Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'численный анализ':
Найдено статей: 215
  1. Соколов А.В., Мамкин В.В., Авилов В.К., Тарасов Д.Л., Курбатова Ю.А., Ольчев А.В.
    Применение метода сбалансированной идентификации для заполнения пропусков в рядах наблюдений за потоками СО2 на сфагновом верховом болоте
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 153-171

    В работе рассматривается применение метода сбалансированной идентификации для построения многофакторной функциональной зависимости нетто СО2-обмена (NEE) от факторов внешней среды и ее дальнейшего использования для заполнения пропусков в рядах наблюдений за потоками СО2 на верховом сфагновом болоте в Тверской области. Измерения потоков на болоте проводились с помощью метода турбулентных пульсаций в период с августа по ноябрь 2017 года. Из-за дождливых погодных условий и высокой повторяемости периодов с низкой турбулентностью на протяжении всего периода наблюдений доля пропусков в измерениях NEE на исследуемом болоте превысила 40%. Разработанная для заполнения пропусков модель описывает NEE верхового болота как разность экосистемного дыхания (RE) и валовой первичной продукции (GPP) и учитывает зависимость этих параметров от приходящей суммарной солнечной радиации (Q), температуры почвы (T), дефицита упругости водяного пара (VPD) и уровня болотных вод (WL). Используемый для этой цели метод сбалансированной идентификации основан на поиске оптимального соотношения между простотой модели и точностью повторения измерений — соотношения, доставляющего минимум оценке погрешности моделирования, полученной методом перекрестного оценивания. Полученные численные решения обладают минимально необходимой нелинейностью (кривизной), что обеспечивает хорошие интерполяционные и экстраполяционные свойства построенных моделей, необходимые для восполнения недостающих данных по потокам. На основе проведенного анализа временной изменчивости NEE и факторов внешней среды была выявлена статистически значимая зависимость GPP болота от Q, T и VPD, а RE — от T и WL. При этом погрешность применения предложенного метода для моделирования среднесуточных данных NEE составила менее 10%, а точность выполненных оценок NEE была выше, чем у модели REddyProc, учитывающей влияние на NEE меньшего числа внешних факторов. На основе восстановленных непрерывных рядов данных по NEE была проведена оценка масштабов внутрисуточной и межсуточной изменчивости NEE и получены интегральные оценки потоков СО2 исследуемого верхового болота для выбранного летне-осеннего периода. Было показано, что если в августе 2017 года на исследуемом болоте скорость фиксации СО2 растительным покровом существенно превышала величину экосистемного дыхания, то, начиная с сентября, на фоне снижения GPP исследуемое болото превратилось в устойчивый источник СО2 для атмосферы.

    Просмотров за год: 19.
  2. Статья посвящена численному исследованию ударно-волновых течений в неоднородных средах — газовзвесях. В данной работе применяется двухскоростная двухтемпературная модель, в которой дисперсная компонента смеси имеет свою скорость и температуру. Для описания изменения концентрации дисперсной компоненты решается уравнение сохранения «средней плотности». В данном исследовании учитывались межфазное тепловое взаимодействие и межфазный обмен импульсом. Математическая модель позволяет описывать несущею фазу смеси как вязкую, сжимаемою и теплопроводную среду. Система уравнений решалась с помощью явного конечно-разностного метода Мак-Кормака второго порядка точности. Для получения монотонного численного решения к сеточной функции применялась схема нелинейной коррекции. В задаче ударно-волнового течения для составляющих скорости задавались однородные граничные условия Дирихле, для остальных искомых функций задавались граничные условия Неймана. В численных расчетах для того, чтобы выявить зависимость динамики всей смеси от свойств твердой компоненты, рассматривались различные параметры дисперсной фазы — объемное содержание, а также линейный размер дисперсных включений. Целью исследований было определить, каким образом свойства твердых включений влияют на параметры динамики несущей среды — газа. Исследовалось движение неоднородной среды в ударной трубе — канале, разделенном на две части; давление газа в одном из отсеков канала имело большее значение, чем в другом. В статье моделировались движение прямого скачка уплотнения из камеры высокого давления в камеру низкого давления, заполненную запыленной средой, последующее отражение ударной волны от твердой поверхности. Анализ численных расчетов показал, что уменьшение линейного размера частиц газовзвеси и увеличение физической плотности материала, из которого состоят частицы, приводят к формированию более интенсивной отраженной ударной волны с большей температурой и плотностью газа, а также меньшей скоростью движения отраженного возмущения и меньшей скоростью спутного потока газа в отраженной волне.

