущей способности пологих выпуклых оболочек на основе анализа нелинейных колебаний
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1189-1205

    Задачи потери устойчивости тонких упругих оболочек снова стали актуальными, так как в последние годы обнаружено несоответствие между стандартами многих стран по определению нагрузок, вызывающих потерю несущей способности пологих оболочек, и результатами экспериментов по испытаниям тонкостенных авиационных конструкций, изготовленных из высокопрочных сплавов. Основное противоречие состоит в том, что предельные внутренние напряжения, при которых наблюдается потеря устойчивости (хлопок) оболочек, оказываются меньше тех, которые предсказывает принятая теория расчета, отраженная в стандартах США и Европы. Действующие нормативные акты основаны на статической теории пологих оболочек, предложенной в 1930-е годы: в рамках нелинейной теории упругости для тонкостенных структур выделяются устойчивые решения, значительно отличающиеся от форм равновесия, присущих небольшим начальным нагрузкам. Минимальная величина нагрузки, при которой существует альтернативная форма равновесия (низшая критическая нагрузка), принималась в качестве предельно допустимой. В 1970-е годы было установлено, что такой подход оказывается неприемлемым при сложных загружениях. Подобные случаи ранее не встречались на практике, сейчас они появились на более тонких изделиях, эксплуатируемых в сложных условиях. Поэтому необходим пересмотр исходных теоретических положений по оценке несущей способности. Основой теории могут служить недавние математические результаты, установившие асимптотическую близость расчетов по двум схемам: трехмерной динамической теории упругости и динамической теории пологих выпуклых оболочек. В предлагаемой работе вначале формулируется динамическая теория пологих оболочек, которая затем сводится к одному разрешающему интегро-дифференциальному уравнению (после построения специальной функции Грина). Показано, что полученное нелинейное уравнение допускает разделение переменных, имеет множество периодических по времени решений, которые удовлетворяют уравнению Дуффинга «с мягкой пружиной». Это уравнение хорошо изучено, его численный анализ позволяет находить амплитуду и период колебаний в зависимости от свойств функции Грина. Если вызвать колебания оболочки с помощью пробной гармонической по времени нагрузки, то можно измерить перемещения точек поверхности в момент максимальной амплитуды. Предлагается экспериментальная установка, в которой генерируются резонансные колебания пробной нагрузкой, направленной по нормали к поверхности. Экспериментальные измерения перемещений оболочки, а также амплитуды и периода колебаний дают возможность рассчитать коэффициент запаса несущей способности конструкции неразрушающим методом в условиях эксплуатации.

    Grachev V.A., Nayshtut Yu.S.
    Buckling prediction for shallow convex shells based on the analysis of nonlinear oscillations
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1189-1205

    Buckling problems of thin elastic shells have become relevant again because of the discrepancies between the standards in many countries on how to estimate loads causing buckling of shallow shells and the results of the experiments on thinwalled aviation structures made of high-strength alloys. The main contradiction is as follows: the ultimate internal stresses at shell buckling (collapsing) turn out to be lower than the ones predicted by the adopted design theory used in the USA and European standards. The current regulations are based on the static theory of shallow shells that was put forward in the 1930s: within the nonlinear theory of elasticity for thin-walled structures there are stable solutions that significantly differ from the forms of equilibrium typical to small initial loads. The minimum load (the lowest critical load) when there is an alternative form of equilibrium was used as a maximum permissible one. In the 1970s it was recognized that this approach is unacceptable for complex loadings. Such cases were not practically relevant in the past while now they occur with thinner structures used under complex conditions. Therefore, the initial theory on bearing capacity assessments needs to be revised. The recent mathematical results that proved asymptotic proximity of the estimates based on two analyses (the three-dimensional dynamic theory of elasticity and the dynamic theory of shallow convex shells) could be used as a theory basis. This paper starts with the setting of the dynamic theory of shallow shells that comes down to one resolving integrodifferential equation (once the special Green function is constructed). It is shown that the obtained nonlinear equation allows for separation of variables and has numerous time-period solutions that meet the Duffing equation with “a soft spring”. This equation has been thoroughly studied; its numerical analysis enables finding an amplitude and an oscillation period depending on the properties of the Green function. If the shell is oscillated with the trial time-harmonic load, the movement of the surface points could be measured at the maximum amplitude. The study proposes an experimental set-up where resonance oscillations are generated with the trial load normal to the surface. The experimental measurements of the shell movements, the amplitude and the oscillation period make it possible to estimate the safety factor of the structure bearing capacity with non-destructive methods under operating conditions.

