Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Об адаптивных ускоренных методах и их модификациях для альтернированной минимизации
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 497-515В первой части работы получена оценка скорости сходимости ранее известного ускоренного метода первого порядка AGMsDR на классе задач минимизации, вообще говоря, невыпуклых функций с $M$-липшицевым градиентом и удовлетворяющих условию Поляка – Лоясиевича. При реализации метода не требуется знать параметр $\mu^{PL}>0$ из условия Поляка – Лоясиевича, при этом метод демонстрирует линейную скорость сходимости (сходимость со скоростью геометрической прогрессии со знаменателем $\left.\left(1 - \frac{\mu^{PL}}{M}\right)\right)$. Ранее для метода была доказана сходимость со скоростью $O\left(\frac1{k^2}\right)$ на классе выпуклых задач с $M$-липшицевым градиентом. А также сходимость со скоростью геометрической прогрессии, знаменатель которой $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$, но только если алгоритму известно значение параметра сильной выпуклости $\mu^{SC}>0$. Новизна результата заключается в том, что удается отказаться от использования методом значения параметра $\mu^{SC}>0$ и при этом сохранить линейную скорость сходимости, но уже без корня в знаменателе прогрессии.
Во второй части представлена новая модификация метода AGMsDR для решения задач, допускающих альтернированную минимизацию (Alternating AGMsDR). Доказываются аналогичные оценки скорости сходимости на тех же классах оптимизационных задач.
Таким образом, представлены адаптивные ускоренные методы с оценкой сходимости $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ на классе выпуклых функций с $M$-липшицевым градиентом, которые удовлетворяют условию Поляка – Лоясиевича. При этом для работы метода не требуются значения параметров $M$ и $\mu^{PL}$. Если же условие Поляка – Лоясиевича не выполняется, то можно утверждать, что скорость сходимости равна $O\left(\frac1{k^2}\right)$, но при этом методы не требуют никаких изменений.
Также рассматривается адаптивная каталист-оболочка неускоренного градиентного метода, которая позволяет доказать оценку скорости сходимости $O\left(\frac1{k^2}\right)$. Проведено экспериментальное сравнение неускоренного градиентного метода с адаптивным выбором шага, ускоренного с помощью адаптивной каталист-оболочки с методами AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) и алгоритмом Синхорна для задачи, двойственной к задаче оптимального транспорта.
Проведенные вычислительные эксперименты показали более быструю работу метода Alternating AGMsDR по сравнению как с неускоренным градиентным методом, ускоренным с помощью адаптивной каталист-оболочки, так и с методом AGMsDR, несмотря на асимптотически одинаковые гарантии скорости сходимости $O\left(\frac1{k^2}\right)$. Это может быть объяснено результатом о линейной скорости сходимости метода Alternating AGMsDR на классе задач, удовлетворяющих условию Поляка – Лоясиевича. Гипотеза была проверена на квадратичных задачах. Метод Alternating AGMsDR показал более быструю сходимость по сравнению с методом AGMsDR.
Ключевые слова: выпуклая оптимизация, альтернированная минимизация, ускоренные методы, адаптивные методы, условие Поляка –Лоясиевича.
On accelerated adaptive methods and their modifications for alternating minimization
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 497-515In the first part of the paper we present convergence analysis of AGMsDR method on a new class of functions — in general non-convex with $M$-Lipschitz-continuous gradients that satisfy Polyak – Lojasiewicz condition. Method does not need the value of $\mu^{PL}>0$ in the condition and converges linearly with a scale factor $\left(1 - \frac{\mu^{PL}}{M}\right)$. It was previously proved that method converges as $O\left(\frac1{k^2}\right)$ if a function is convex and has $M$-Lipschitz-continuous gradient and converges linearly with a~scale factor $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$ if the value of strong convexity parameter $\mu^{SC}>0$ is known. The novelty is that one can save linear convergence if $\frac{\mu^{PL}}{\mu^{SC}}$ is not known, but without square root in the scale factor.
The second part presents modification of AGMsDR method for solving problems that allow alternating minimization (Alternating AGMsDR). The similar results are proved.
