Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'diffuser':
Найдено статей: 85
  1. Орлова И.Н., Голубцова А.Н., Орлов В.А., Орлов Н.В.
    Исследование достижимости цели в медицинском квесте
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1149-1179

    В работе представлено экспериментальное исследование древовидной структуры, возникающей при медицинском обследовании. При каждой встрече с медицинским специалистом пациент получает некоторое количество направлений на консультации других специалистов или на анализы. Возникает дерево направлений, каждую ветвь которого должен пройти пациент. В зависимости от разветвленности дерева оно может быть как конечным (и в этом случае обследование может быть завершено), так и бесконечным, когда цель пациента не может быть достигнута. В работе как экспериментально, так и теоретически изучаются критические свойства перехода системы из леса конечных деревьев в лес бесконечных в зависимости от вероятностных характеристик дерева.

    Для описания предлагается модель, в которой дискретная функция вероятности числа ветвей на узле повторяет динамику непрерывного гауссового распределения. Характеристики распределения Гаусса (математическое ожидание $x_0$, среднеквадратичное отклонение $\sigma$) являются параметрами модели. В выбранной постановке задача относится к проблематике ветвящихся случайных процессов (ВСП) в неоднородной модели Гальтона – Ватсона.

    Экспериментальное изучение проводится путем численного моделирования на конечных решетках. Построена фазовая диаграмма, определены границы областей различных фаз. Проведено сравнение с фазовой диаграммой, полученной из теоретических критериев для макросистем, установлено адекватное соответствие. Показано, что на конечных решетках переход является размытым.

    Описание размытого фазового перехода проведено с помощью двух подходов. В первом (стандартном) подходе переход описывается с помощью так называемой функции включения, имеющей смысл доли одной из фаз в общем множестве. Установлено, что такой подход в данной системе неэффективен, поскольку найденное положение условной границы размытого перехода определяется только размером выбранной экспериментальной решетки и не несет объективного смысла.

    Предлагается второй (оригинальный) подход, основанный на введении в рассмотрение параметра порядка, равного обратной средней высоте дерева, и анализа его поведения. Установлено, что динамика такого параметра порядка в сечениях $\sigma = \text{const}$ с очень небольшими отличиями имеет вид распределения Ферми – Дирака ($\sigma$ выполняет ту же функцию, что и температура для распределения Ферми – Дирака, $x_0$ — функцию энергии). Для параметра порядка подобрано эмпирическое выражение, введен и рассчитан аналог химического потенциала, который и имеет смысл характерного масштаба параметра порядка, то есть тех значений $x_0$, при которых условно можно считать, что порядок сменяется беспорядком. Этот критерий положен в основу определе- ния границы условного перехода в данном подходе. Установлено, что эта граница соответствует средней высоте дерева, равной двум поколениям. На основании обнаруженных свойств предложены рекомендации для медицинских учреждений, позволяющие контролировать обеспечение конечности траектории пациентов.

    Рассмотренная модель и метод ее описания с помощью условно-бесконечных деревьев имеют приложение ко многим иерархическим системам. К таким системам можно отнести сети маршрутизации интернет-соединений, бюрократические сети, торговые, логистические сети, сети цитирования, игровые стратегии, задачи популяционной динамики и пр.

    Orlova I.N., Golubtsova A.N., Orlov V.A., Orlov N.V.
    Research on the achievability of a goal in a medical quest
    Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1149-1179

    The work presents an experimental study of the tree structure that occurs during a medical examination. At each meeting with a medical specialist, the patient receives a certain number of areas for consulting other specialists or for tests. A tree of directions arises, each branch of which the patient should pass. Depending on the branching of the tree, it can be as final — and in this case the examination can be completed — and endless when the patient’s goal cannot be achieved. In the work both experimentally and theoretically studied the critical properties of the transition of the system from the forest of the final trees to the forest endless, depending on the probabilistic characteristics of the tree.

    For the description, a model is proposed in which a discrete function of the probability of the number of branches on the node repeats the dynamics of a continuous gaussian distribution. The characteristics of the distribution of the Gauss (mathematical expectation of $x_0$, the average quadratic deviation of $\sigma$) are model parameters. In the selected setting, the task refers to the problems of branching random processes (BRP) in the heterogeneous model of Galton – Watson.