  4. Назаров Ф.Х.
    Численное исследование высокоскоростных слоев смешения на основе двухжидкостной модели турбулентности
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1125-1142

    Данная работа посвящена численному исследованию высокоскоростных слоев смешения сжимаемых потоков. Рассматриваемая задача имеет широкий спектр применения в практических задачах и, несмотря на кажущуюся простоту, является достаточно сложной в плане моделирования, потому что в слое смешения в результате неустойчивости тангенциального разрыва скоростей поток от ламинарного течения переходит к турбулентному режиму. Поэтому полученные численные результаты рассмотренной задачи сильно зависят от адекватности используемых моделей турбулентности. В представленной работе данная задача исследуется на основе двухжидкостного подхода к проблеме турбулентности. Данный подход возник сравнительно недавно и достаточно быстро развивается. Главное преимущество двухжидкостного подхода — в том, что он ведет к замкнутой системе уравнений, тогда как известно, что давний подход Рейнольдса ведет к незамкнутой системе. В работе представлены суть двухжидкостного подхода для моделирования турбулентной сжимаемой среды и методика численной реализации предлагаемой модели. Для получения стационарного решения поставленной задачи применен метод установления и использована теория пограничного слоя Прандтля, которая ведет к упрощенной системе уравнений. В рассматриваемой задаче происходит смешение высокоскоростных потоков. Следовательно, необходимо моделировать также перенос тепла и давление нельзя считать постоянным, как это делается для несжимаемых потоков. При численной реализации конвективные члены в гидродинамических уравнениях аппроксимировались против потока вторым порядка точности в явном виде, а диффузионные члены в правых частях уравнений аппроксимировались центральной разностью в неявном виде. Для реализации полученных уравнений использовался метод прогонки. Для коррекции скорости через давления использован метод SIMPLE. В работе проведено исследование двухжидкостной модели турбулентности при различных начальных возмущениях потока. Полученные численные результаты показали, что хорошее соответствие с известными опытными данными наблюдается при интенсивности турбулентности на входе $0,1 < I < 1 \%$. Для демонстрации эффективности предлагаемой модели турбулентности представлены также данные известных экспериментов, а также результаты моделей $k − kL + J$ и LES. Показано, что двухжидкостная модель по точности не уступает известным современным моделям, а по затрате вычислительных ресурсов является более экономичной.

    Nazarov F.K.
    Numerical study of high-speed mixing layers based on a two-fluid turbulence model
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1125-1142

    This work is devoted to the numerical study of high-speed mixing layers of compressible flows. The problem under consideration has a wide range of applications in practical tasks and, despite its apparent simplicity, is quite complex in terms of modeling. Because in the mixing layer, as a result of the instability of the tangential discontinuity of velocities, the flow passes from laminar flow to turbulent mode. Therefore, the obtained numerical results of the considered problem strongly depend on the adequacy of the used turbulence models. In the presented work, this problem is studied based on the two-fluid approach to the problem of turbulence. This approach has arisen relatively recently and is developing quite rapidly. The main advantage of the two-fluid approach is that it leads to a closed system of equations, when, as is known, the long-standing Reynolds approach leads to an open system of equations. The paper presents the essence of the two-fluid approach for modeling a turbulent compressible medium and the methodology for numerical implementation of the proposed model. To obtain a stationary solution, the relaxation method and Prandtl boundary layer theory were applied, resulting in a simplified system of equations. In the considered problem, high-speed flows are mixed. Therefore, it is also necessary to model heat transfer, and the pressure cannot be considered constant, as is done for incompressible flows. In the numerical implementation, the convective terms in the hydrodynamic equations were approximated by the upwind scheme with the second order of accuracy in explicit form, and the diffusion terms in the right-hand sides of the equations were approximated by the central difference in implicit form. The sweep method was used to implement the obtained equations. The SIMPLE method was used to correct the velocity through the pressure. The paper investigates a two-liquid turbulence model with different initial flow turbulence intensities. The obtained numerical results showed that good agreement with the known experimental data is observed at the inlet turbulence intensity of $0.1 < I < 1 \%$. Data from known experiments, as well as the results of the $k − kL + J$ and LES models, are presented to demonstrate the effectiveness of the proposed turbulence model. It is demonstrated that the two-liquid model is as accurate as known modern models and more efficient in terms of computing resources.