As the result, we present adaptive accelerated methods that converge as $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ on a class of convex functions with $M$-Lipschitz-continuous gradient that satisfy Polyak – Lojasiewicz condition. Algorithms do not need values of $M$ and $\mu^{PL}$. If Polyak – Lojasiewicz condition does not hold, the convergence is $O\left(\frac1{k^2}\right)$, but no tuning needed.
We also consider the adaptive catalyst envelope of non-accelerated gradient methods. The envelope allows acceleration up to $O\left(\frac1{k^2}\right)$. We present numerical comparison of non-accelerated adaptive gradient descent which is accelerated using adaptive catalyst envelope with AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) and Sinkhorn's algorithm on the problem dual to the optimal transport problem.
Conducted experiments show faster convergence of alternating AGMsDR in comparison with described catalyst approach and AGMsDR, despite the same asymptotic rate $O\left(\frac1{k^2}\right)$. Such behavior can be explained by linear convergence of AGMsDR method and was tested on quadratic functions. Alternating AGMsDR demonstrated better performance in comparison with AGMsDR.
-
Применение метода Dynamic Mode Decomposition для поиска неустойчивых мод в задаче о ламинарно-турбулентном переходе
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1069-1090Ламинарно-турбулентный переход является предметом активных исследований, связанных с повышением экономической эффективности авиатранспорта, так как в турбулентном пограничном слое увеличивается сопротивление, что ведет к росту расхода топлива. Одним из направлений таких исследований является поиск эффективных методов нахождения положения перехода в пространстве. Используя эту информацию при проектировании летательного аппарата, инженеры могут прогнозировать его технические характеристики и рентабельность уже на начальных этапах проекта. Традиционным для индустрии подходом к решению задачи поиска координат ламинарно-турбулентного перехода является $e^N$-метод. Однако, несмотря на повсеместное применение, он обладает рядом существенных недостатков, так как основан на предположении о параллельности моделируемого потока, что ограничивает сценарии его применения, а также требует проводить вычислительно затратные расчеты в широком диапазоне частот и волновых чисел. Альтернативой $e^N$-методу может служить применение метода Dynamic Mode Decomposition, который позволяет провести анализ возмущений потока, напрямую используя данные о нем. Это избавляет от необходимости в проведении затратных вычислений, а также расширяет область применения метода ввиду отсутствия в его построении предположений о параллельности потока.
В представленном исследовании предлагается подход к нахождению положения ламинарно-турбулентного перехода с применением метода Dynamic Mode Decomposition, заключающийся в разбиении региона пограничного слоя на множества подобластей, по каждому из которых независимо вычисляется точка перехода, после чего результаты усредняются. Подход валидируется на случаях дозвукового и сверхзвукового обтекания двумерной пластины с нулевым градиентом давления. Результаты демонстрируют принципиальную применимость и высокую точность описываемого метода в широком диапазоне условий. Проводится сравнение с $e^N$-методом, доказывающее преимущества предлагаемого подхода, выражающиеся в более быстром получении результата при сопоставимой с $e^N$-методом точности получаемого решения, что говорит о перспективности использования описываемого подхода в прикладных задачах.
Ключевые слова: dynamic mode decomposition, уравнения Навье – Стокса, ламинарно-турбулентный переход, линейная теория устойчивости, $e^N$-метод.
Application of the Dynamic Mode Decomposition in search of unstable modes in laminar-turbulent transition problem
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1069-1090Laminar-turbulent transition is the subject of an active research related to improvement of economic efficiency of air vehicles, because in the turbulent boundary layer drag increases, which leads to higher fuel consumption. One of the directions of such research is the search for efficient methods, that can be used to find the position of the transition in space. Using this information about laminar-turbulent transition location when designing an aircraft, engineers can predict its performance and profitability at the initial stages of the project. Traditionally, $e^N$ method is applied to find the coordinates of a laminar-turbulent transition. It is a well known approach in industry. However, despite its widespread use, this method has a number of significant drawbacks, since it relies on parallel flow assumption, which limits the scenarios for its application, and also requires computationally expensive calculations in a wide range of frequencies and wave numbers. Alternatively, flow analysis can be done by using Dynamic Mode Decomposition, which allows one to analyze flow disturbances using flow data directly. Since Dynamic Mode Decomposition is a dimensionality reduction method, the number of computations can be dramatically reduced. Furthermore, usage of Dynamic Mode Decomposition expands the applicability of the whole method, due to the absence of assumptions about the parallel flow in its derivation.