    Experimental study is carried out by numerical modeling on the final grilles. A phase diagram was built, the boundaries of areas of various phases are determined. A comparison was made with the phase diagram obtained from theoretical criteria for macrosystems, and an adequate correspondence was established. It is shown that on the final grilles the transition is blurry.

    The description of the blurry phase transition was carried out using two approaches. In the first, standard approach, the transition is described using the so-called inclusion function, which makes the meaning of the share of one of the phases in the general set. It was established that such an approach in this system is ineffective, since the found position of the conditional boundary of the blurred transition is determined only by the size of the chosen experimental lattice and does not bear objective meaning.

    The second, original approach is proposed, based on the introduction of an parameter of order equal to the reverse average tree height, and the analysis of its behavior. It was established that the dynamics of such an order parameter in the $\sigma = \text{const}$ section with very small differences has the type of distribution of Fermi – Dirac ($\sigma$ performs the same function as the temperature for the distribution of Fermi – Dirac, $x_0$ — energy function). An empirical expression has been selected for the order parameter, an analogue of the chemical potential is introduced and calculated, which makes sense of the characteristic scale of the order parameter — that is, the values of $x_0$, in which the order can be considered a disorder. This criterion is the basis for determining the boundary of the conditional transition in this approach. It was established that this boundary corresponds to the average height of a tree equal to two generations. Based on the found properties, recommendations for medical institutions are proposed to control the provision of limb of the path of patients.

    The model discussed and its description using conditionally-infinite trees have applications to many hierarchical systems. These systems include: internet routing networks, bureaucratic networks, trade and logistics networks, citation networks, game strategies, population dynamics problems, and others.

  2. Заика Ю.В., Родченкова Н.И., Сидоров Н.И.
    Моделирование водородопроницаемости сплавов для мембранного газоразделения
    Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 121-135

    Производство высокочистого водорода необходимо для экологически чистой энергетики и различных химико-технологических процессов. Значительная часть водорода будет производиться за счет конверсии метана. Методом измерения удельной водородопроницаемости исследуются различные сплавы, перспективные для использования в газоразделительных установках. Требуется оценить параметры диффузии и сорбции, чтобы иметь возможность численно моделировать различные сценарии и условия эксплуатации материала (включая экстремальные), выделять лимитирующие факторы. В статье представлены нелинейная модель водородопроницаемости в соответствии со спецификой эксперимента, численный метод решения краевой задачи и результаты параметрической идентификации модели для сплава V85Ni15.

    Zaika Y.V., Rodchenkova N.I., Sidorov N.I.
    Modeling of H2-permeability of alloys for gas separation membranes
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 121-135

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. A considerable part of hydrogen is to be obtained by methane conversion. Different alloys, which may be wellsuited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear model of hydrogen permeability in accordance with the specifics of the experiment, the numerical method for solving the boundary-value problem, and the results of parametric identification for the alloy V85Ni15.

    Просмотров за год: 1. Цитирований: 7 (РИНЦ).
  3. Рассматривается вертикально-распределенная трехкомпонентная модель морской экосистемы. Состояние планктонного сообщества с учетом питательных веществ анализируется в условиях активных перемещений зоопланктона в вертикальном столбе воды. Аналитически получены условия ДС-неустойчивости системы в окрестности пространственно-однородного равновесия. Численно определены области параметров, при которых пространственнооднородное равновесие устойчиво к небольшим пространственно-неоднородным возмущениям, неустойчиво по Тьюрингу и колебательно неустойчиво. Исследовано влияние параметров, определяющих биологические характеристики зоопланктона и пространственные перемещения планктона, на возможность образования пространственных структур. Показано, что при малой скорости потребления фитопланктона на пространственную неустойчивость существенно влияет убыль зоопланктона, а при больших значениях этого параметра имеют значение перемешивание фитопланктона и пространственные перемещения зоопланктона.