  5. Горшков А.В., Просвиряков Е.Ю.
    Слоистая конвекция Бенара–Марангони при теплообмене по закону Ньютона–Рихмана
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 927-940

    В работе осуществлено математическое моделирование нестационарной слоистой конвекции Бенара–Марангони вязкой несжимаемой жидкости. Движение жидкости происходит в бесконечно протяженном слое. Система Обербека–Буссинеска, описывающая слоистую конвекцию Бенара–Марангони, является переопределенной, поскольку вертикальная скорость тождественно равна нулю. Для вычисления двух компонент вектора скорости, температурыи давления имеется система пяти уравнений (три уравнения сохранения импульсов, уравнение несжимаемости и уравнение теплопроводности). Для разрешимости системы Обербека–Буссинеска предложен класс точных решений. Структура предложенного решения такова, что уравнение несжимаемости удовлетворяется тождественно. Таким образом, удается устранить «лишнее» уравнение. Основное внимание уделено исследованию теплообмена на свободной границе слоя, которая считается недеформируемой. При описании термокапиллярного конвективного движения теплообмен задавался согласно закону Ньютона–Рихмана. Использование такого закона распространения тепла приводит к начально-краевой задаче третьего рода. Показано, что переопределенная начально-краевая задача в рамках представленного в статье класса точных решений уравнений Обербека–Буссинеска сводится к проблеме Штурма–Лиувилля. Следовательно, гидродинамические поля выражаются через тригонометрические функции (базис Фурье). Для определения собственных чисел задачи получено трансцендентное уравнение, которое решалось численно. Проведен численный анализ решений системы эволюционных и градиентных уравнений, описывающих течение жидкости. На основании вычислительного эксперимента проведен анализ гидродинамических полей. При исследовании краевой задачи было показано существование противотечений в слое жидкости. Существование противотечений эквивалентно наличию застойных точек в жидкости, что говорит о существовании локального экстремума кинетической энергии жидкости. Установлено, что у каждой компонентыск орости может быть не более одного нулевого значения. Таким образом, поток жидкости расслаивается на две зоны. В этих зонах касательные напряжения разного знака. Причем существует толщина слоя жидкости, при которой на нижней границе слоя жидкости касательные напряжения равны нулю. Данный физический эффект возможен только для классических ньютоновских жидкостей. Для поля температурыи давления справедливы те же свойства, что и для скоростей. Отметим, что в данном случае все нестационарные решения выходят на установившийся режим.

    Gorshkov A.V., Prosviryakov Y.Y.
    Layered B&eacute;nard–Marangoni convection during heat transfer according to the Newton’s law of cooling
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 927-940