  3. Лобачева Л.В., Борисова Е.В.
    Моделирование процессов миграции загрязнений от свалки твердых бытовых отходов
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 369-385

    В статье представлены результаты исследования процессов миграции загрязнений от свалки твердых бытовых отходов (ТБО), расположенной в водоохранной зоне озера Селигер. Для изучения особенностей распространения загрязняющих веществ и определения миграционных параметров проведен комплекс полевых и лабораторных исследований в районе расположения свалки. Построена математическая модель, описывающая физико-химические процессы миграции веществ в почвогрунтовой толще. Процесс движения загрязняющих веществ обуславливается разнообразными факторами, оказывающими существенное влияние на миграцию ингредиентов ТБО, основными из которых являются: конвективный перенос, диффузия и сорбционные процессы, которые учтены в математической постановке задачи. Модифицированная математическая модель отличается от известных аналогов учетом ряда параметров, отражающих снижение концентрации ионов аммонийного и нитратного азота в грунтовых водах (транспирация корнями растений, разбавление инфильтрационными водами и т. д.). Представлено аналитическое решение по оценке распространения загрязнений от свалки ТБО. На основе математической модели построен комплекс имитационных моделей, который позволяет получить численное решение частных задач: вертикальной и горизонтальной миграции веществ в подземном потоке. В ходе выполнения численных экспериментов, получения аналитических решений, а также на основе данных полевых и лабораторных исследований изучена динамика распределения загрязнений в толще объекта исследования до озера. Сделан долгосрочный прогноз распространения загрязнений от свалки. В результате компьютерных и модельных экспериментов установлено, что при миграции загрязнений от свалки можно выделить ряд зон взаимодействия чистых грунтовых вод с загрязненными подземными водами, каждая из которой характеризуется различным содержанием загрязняющих веществ. Данные вычислительных экспериментов и аналитических расчетов согласуются с результатами полевых и лабораторных исследований объекта, что дает основание рекомендовать предлагаемые модели для прогнозирования миграции загрязнений от свалки ТБО. Анализ результатов моделирования миграции загрязнений позволяет обосновать численные оценки увеличения концентрации ионов $NH_4^+$ и $NO_3^-$ со временем функционирования свалки. Выявлено, что уже через 100 лет после начала существования свалки токсичные компоненты фильтрата заполнят все поровое пространство от свалки до озера, что приведет к существенному ухудшению экосистемы озера Селигер.

  4. Зейде К.М., Вардугина А.Ю., Марвин С.В.
    Быстрый метод анализа возмущения электромагнитного поля малыми сферическими рассеивателями
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1039-1050

    В данной работе рассматривается особая аппроксимация обобщенной формулы возмущения электромагнитного поля семейством электрически малых сферических неоднородностей. Задача, рассматриваемая в настоящей работе, возникает во множестве приложений технической электродинамики, радиолокации, подповерхностного зондирования и дефектоскопии. В общем случае она формулируются следующим образом: в некоторой точке возмущенного пространства необходимо определить амплитуду электромагнитного поля. Возмущение электромагнитных волн вызывается семейством электрически малых распределенных в пространстве рассеивателей. Источник электромагнитных волн располагается также в возмущенном пространстве. Задача решается введением допущения для дальнего поля рассеяния и через формулировку для эффективной поверхности рассеяния неоднородности. Это, в свою очередь, позволяет существенно убыстрить вычисления возмущенного электромагнитного поля семейством идентичных друг другу сферических неоднородностей с произвольными электрофизическими параметрами. Аппроксимация проверяется путем сравнения получаемых результатов с решением обобщенной формулы для возмущения электромагнитного поля. В данной работе рассматривается только прямая задача рассеяния, тем самым все параметры рассеивателей являются известными. В этом контексте можно утверждать, что формулировка соответствует корректно поставленной задаче и не подразумевает решение интегрального уравнения в обобщенной формуле. Одной из особенностью предложенного алгоритма является выделение характерной плоскости на границе пространства. Все точки наблюдения за состоянием системы принадлежат этой плоскости. Семейство рассеивателей располагается внутри области наблюдения, которая формируется этой поверхностью. Данный подход, кроме всего прочего, позволяет снять ряд ограничений на использование обобщенной формулировки для возмущенного электрического поля, например требование по удаленности неоднородностей друг от друга в пространстве распространения электромагнитных волн. Учет вклада каждого рассеивателя в семействе неоднородностей производится путем перехода к значениям их эффективных поверхностей рассеяния и дальнейшего их суммирования с учетом возникающих волновых эффектов, таких как интерференция и многократное отражение. В статье приводятся и описываются ограничения предложенного метода, а также рассматриваются возможные его модификации и дополнения.