    Giricheva E.E.
    Modeling of plankton community state with density-dependent death and spatial activity of zooplankton
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 549-560

    A vertically distributed three-component model of marine ecosystem is considered. State of the plankton community with nutrients is analyzed under the active movement of zooplankton in a vertical column of water. The necessary conditions of the Turing instability in the vicinity of the spatially homogeneous equilibrium are obtained. Stability of the spatially homogeneous equilibrium, the Turing instability and the oscillatory instability are examined depending on the biological characteristics of zooplankton and spatial movement of plankton. It is shown that at low values of zooplankton grazing rate and intratrophic interaction rate the system is Turing instable when the taxis rate is low. Stabilization occurs either through increased decline of zooplankton either by increasing the phytoplankton diffusion. With the increasing rate of consumption of phytoplankton range of parameters that determine the stability is reduced. A type of instability depends on the phytoplankton diffusion. For large values of diffusion oscillatory instability is observed, with a decrease in the phytoplankton diffusion zone of Turing instability is increases. In general, if zooplankton grazing rate is faster than phytoplankton growth rate the spatially homogeneous equilibrium is Turing instable or oscillatory instable. Stability is observed only at high speeds of zooplankton departure or its active movements. With the increase in zooplankton search activity spatial distribution of populations becomes more uniform, increasing the rate of diffusion leads to non-uniform spatial distribution. However, under diffusion the total number of the population is stabilized when the zooplankton grazing rate above the rate of phytoplankton growth. In general, at low rate of phytoplankton consumption the spatial structures formation is possible at low rates of zooplankton decline and diffusion of all the plankton community. With the increase in phytoplankton predation rate the phytoplankton diffusion and zooplankton spatial movement has essential effect on the spatial instability.

    Просмотров за год: 6.
  4. Никонов Э.Г., Павлуш М., Поповичова М.
    Молекулярно-динамическое моделирование процессов взаимодействия водяного пара с несквозными порами цилиндрического типа
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 493-501

    Теоретические и экспериментальные исследования взаимодействия водяного пара с пористыми материалами проводятся как на макро-, так и на микроуровне. На макроуровне исследуется влияние структуры расположения индивидуальных пор на процессы взаимодействия водяного пара с пористым материалом как сплошной средой. На микроуровне исследуется зависимость характеристик взаимодействия водяного пара с пористой средой от геометрии и размеров индивидуальной поры.

    В данной работе проведено исследование посредством математического моделирования процессов взаимодействия водяного пара с индивидуальной несквозной порой цилиндрического типа. Вычисления производились с использованием модели гибридного типа, сочетающей в себе молекулярно-динамический и макродиффузионный подходы для описания взаимодействия водяного пара c индивидуальной порой. Исследовались процессы эволюции к состоянию термодинамического равновесия макроскопических характеристик системы, таких как температура, плотность, давление, в зависимости от внешних по отношению к поре условий. Проведено исследование зависимости параметров эволюции от распределения значений коэффициента диффузии в поре, полученного в результате молекулярно-динамического моделирования. Актуальность данных исследований обусловлена тем, что все используемые для моделирования влаго- и теплопроводности методы и программы основаны на применении уравнений переноса в пористом материале (как сплошной среде) с известными заранее значениями коэффициентов переноса, которые, как правило, получены экспериментально.

    Nikonov E.G., Pavlus M., Popovičová M.
    Molecular-dynamic simulation of water vapor interaction with suffering pores of the cylindrical type
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 493-501

    Theoretical and experimental investigations of water vapor interaction with porous materials are carried out both at the macro level and at the micro level. At the macro level, the influence of the arrangement structure of individual pores on the processes of water vapor interaction with porous material as a continuous medium is studied. At the micro level, it is very interesting to investigate the dependence of the characteristics of the water vapor interaction with porous media on the geometry and dimensions of the individual pore.

    In this paper, a study was carried out by means of mathematical modelling of the processes of water vapor interaction with suffering pore of the cylindrical type. The calculations were performed using a model of a hybrid type combining a molecular-dynamic and a macro-diffusion approach for describing water vapor interaction with an individual pore. The processes of evolution to the state of thermodynamic equilibrium of macroscopic characteristics of the system such as temperature, density, and pressure, depending on external conditions with respect to pore, were explored. The dependence of the evolution parameters on the distribution of the diffusion coefficient in the pore, obtained as a result of molecular dynamics modelling, is examined. The relevance of these studies is due to the fact that all methods and programs used for the modelling of the moisture and heat conductivity are based on the use of transport equations in a porous material as a continuous medium with known values of the transport coefficients, which are usually obtained experimentally.