    The paper considers mathematical modeling of layered Benard–Marangoni convection of a viscous incompressible fluid. The fluid moves in an infinitely extended layer. The Oberbeck–Boussinesq system describing layered Benard–Marangoni convection is overdetermined, since the vertical velocity is zero identically. We have a system of five equations to calculate two components of the velocity vector, temperature and pressure (three equations of impulse conservation, the incompressibility equation and the heat equation). A class of exact solutions is proposed for the solvability of the Oberbeck–Boussinesq system. The structure of the proposed solution is such that the incompressibility equation is satisfied identically. Thus, it is possible to eliminate the «extra» equation. The emphasis is on the study of heat exchange on the free layer boundary, which is considered rigid. In the description of thermocapillary convective motion, heat exchange is set according to the Newton’s law of cooling. The application of this heat distribution law leads to the third-kind initial-boundary value problem. It is shown that within the presented class of exact solutions to the Oberbeck–Boussinesq equations the overdetermined initial-boundary value problem is reduced to the Sturm–Liouville problem. Consequently, the hydrodynamic fields are expressed using trigonometric functions (the Fourier basis). A transcendental equation is obtained to determine the eigenvalues of the problem. This equation is solved numerically. The numerical analysis of the solutions of the system of evolutionary and gradient equations describing fluid flow is executed. Hydrodynamic fields are analyzed by a computational experiment. The existence of counterflows in the fluid layer is shown in the study of the boundary value problem. The existence of counterflows is equivalent to the presence of stagnation points in the fluid, and this testifies to the existence of a local extremum of the kinetic energy of the fluid. It has been established that each velocity component cannot have more than one zero value. Thus, the fluid flow is separated into two zones. The tangential stresses have different signs in these zones. Moreover, there is a fluid layer thickness at which the tangential stresses at the liquid layer equal to zero on the lower boundary. This physical effect is possible only for Newtonian fluids. The temperature and pressure fields have the same properties as velocities. All the nonstationary solutions approach the steady state in this case.

    Просмотров за год: 10. Цитирований: 3 (РИНЦ).
  6. Ветчанин Е.В., Тененев В.А., Килин А.А.
    Оптимальное управление движением в идеальной жидкости тела c винтовой симметрией с внутренними роторами
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 741-759

    В данной работе рассматривается управляемое движение в идеальной жидкости винтового тела с тремя лопастями за счет вращения трех внутренних роторов. Ставится задача выбора управляющих воздействий, обеспечивающих движение тела вблизи заданной траектории. Для определения управлений, гарантирующих движение вблизи заданной кривой, предложены методы, основанные на применении гибридных генетических алгоритмов (генетические алгоритмы с вещественным кодированием с дополнительным обучением лидера популяции каким-либо градиентным методом) и искусственных нейронных сетей. Корректность работы предложенных численных методов оценивается с помощью полученных ранее дифференциальных уравнений, определяющих закон изменения управляющих воздействий для заданной траектории.

    В подходе на основе гибридных генетических алгоритмов исходная задача минимизации интегрального функционала сводится к минимизации функции многих переменных. Заданный временной интервал разбивается на малые элементы, на каждом из которых управляющие воздействия аппроксимируются полиномами Лагранжа 2 и 3 порядков. Гибридные генетические алгоритмы при соответствующих настройках воспроизводят решение, близкое точному. Однако стоимость расчета 1 секунды физического процесса составляет порядка 300 секунд процессорного времени.

    Для повышения быстродействия расчета управляющих воздействий предложен алгоритм на основе искусственных нейронных сетей. В качестве входного сигнала нейронная сеть принимает компоненты требуемого вектора перемещения. В качестве выходного сигнала возвращаются узловые значения полиномов Лагранжа, приближенно описывающих управляющие воздействия. Нейронная сеть обучается хорошо известным методом обратного распространения ошибки. Обучающая выборка генерируется с помощью подхода на основе гибридных генетических алгоритмов. Расчет 1 секунды физического процесса с помощью нейронной сети требует примерно 0.004 секунды процессорного времени. То есть на 6 порядков быстрее по сравнению в гибридным генетическим алгоритмом. Управление, рассчитанное с помощью искусственной нейронной сети, отличается от точного. Однако, несмотря на данное отличие, обеспечивает достаточно точное следование по заданной траектории.