The presented study proposes an approach to finding the location of a laminar-turbulent transition using the Dynamic Mode Decomposition method. The essence of this approach is to divide the boundary layer region into sets of subregions, for each of which the transition point is independently calculated, using Dynamic Mode Decomposition for flow analysis, after which the results are averaged to produce the final result. This approach is validated by laminar-turbulent transition predictions of subsonic and supersonic flows over a 2D flat plate with zero pressure gradient. The results demonstrate the fundamental applicability and high accuracy of the described method in a wide range of conditions. The study focuses on comparison with the $e^N$ method and proves the advantages of the proposed approach. It is shown that usage of Dynamic Mode Decomposition leads to significantly faster execution due to less intensive computations, while the accuracy is comparable to the such of the solution obtained with the $e^N$ method. This indicates the prospects for using the described approach in a real world applications.
-
О подходе к разработке и валидации алгоритмов маршрутизации на разрывных сетях
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 983-993В данной статье рассматривается проблема централизованного планирования маршрутов передачи данных в сетях, устойчивых к задержкам и разрывам. Исходная проблема расширяется дополнительными требованиями к хранению узлов и процессу связи. Во-первых, предполагается, что связь между узлами графа устанавливается с помощью антенн. Во-вторых, предполагается, что каждый узел имеет хранилище конечной емкости. Существующие работы не рассматривают и не решают задачу с этими ограничениями. Предполагается, что заранее известны информация о сообщениях, подлежащих обработке, информация о конфигурации сети в указанные моменты времени, взятые с определенными периодами, информация о временных задержках для ориентации антенн для передачи данных и ограничения на объем хранения данных на каждом спутнике группировки. Два хорошо известных алгоритма — CGR и Earliest Delivery with All Queues — модифицированы для удовлетворения расширенных требований. Полученные алгоритмы решают задачу поиска оптимального маршрута в сети, устойчивой к разрывам, отдельно для каждого сообщения. Также рассматривается проблема валидации алгоритмов в условиях отсутствия тестовых данных. Предложены и апробированы возможные подходы к валидации, основанные на качественных предположениях, описаны результаты экспериментов. Проведен сравнительный анализ производительности двух алгоритмов решения задачи маршрутизации. Два алгоритма, названные RDTNAS-CG и RDTNAS-AQ, были разработаны на основе алгоритмов CGR и Earliest Delivery with All Queues соответственно. Оригинальные алгоритмы были значительно расширены и была разработана дополненная реализация. Валидационные эксперименты были проведены для проверки минимальных требований «качества» к правильности алгоритмов. Сравнительный анализ производительности двух алгоритмов показал, что алгоритм RDTNAS-AQ на несколько порядков быстрее, чем RDTNAS-CG.
Augmented data routing algorithms for satellite delay-tolerant networks. Development and validation
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 983-993The problem of centralized planning for data transmission routes in delay tolerant networks is considered. The original problem is extended with additional requirements to nodes storage and communication process. First, it is assumed that the connection between the nodes of the graph is established using antennas. Second, it is assumed that each node has a storage of finite capacity. The existing works do not consider these requirements. It is assumed that we have in advance information about messages to be processed, information about the network configuration at specified time points taken with a certain time periods, information on time delays for the orientation of the antennas for data transmission and restrictions on the amount of data storage on each satellite of the grouping. Two wellknown algorithms — CGR and Earliest Delivery with All Queues are improved to satisfy the extended requirements. The obtained algorithms solve the optimal message routing problem separately for each message. The problem of validation of the algorithms under conditions of lack of test data is considered as well. Possible approaches to the validation based on qualitative conjectures are proposed and tested, and experiment results are described. A performance comparison of the two implementations of the problem solving algorithms is made. Two algorithms named RDTNAS-CG and RDTNAS-AQ have been developed based on the CGR and Earliest Delivery with All Queues algorithms, respectively. The original algorithms have been significantly expanded and an augmented implementation has been developed. Validation experiments were carried to check the minimum «quality» requirements for the correctness of the algorithms. Comparative analysis of the performance of the two algorithms showed that the RDTNAS-AQ algorithm is several orders of magnitude faster than RDTNAS-CG.