    Просмотров за год: 9.
  5. Фоновая социальная напряженность общества может быть количественно оценена по различным статистическим индикаторам. Модели, прогнозирующие динамику социальной напряженности, успешно применяются для описания различных социальных процессов. Когда количество рассматриваемых групп общества мало, динамику соответствующих индикаторов можно описать при помощи системы обыкновенных дифференциальных уравнений. При увеличении количества взаимодействующих элементов резко возрастает сложность задач, что существенно затрудняет их аналитическое исследование. Модель сплошной социальной стратификации получаетсяв результате перехода от дискретной цепочки взаимодействующих социальных слоев к их непрерывному распределению на некотором интервале, то есть перехода к модели сплошной среды. В этом случае напряженность распространяется локально, но в действительности элита общества влияет на все слои через средства массовой информации, а также интернет позволяет влиять всем группам на другие. Эти факторы можно учесть через слагаемое модели, описывающее негативное внешнее воздействие. В настоящей работе предложена модель сплошной социальной стратификации, описывающая динамику системы из двух социумов, связанных через процесс миграции населения. Предполагается, что из социального слоя системы-донора с наибольшей напряженностью происходит отток людей, переносящих свою напряженность в систему-акцептор, причем при миграции люди попадают в более бедные слои принимающего общества. Рассматриваетсяслуч ай пространственно однородных коэффициентов, что соответствует частному случаю небольшого социума. При помощи метода конечных объемов построена пространственнаяди скретизация задачи, корректно отражающая конечную скорость распространения напряженности в обществе. Выполнена проверка выбранной дискретизации путем сравненияч исленного решения с точными решениями вспомогательного уравнения нелинейной диффузии. Проведено численное исследование системы с миграцией при различных значениях параметров, проанализировано влияние интенсивности миграции на принимающее общество, найдены условия дестабилизации общества акцептора под влиянием миграции. Полученные в работе результаты могут быть применены при дальнейшем исследовании модели в случае пространственно неоднородных коэффициентов, что соответствует более реалистичной картине общества.

    Kazarnikov A.V.
    Analysing the impact of migration on background social strain using a continuous social stratification model
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 661-673

    The background social strain of a society can be quantitatively estimated using various statistical indicators. Mathematical models, allowing to forecast the dynamics of social strain, are successful in describing various social processes. If the number of interacting groups is small, the dynamics of the corresponding indicators can be modelled with a system of ordinary differential equations. The increase in the number of interacting components leads to the growth of complexity, which makes the analysis of such models a challenging task. A continuous social stratification model can be considered as a result of the transition from a discrete number of interacting social groups to their continuous distribution in some finite interval. In such a model, social strain naturally spreads locally between neighbouring groups, while in reality, the social elite influences the whole society via news media, and the Internet allows non-local interaction between social groups. These factors, however, can be taken into account to some extent using the term of the model, describing negative external influence on the society. In this paper, we develop a continuous social stratification model, describing the dynamics of two societies connected through migration. We assume that people migrate from the social group of donor society with the highest strain level to poorer social layers of the acceptor society, transferring the social strain at the same time. We assume that all model parameters are constants, which is a realistic assumption for small societies only. By using the finite volume method, we construct the spatial discretization for the problem, capable of reproducing finite propagation speed of social strain. We verify the discretization by comparing the results of numerical simulations with the exact solutions of the auxiliary non-linear diffusion equation. We perform the numerical analysis of the proposed model for different values of model parameters, study the impact of migration intensity on the stability of acceptor society, and find the destabilization conditions. The results, obtained in this work, can be used in further analysis of the model in the more realistic case of inhomogeneous coefficients.