    Vetchanin E.V., Tenenev V.A., Kilin A.A.
    Optimal control of the motion in an ideal fluid of a screw-shaped body with internal rotors
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 741-759

    In this paper we consider the controlled motion of a helical body with three blades in an ideal fluid, which is executed by rotating three internal rotors. We set the problem of selecting control actions, which ensure the motion of the body near the predetermined trajectory. To determine controls that guarantee motion near the given curve, we propose methods based on the application of hybrid genetic algorithms (genetic algorithms with real encoding and with additional learning of the leader of the population by a gradient method) and artificial neural networks. The correctness of the operation of the proposed numerical methods is estimated using previously obtained differential equations, which define the law of changing the control actions for the predetermined trajectory.

    In the approach based on hybrid genetic algorithms, the initial problem of minimizing the integral functional reduces to minimizing the function of many variables. The given time interval is broken up into small elements, on each of which the control actions are approximated by Lagrangian polynomials of order 2 and 3. When appropriately adjusted, the hybrid genetic algorithms reproduce a solution close to exact. However, the cost of calculation of 1 second of the physical process is about 300 seconds of processor time.

    To increase the speed of calculation of control actions, we propose an algorithm based on artificial neural networks. As the input signal the neural network takes the components of the required displacement vector. The node values of the Lagrangian polynomials which approximately describe the control actions return as output signals . The neural network is taught by the well-known back-propagation method. The learning sample is generated using the approach based on hybrid genetic algorithms. The calculation of 1 second of the physical process by means of the neural network requires about 0.004 seconds of processor time, that is, 6 orders faster than the hybrid genetic algorithm. The control calculated by means of the artificial neural network differs from exact control. However, in spite of this difference, it ensures that the predetermined trajectory is followed exactly.

    Просмотров за год: 12. Цитирований: 1 (РИНЦ).
  7. Старостин И.Е., Быков В.И.
    К проблеме программной реализации потенциально-потокового метода описания физико-химических процессов
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 817-832

    В рамках современной неравновесной термодинамики (макроскопического подхода описания и математического моделирования динамики реальных физико-химических процессов) авторами был разработан потенциально-потоковый метод описания и математического моделирования этих процессов, применимый в общем случае реальных макроскопических физико-химических систем. В соответствии с этим методом описание и математическое моделирование этих процессов заключаются в определении через потенциалы взаимодействия термодинамических сил, движущих эти процессы, и кинетической матрицы, определяемой кинетическими свойствами рассматриваемой системы, которые, в свою очередь, определяют динамику протекания физико-химических процессов в этой системе под действием термо-динамических сил в ней. Зная термодинамические силы и кинетическую матрицу системы, определяются скорости протекания физико-химических процессов в системе, а через эти скорости согласно законам сохранения определяются скорости изменения ее координат состояния. Получается, таким образом, замкнутая система уравнений физико-химических процессов в системе. Зная потенциалы взаимодействия в системе, кинетические матрицы ее простых подсистем (отдельных процессов, сопряженных между собой и не сопряженных с другими процессами), коэффициенты, входящие в законы сохранения, начальное состояние рассматриваемой системы, внешние потоки в нее, можно получить полную динамику физико-химических процессов в этой системе. Однако в случае сложной физико-химической системы, в которой протекает большое количество физико-химических процессов, размерность системы уравнений этих процессов становится соответствующей. Отсюда возникает проблема автоматизации формирования описанной системы уравнений динамики физико-химических процессов в рассматриваемой системе. В настоящей статье разрабатывается архитектура библиотеки программных типов данных, реализующих заданную пользователем физико-химическую систему на уровне ее расчетной схемы (координат состояния системы, энергетических степеней свободы, физико-химических процессов, в ней протекающих, внешних потоков и взаимосвязи между этими перечисленными компонентами) и алгоритмов задания ссылок в этих типах данных, а также расчета описанных параметров системы.