-
Регуляризация и ускорение метода Гаусса – Ньютона
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1829-1840Предлагается семейство методов Гаусса – Ньютона для решения оптимизационных задачи систем нелинейных уравнений, основанное на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. В работе представлено развитие схемы метода трех квадратов с добавлением моментного члена к правилу обновления искомых параметров в решаемой задаче. Получившаяся схема обладает несколькими замечательными свойствами. Во-первых, в работе алгоритмически описано целое параметрическое семейство методов, минимизирующих функционалы специального вида: композиции невязки нелинейного уравнения и унимодального функционала. Такой функционал, целиком согласующийся с парадигмой «серого ящика» в описании задачи, объединяет в себе большое количество решаемых задач, связанных с приложениями в машинном обучении, с задачами восстановления регрессионной зависимости. Во-вторых, полученное семейство методов описывается как обобщение нескольких форм алгоритма Левенберга – Марквардта, допускающих реализацию в том числе и в неевклидовых пространствах. В алгоритме, описывающем параметрическое семейство методов Гаусса – Ньютона, используется итеративная процедура, осуществляющая неточное параметризованное проксимальное отображение и сдвиг с помощью моментного члена. Работа содержит детальный анализ эффективности предложенного семейства методов Гаусса – Ньютона, выведенные оценки учитывают количество внешних итераций алгоритма решения основной задачи, точность и вычислительную сложность представления локальной модели и вычисления оракула. Для семейства методов выведены условия сублинейной и линейной сходимости, основанные на неравенстве Поляка – Лоясиевича. В обоих наблюдаемых режимах сходимости локально предполагается наличие свойства Липшица у невязки нелинейной системы уравнений. Кроме теоретического анализа схемы, в работе изучаются вопросы ее практической реализации. В частности, в проведенных экспериментах для субоптимального шага приводятся схемы эффективного вычисления аппроксимации наилучшего шага, что позволяет на практике улучшить сходимость метода по сравнению с оригинальным методом трех квадратов. Предложенная схема объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса – Ньютона, в добавок к этому в работе предложена монотонная моментная модификация семейства разработанных методов, не замедляющая поиск решения в худшем случае и демонстрирующая на практике улучшение сходимости метода.
Ключевые слова: системы нелинейных уравнений, невыпуклая оптимизация, метод Гаусса – Ньютона, условие Поляка – Лоясиевича, оценка сложности.
Regularization and acceleration of Gauss – Newton method
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1829-1840We propose a family of Gauss –Newton methods for solving optimization problems and systems of nonlinear equations based on the ideas of using the upper estimate of the norm of the residual of the system of nonlinear equations and quadratic regularization. The paper presents a development of the «Three Squares Method» scheme with the addition of a momentum term to the update rule of the sought parameters in the problem to be solved. The resulting scheme has several remarkable properties. First, the paper algorithmically describes a whole parametric family of methods that minimize functionals of a special kind: compositions of the residual of a nonlinear equation and an unimodal functional. Such a functional, entirely consistent with the «gray box» paradigm in the problem description, combines a large number of solvable problems related to applications in machine learning, with the regression problems. Secondly, the obtained family of methods is described as a generalization of several forms of the Levenberg –Marquardt algorithm, allowing implementation in non-Euclidean spaces as well. The algorithm describing the parametric family of Gauss –Newton methods uses an iterative procedure that performs an inexact parametrized proximal mapping and shift using a momentum term. The paper contains a detailed analysis of the efficiency of the proposed family of Gauss – Newton methods; the derived estimates take into account the number of external iterations of the algorithm for solving the main problem, the accuracy and computational complexity of the local model representation and oracle computation. Sublinear and linear convergence conditions based on the Polak – Lojasiewicz inequality are derived for the family of methods. In both observed convergence regimes, the Lipschitz property of the residual of the nonlinear system of equations is locally assumed. In addition to the theoretical analysis of the scheme, the paper studies the issues of its practical implementation. In particular, in the experiments conducted for the suboptimal step, the schemes of effective calculation of the approximation of the best step are given, which makes it possible to improve the convergence of the method in practice in comparison with the original «Three Square Method». The proposed scheme combines several existing and frequently used in practice modifications of the Gauss –Newton method, in addition, the paper proposes a monotone momentum modification of the family of developed methods, which does not slow down the search for a solution in the worst case and demonstrates in practice an improvement in the convergence of the method.