  6. Алмасри А., Цибулин В.Г.
    Мультистабильность для математической модели тритрофической системы на неоднородном ареале
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 923-939

    Рассматривается пространственно-временная модель тритрофической системы, описывающая взаимодействие жертвы, хищника и суперхищника в среде с неоднородным распределением ресурса. Учитываются всеядность суперхищника (Intraguild Predation, IGP), диффузия и направленная миграция (таксис), который моделируется с помощью логарифмической функции от ресурса и плотности жертвы. Основное внимание уделено анализу мультистабильности системы и роли косимметрии в формировании континуальных семейств стационарных решений. С использованием численно-аналитического подхода изучаются пространственно-однородные и неоднородные стационарные решения. Установлено, что при выполнении дополнительных соотношений между параметрами, характеризующими локальное взаимодействие хищников, и коэффициентами диффузии система обладает косимметрией, что приводит к возникновению семейства устойчивых стационарных решений, пропорциональных функции ресурса. Показано, что косимметрия не зависит от функции ресурса в случае неоднородной среды. Проведено исследование устойчивости стационарных распределений с помощью спектрального метода. Нарушение условий косимметрии приводит к разрушению семейства и появлению изолированных стационарных состояний, а также к длительным переходным процессам, отражающим память системы об исчезнувшем семействе. В зависимости от начальных условий и параметров в системе реализуются переходы к режимам с одним хищником (выживание хищника или суперхищника) или к сосуществованию хищников. Численные эксперименты на основе метода прямых (разностная схема по пространственной переменной и метод Рунге – Кутты для интегрирования по времени) подтверждают мультистабильность системы и иллюстрируют исчезновение семейства решений при разрушении косимметрии.

    Almasri A., Tsybulin V.G.
    Multistability for a mathematical model of a tritrophic system in a heterogeneous habitat
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 923-939

    We consider a spatiotemporal model of a tritrophic system describing the interaction between prey, predator, and superpredator in an environment with nonuniform resource distribution. The model incorporates superpredator omnivory (Intraguild Predation, IGP), diffusion, and directed migration (taxis), the latter modeled using a logarithmic function of resource availability and prey density. The primary focus is on analyzing the multistability of the system and the role of cosymmetry in the formation of continuous families of steady-state solutions. Using a numerical-analytical approach, we study both spatially homogeneous and inhomogeneous steady-state solutions. It is established that under additional relations between the parameters governing local predator interactions and diffusion coefficients, the system exhibits cosymmetry, leading to the emergence of a family of stable steady-state solutions proportional to the resource function. We demonstrate that the cosymmetry is independent of the resource function in the case of a heterogeneous environment. The stability of stationary distributions is investigated using spectral methods. Violation of the cosymmetry conditions results in the breakdown of the solution family and the emergence of isolated equilibria, as well as prolonged transient dynamics reflecting the system’s “memory” of the vanished states. Depending on initial conditions and parameters, the system exhibits transitions to single-predator regimes (survival of either the predator or superpredator) or predator coexistence. Numerical experiments based on the method of lines, which involves finite difference discretization in space and Runge –Kutta integration in time, confirm the system’s multistability and illustrate the disappearance of solution families when cosymmetry is broken.

  7. Будянский А.В., Цибулин В.Г.
    Моделирование пространственно-временной миграции близкородственных популяций
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 477-488

    Рассматривается модель распространения по ареалу конкурирующих за единый ресурс близкородственных популяций, записываемая в виде системы уравнений параболического типа. Анализируется случай переменной диффузии с миграционными потоками, зависящими от неравномерности распределения популяций и ресурсов. На основе метода прямых исследовано влияние миграции на формирование распределений популяций, изучены сценарии локального вытеснения и сосуществования видов. Найдены условия на параметры системы, при которых возникает непрерывное косимметричное семейство равновесий.

    Budyanski A.V., Tsybulin V.G.
    Modeling of spatialtemporal migration for closely related species
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 477-488

    We consider a model of populations that are closely related and share a common areal. System of nonlinear parabolic equations is formulated that incorporates nonlinear diffusion and migration flows induced by nonuniform densities of population and carrying capacity. We employ the method of lines and study the impact of migration on scenarios of local competition and coexistence of species. Conditions on system parameters are determined when a nontrivial family of steady states is formed.