    Starostin I.E., Bykov V.I.
    To the problem of program implementation of the potential-streaming method of description of physical and chemical process
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 817-832

    In the framework of modern non-equilibrium thermodynamics (macroscopic approach of description and mathematical modeling of the dynamics of real physical and chemical processes), the authors developed a potential- flow method for describing and mathematical modeling of real physical and chemical processes applicable in the general case of real macroscopic physicochemical systems. In accordance with the potential-flow method, the description and mathematical modeling of these processes consists in determining through the interaction potentials of the thermodynamic forces driving these processes and the kinetic matrix determined by the kinetic properties of the system in question, which in turn determine the dynamics of the course of physicochemical processes in this system under the influence of the thermodynamic forces in it. Knowing the thermodynamic forces and the kinetic matrix of the system, the rates of the flow of physicochemical processes in the system are determined, and according to these conservation laws the rates of change of its state coordinates are determined. It turns out in this way a closed system of equations of physical and chemical processes in the system. Knowing the interaction potentials in the system, the kinetic matrices of its simple subsystems (individual processes that are conjugate to each other and not conjugate with other processes), the coefficients entering into the conservation laws, the initial state of the system under consideration, external flows into the system, one can obtain a complete dynamics of physicochemical processes in the system. However, in the case of a complex physico-chemical system in which a large number of physicochemical processes take place, the dimension of the system of equations for these processes becomes appropriate. Hence, the problem arises of automating the formation of the described system of equations of the dynamics of physical and chemical processes in the system under consideration. In this article, we develop a library of software data types that implement a user-defined physicochemical system at the level of its design scheme (coordinates of the state of the system, energy degrees of freedom, physico-chemical processes, flowing, external flows and the relationship between these listed components) and algorithms references in these types of data, as well as calculation of the described system parameters. This library includes both program types of the calculation scheme of the user-defined physicochemical system, and program data types of the components of this design scheme (coordinates of the system state, energy degrees of freedom, physicochemical processes, flowing, external flows). The relationship between these components is carried out by reference (index) addressing. This significantly speeds up the calculation of the system characteristics, because faster access to data.

    Просмотров за год: 12.
  8. Ильичев В.Г., Дашкевич Л.В.
    Оптимальный промысел и эволюция путей миграции рыбных популяций
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 879-893

    Представлена новая дискретная эколого-эволюционная математическая модель, в которой реализованы механизмы поиска эволюционно устойчивых маршрутов миграции рыбных популяций. Предложенные адаптивные конструкции имеют малую размерность и поэтому обладают высоким быстродействием, что позволяет проводить компьютерные расчеты на длительный срок за приемлемое машинное время. При исследовании устойчивости использованы как геометрические подходы нелинейного анализа, так и компьютерные асимптотические методы. Динамика миграции рыбной популяции описывается некоторой марковской матрицей, которая может изменяться в процессе эволюции. В семействе марковских матриц (фиксированной размерности) выделены базисные матрицы, которые использованы для генерации маршрутов миграции мутантов. В результате конкуренции исходной популяции с мутантами выявляется перспективное направление эволюции пространственного поведения рыбы при заданном промысле и кормовой базе. Данная модель была применена к решению проблемы оптимального вылова на долгосрочную перспективу, при условии, что водоем разделен на две части, у каждой из которых свой собственник. При решении оптимизационных задач используется динамическое программирование, основанное на построении функции Беллмана. Обнаружена парадоксальная стратегия заманивания, когда один из участников промысла на своей акватории временно сокращает вылов. В этом случае мигрирующая рыба больше времени проводит в этом районе (при условии равной кормовой базы). Такой маршрут эволюционно закрепляется и не изменяется даже после возобновления промысла в этом районе. Второй участник промысла может восстановить статус-кво, применив заманивание на своей части акватории. Возникает бесконечная последовательность заманиваний — своеобразная игра в поддавки. Введено новое эффективное понятие — внутренняя цена рыбной популяции, зависящая от района водоема. По сути, эти цены представляют собой частные производные функции Беллмана и могут быть использованы в качестве налога на выловленную рыбу. В этом случае проблема многолетнего промысла сводится к решению задачи одногодичной оптимизации.