-
Параллельное представление локального элиминационного алгоритма для ускорения решения разреженных задач дискретной оптимизации
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 699-705Алгоритмы декомпозиции являются методами решения NP-трудных задач дискретной оптимизации (ДО). В этой статье демонстрируется один из перспективных методов, использующих разреженность матриц, — локальной элиминационный алгоритм в параллельной интерпретации (ЛЭАП). Это алгоритм структурной из декомпозиции на основе графа, который позволяет найти решение поэтапно таким образом, что каждый последующих этапов использует результаты предыдущих этапов. В то же время ЛЭАП сильно зависит от порядка элиминации, который фактически является стадиями решения. Также в статье рассматриваются древовидный и блочный тип распараллеливания для ЛЭАП и необходимые процессы их реализации.
Ключевые слова: дискретная оптимизация, добровольные вычисления, локальный элиминационный алгоритм, параллельные вычисления, разреженные задачи, элиминационное дерево.
Parallel representation of local elimination algorithm for accelerating the solving sparse discrete optimization problems
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 699-705Просмотров за год: 1.The decomposition algorithms provide approaches to deal with NP-hardness in solving discrete optimization problems (DOPs). In this article one of the promising ways to exploit sparse matrices — local elimination algorithm in parallel interpretation (LEAP) are demonstrated. That is a graph-based structural decomposition algorithm, which allows to compute a solution in stages such that each of them uses results from previous stages. At the same time LEAP heavily depends on elimination ordering which actually provides solving stages. Also paper considers tree- and block-parallel for LEAP and required realization process of it comparison of a several heuristics for obtaining a better elimination order and shows how is related graph structure, elimination ordering and solving time.
-
Предварительная декомпозиция задач дискретной оптимизации для ускорения алгоритма ветвей и границ в распределенной вычислительной среде
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 719-725В работе рассматриваются возможности реализации крупноблочных схем метода ветвей и границ для решения частично целочисленных задач линейного программирования. В качестве основы берется пакет оптимизации с открытым исходным кодом CBC. Анализируется возможность использования пакета для реализации крупноблочной схемы метода ветвей и границ. Система реализуется с использованием языка Erlang. Проводятся численные эксперименты на основе задачи о коммивояжере, показывающие заметное ускорение распределенной схемы решения задачи по сравнению с единичным однопоточным экземпляром пакета.
Ключевые слова: метод ветвей и границ, крупнозернистый параллелизм.
Pre-decomposition of discrete optimization problems to speed up the branch and bound method in a distributed computing environment
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 719-725The paper presents an implementation of branch and bound algorithm employing coarse grained parallelism. The system is based on CBC (COIN-OR branch and cut) open-source MIP solver and inter-process communication capabilities of Erlang. Numerical results show noticeable speedup in comparison to single-threaded CBC instance.
Keywords: branch and bound algorithm, coarse grained parallelism.Просмотров за год: 2. Цитирований: 2 (РИНЦ). -
Неоднородные клеточные генетические алгоритмы
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 775-780В работе вводится в рассмотрение понятие неоднородного клеточного генетического алгоритма, в котором ряд параметров, влияющих на работу генетических операторов, оказывается зависимым от местоположения клеток заданного клеточного пространства. Приводятся результаты численного сравнения неоднородных клеточных генетических алгоритмов со стандартными вариантами генетических алгоритмов, показывающие преимущества предложенного подхода при минимизации мультимодальных функций с большим числом локальных экстремумов. Рассматривается крупноблочная параллельная реализация неоднородных клеточных алгоритмов с использованием технологии MPI.
Non-uniform cellular genetic algorithms
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 775-780Просмотров за год: 9. Цитирований: 3 (РИНЦ).In this paper, we introduce the concept of non-uniform cellular genetic algorithm, in which a number of parameters that affect the operation of genetic operators is dependent on the location of the cells of a given cellular space. The results of numerical comparison of non-uniform cellular genetic algorithms with the standard genetic algorithms, showing the advantages of the proposed approach while minimizing multimodal functions with a large number of local extrema, are presented. The coarse-grained parallel implementation of the non-uniform algorithms using the technology of MPI is considered.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