    Просмотров за год: 6. Цитирований: 9 (РИНЦ).
  8. Борисов А.В., Краснобаева Л.А., Шаповалов А.В.
    Влияние диффузии и конвекции на динамику хемостата
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 121-129

    В работе рассматривается популяционная динамика, описываемая модифицированной моделью хемостата, в которую включены диффузия, хемотаксис и нелокальные конкурентные потери. Для учета воздействия внешнего окружения экосистемы на популяцию, при построении численных решений в систему уравнений модели включались случайные параметры. С помощью компьютерного моделирования выявлено три динамических режима, зависящих от значений параметров системы: переход от начального состояния к пространственно-однородному стационарному состоянию, к пространственно-неоднородному распределению популяционной концентрации и к элиминации популяционной концентрации.

    Borisov A.V., Krasnobaeva L.A., Shapovalov A.V.
    Influence of diffusion and convection on the chemostat dynamics
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 121-129

    Population dynamics is considered in a modified chemostat model including diffusion, chemotaxis, and nonlocal competitive losses. To account for influence of the external environment on the population of the ecosystem, a random parameter is included into the model equations. Computer simulations reveal three dynamic modes depending on system parameters: the transition from initial state to a spatially homogeneous steady state, to a spatially inhomogeneous distribution of population density, and elimination of population density.

    Просмотров за год: 1.
  9. Абакумов А.И., Израильский Ю.Г.
    Модельный способ оценки содержания хлорофилла в море на основании спутниковой информации
    Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 473-482

    На основе математическоймо дели динамики биомасс фитопланктона построен способ оценки содержания хлорофилла в районе моря с учетом его распределения по глубине. Модель построена на основе уравнения «реакция-диффузия», учитывает основные влияющие факторы: минеральное питание, освещенность и температуру. Используется спутниковая информация о поверхностном слое моря. Приведен пример расчетов для залива Петра Великого (Японское море).

    Abakumov A.I., Izrailsky Y.G.
    Model method of vertical chlorophyll concentration reconstruction from satellite data
    Computer Research and Modeling, 2013, v. 5, no. 3, pp. 473-482

    A model, describing the influence of external factors on temporal evolution of phytoplankton distribution in a horizontally-homogenous water layer, is presented. This model is based upon the reactiondiffusion equation and takes into account the main factors of influence: mineral nutrients, insolation and temperature. The mineral nutrients and insolation act oppositely on spatial phytoplankton distribution. The results of numerical modeling are presented and the prospect of applying this model to reconstruction of phytoplankton distribution from sea-surface satellite data is discussed. The model was used to estimate the chlorophyll content of the Peter the Great Bay (Sea of Japan).

    Просмотров за год: 5. Цитирований: 2 (РИНЦ).
  10. Лопатин Н.В., Горбушина С.Н., Семенова И.П., Дьяконов Г.С., Кудрявцева Е.А., Выдумкина С.В.
    Моделирование структурообразования в титановом сплаве ВТ6 при изотермической ковке в программном комплексе Deform
    Компьютерные исследования и моделирование, 2014, т. 6, № 6, с. 975-982

    В статье приводятся результаты моделирования эволюции структуры при изотермической деформации сплава ВТ6 в дуплексном состоянии микроструктуры. С целью расчета процессов рекристаллизации, проходящих во вторичной α-фазе, была разработана модель рекристаллизации, основанная на дислокационном подходе к образованию зародышей рекристаллизации и последующего их роста. Процесс глобуляризации пластинчатой α-фазы был рассчитан при допущении о диффузионно-контролируемой миграции границ β-фазы обусловленного зернограничной диффузией ванадия. Адекватность модели была подтверждена результатами эксперимента.

    Lopatin N.V., Gorbushina S.N., Semenova I.P., Dyakonov G.S., Kudryavtseva E.A., Vidumkina S.V.
    Simulation of microstructure evolutions of VT6 alloy during isothermal forging using Deform software
    Computer Research and Modeling, 2014, v. 6, no. 6, pp. 975-982

    The article contains results of modeling of bi-modal microstructure evolution of VT6 alloy during isothermal forging. The model of recrystallization based on dislocation approach to nucleation and growth of nuclear was made to calculate recrystallization processes of the secondary alpha phase. The globularization process of lamellar alpha phase was calculated with assumption of diffusion-control migration of beta-phase boundary due to grain boundary diffusion of vanadium atom. The theoretical results were compared with experimental one.

    Просмотров за год: 7. Цитирований: 3 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.