    Il’ichev V.G., Dashkevich L.V.
    Optimal fishing and evolution of fish migration routes
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 879-893

    A new discrete ecological-evolutionary mathematical model is presented, in which the search mechanisms for evolutionarily stable migration routes of fish populations are implemented. The proposed adaptive designs have a small dimension, and therefore have high speed. This allows carrying out calculations on long-term perspective for an acceptable machine time. Both geometric approaches of nonlinear analysis and computer “asymptotic” methods were used in the study of stability. The migration dynamics of the fish population is described by a certain Markov matrix, which can change during evolution. The “basis” matrices are selected in the family of Markov matrices (of fixed dimension), which are used to generate migration routes of mutant. A promising direction of the evolution of the spatial behavior of fish is revealed for a given fishery and food supply, as a result of competition of the initial population with mutants. This model was applied to solve the problem of optimal catch for the long term, provided that the reservoir is divided into two parts, each of which has its own owner. Dynamic programming is used, based on the construction of the Bellman function, when solving optimization problems. A paradoxical strategy of “luring” was discovered, when one of the participants in the fishery temporarily reduces the catch in its water area. In this case, the migrating fish spends more time in this area (on condition of equal food supply). This route is evolutionarily fixes and does not change even after the resumption of fishing in the area. The second participant in the fishery can restore the status quo by applying “luring” to its part of the water area. Endless sequence of “luring” arises as a kind of game “giveaway”. A new effective concept has been introduced — the internal price of the fish population, depending on the zone of the reservoir. In fact, these prices are Bellman's private derivatives, and can be used as a tax on caught fish. In this case, the problem of long-term fishing is reduced to solving the problem of one-year optimization.

  9. Конюхов В.М., Конюхов И.В., Чекалин А.Н.
    Numerical Simulation, Parallel Algorithms and Software for Performance Forecast of the System “Fractured-Porous Reservoir – Producing Well” During its Commissioning Into Operation
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1069-1075

    The mathematical model, finite-difference schemes and algorithms for computation of transient thermoand hydrodynamic processes involved in commissioning the unified system including the oil producing well, electrical submersible pump and fractured-porous reservoir with bottom water are developed. These models are implemented in the computer package to simulate transient processes with simultaneous visualization of their results along with computations. An important feature of the package Oil-RWP is its interaction with the special external program GCS which simulates the work of the surface electric control station and data exchange between these two programs. The package Oil-RWP sends telemetry data and current parameters of the operating submersible unit to the program module GCS (direct coupling). The station controller analyzes incoming data and generates the required control parameters for the submersible pump. These parameters are sent to Oil-RWP (feedback). Such an approach allows us to consider the developed software as the “Intellectual Well System”.

    Some principal results of the simulations can be briefly presented as follows. The transient time between inaction and quasi-steady operation of the producing well depends on the well stream watering, filtration and capacitive parameters of oil reservoir, physical-chemical properties of phases and technical characteristics of the submersible unit. For the large time solution of the nonstationary equations governing the nonsteady processes is practically identical to the inverse quasi-stationary problem solution with the same initial data. The developed software package is an effective tool for analysis, forecast and optimization of the exploiting parameters of the unified oil-producing complex during its commissioning into the operating regime.

    The mathematical model, finite-difference schemes and algorithms for computation of transient thermoand hydrodynamic processes involved in commissioning the unified system including the oil producing well, electrical submersible pump and fractured-porous reservoir with bottom water are developed. These models are implemented in the computer package to simulate transient processes with simultaneous visualization of their results along with computations. An important feature of the package Oil-RWP is its interaction with the special external program GCS which simulates the work of the surface electric control station and data exchange between these two programs. The package Oil-RWP sends telemetry data and current parameters of the operating submersible unit to the program module GCS (direct coupling). The station controller analyzes incoming data and generates the required control parameters for the submersible pump. These parameters are sent to Oil-RWP (feedback). Such an approach allows us to consider the developed software as the “Intellectual Well System”.

    Some principal results of the simulations can be briefly presented as follows. The transient time between inaction and quasi-steady operation of the producing well depends on the well stream watering, filtration and capacitive parameters of oil reservoir, physical-chemical properties of phases and technical characteristics of the submersible unit. For the large time solution of the nonstationary equations governing the nonsteady processes is practically identical to the inverse quasi-stationary problem solution with the same initial data. The developed software package is an effective tool for analysis, forecast and optimization of the exploiting parameters of the unified oil-producing complex during its commissioning into the operating regime.

  10. Богомолов С.В.
    Стохастическая формализация газодинамической иерархии
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 767-779

    Математические модели газовой динамики и ее вычислительная индустрия, на наш взгляд, далеки от совершенства. Мы посмотрим на эту проблематику с точки зрения ясной вероятностной микромодели газа из твердых сфер, опираясь как на теорию случайных процессов, так и на классическую кинетическую теорию в терминах плотностей функций распределения в фазовом пространстве; а именно, построим сначала систему нелинейных стохастических дифференциальных уравнений (СДУ), а затем обобщенное случайное и неслучайное интегро-дифференциальное уравнение Больцмана с учетом корреляций и флуктуаций. Ключевыми особенностями исходной модели являются случайный характер интенсивности скачкообразной меры и ее зависимость от самого процесса.

    Кратко напомним переход ко все более грубым мезо-макроприближениям в соответствии с уменьшением параметра обезразмеривания, числа Кнудсена. Получим стохастические и неслучайные уравнения, сначала в фазовом пространстве (мезомодель в терминах СДУ по винеров- ским мерам и уравнения Колмогорова – Фоккера – Планка), а затем в координатном пространстве (макроуравнения, отличающиеся от системы уравнений Навье – Стокса и систем квазигазодинамики). Главным отличием этого вывода является более точное осреднение по скорости благодаря аналитическому решению стохастических дифференциальных уравнений по винеровской мере, в виде которых представлена промежуточная мезомодель в фазовом пространстве. Такой подход существенно отличается от традиционного, использующего не сам случайный процесс, а его функцию распределения. Акцент ставится на прозрачности допущений при переходе от одного уровня детализации к другому, а не на численных экспериментах, в которых содержатся дополнительные погрешности аппроксимации.

    Теоретическая мощь микроскопического представления макроскопических явлений важна и как идейная опора методов частиц, альтернативных разностным и конечно-элементным.

    Bogomolov S.V.
    Stochastic formalization of the gas dynamic hierarchy
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 767-779

    Mathematical models of gas dynamics and its computational industry, in our opinion, are far from perfect. We will look at this problem from the point of view of a clear probabilistic micro-model of a gas from hard spheres, relying on both the theory of random processes and the classical kinetic theory in terms of densities of distribution functions in phase space, namely, we will first construct a system of nonlinear stochastic differential equations (SDE), and then a generalized random and nonrandom integro-differential Boltzmann equation taking into account correlations and fluctuations. The key feature of the initial model is the random nature of the intensity of the jump measure and its dependence on the process itself.

    Briefly recall the transition to increasingly coarse meso-macro approximations in accordance with a decrease in the dimensionalization parameter, the Knudsen number. We obtain stochastic and non-random equations, first in phase space (meso-model in terms of the Wiener — measure SDE and the Kolmogorov – Fokker – Planck equations), and then — in coordinate space (macro-equations that differ from the Navier – Stokes system of equations and quasi-gas dynamics systems). The main difference of this derivation is a more accurate averaging by velocity due to the analytical solution of stochastic differential equations with respect to the Wiener measure, in the form of which an intermediate meso-model in phase space is presented. This approach differs significantly from the traditional one, which uses not the random process itself, but its distribution function. The emphasis is placed on the transparency of assumptions during the transition from one level of detail to another, and not on numerical experiments, which contain additional approximation errors.

    The theoretical power of the microscopic representation of macroscopic phenomena is also important as an ideological support for particle methods alternative to difference and finite element methods.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.