  5. Брацун Д.А., Бузмаков М.Д.
    Репрессилятор с запаздывающей экспрессией генов. Часть II. Стохастическое описание
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 587-609

    Репрессилятором называют первую в синтетической биологии генную регуляторную сеть, искусственно сконструированную в 2000 году. Он представляет собой замкнутую малоразмерную цепь из трех генов: $lacI$, $\lambda cI$ и $tetR$, которые в такой комбинации в природе не встречаются. Промотор каждого гена контролирует следующий за ним цистрон по принципу отрицательной обратной связи, подавляя экспрессию соседнего гена. Ранее в работе [Брацун и др., 2018] была предложена математическая модель запаздывающего репрессилятора и изучены ее свойства в рамках детерминистского описания. Предполагается, что запаздывание может быть как естественным, т. е. возникать во время процессов транскрипции/трансляции в силу многоступенчатого характера этих процессов, так и искусственным, т. е. специально вноситься в работу регуляторной сети с помощью методов генной инженерии. Данная работа посвящена стохастическому описанию динамических процессов в запаздывающем репрессиляторе, которое является важным дополнением детерминистского анализа из-за сильных флуктуаций и небольшого числа молекул, принимающих обычно участие в генной регуляции. Стохастическое исследование было проведено численно с помощью алгоритма Гиллеспи, модифицированного для систем с запаздыванием. Приводятся описание алгоритма, его программная реализация и результаты тестовых расчетов для одногенного авторепрессора с запаздыванием. При исследовании репрессилятора обнаружено, что стохастическое описание в ряде случаев дает новую информацию о поведении системы, которая не сводится к детерминистской динамике даже при усреднении по большому числу реализаций. В подкритической области, где детерминистский анализ предсказывает абсолютную устойчивость системы, было обнаружено возбуждение квазирегулярных колебаний, вызываемых нелинейным взаимодействием шума и запаздывания. Выше порога возникновения неустойчивости обнаружено спонтанное изменение фазы колебаний из-за внезапной временной деградации этих колебаний. Ранее в детерминистском анализе был обнаружен долгоживущий переходный режим, который отвечает движению фазовой траектории по медленному многообразию и отражает процесс длительной синхронизации пульсаций в работе отдельных генов. Показано, что в стохастическом случае переход к кооперативному режиму работы генов репрессилятора происходит в среднем на два порядка быстрее. Построено распределение вероятности соскока фазовой траектории с медленного многообразия и определено наиболее вероятное время такого перехода. Обсуждается влияние внутреннего шума химических реакций на динамические свойства репрессилятора.

  6. Олейник Е.Б., Ивашина Н.В., Шмидт Ю.Д.
    Моделирование процессов миграции населения: методы и инструменты (обзор)
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1205-1232

    Миграция оказывает существенное влияние на формирование демографической структуры населения территорий, состояние региональных и локальных рынков труда. Быстрое изменение численности трудоспособного населения той или иной территории из-за миграционных процессов приводит к дисбалансу спроса и предложения на рынках труда, изменению демографической структуры населения. Миграция во многом является отражением социально-экономических процессов, происходящих в обществе. Поэтому становятся актуальными вопросы, связанные с изучением факторов миграции, направления, интенсивности и структуры миграционных потоков, прогнозированием их величины.

    Для анализа, прогнозирования миграционных процессов и оценки их последствий часто используется математический инструментарий, позволяющий с нужной точностью моделировать миграционные процессы для различных территорий на основе имеющихся статистических данных. В последние годы как в России, так и в зарубежных странах появилось много научных работ, посвященных моделированию внутренних и внешних миграционных потоков с использованием математических методов. Следовательно, для формирования целостной картины основных тенденций и направлений исследований в этой области возникла необходимость в систематизации наиболее часто используемых методов и инструментов моделирования.

    В представленном обзоре на основе анализа современных отечественных и зарубежных публикаций представлены основные подходы к моделированию миграции, основные составляющие методологии моделирования миграционных процессов — этапы, методы, модели и классификация моделей. Обзор содержит два раздела: методы моделирования миграционных процессов и модели миграции. В первом разделе приведено описание основных методов, используемых в процессе разработки моделей — эконометрических, клеточных автоматов, системно-динамических, вероятностных, балансовых, оптимизации и кластерного анализа. Во втором — выделены и описаны наиболее часто встречающиеся классы моделей — регрессионные, агент-ориентированные, имитационные, оптимизационные, веро- ятностные, балансовые, динамические и комбинированные. Рассмотрены особенности, преимущества и недостатки различных типов моделей миграционных процессов, проведен их сравнительный анализ и разработаны общие рекомендации по выбору математического инструментария для моделирования.

  7. Башкирцева И.А., Перевалова Т.В., Ряшко Л.Б.
    Метод стохастической чувствительности в анализе динамических трансформаций в модели «две жертвы – хищник»
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1343-1356

    Данная работа посвящена исследованию проблемы моделирования и анализа сложных колебательных режимов, как регулярных, так и хаотических, в системах взаимодействующих популяций в присутствии случайных возмущений. В качестве исходной концептуальной детерминированной модели рассматривается вольтерровская система трех дифференциальных уравнений, описывающая динамику популяций жертв двух конкурирующих видов и хищника. Данная модель учитывает следующие ключевые биологические факторы: естественный прирост жертв, их внутривидовую и межвидовую конкуренцию, вымирание хищников в отсутствие жертв, скорость выедания жертв хищником, прирост популяции хищника вследствие выедания жертв, интенсивность внутривидовой конкуренции в популяции хищника. В качестве бифуркационного параметра используется скорость роста второй популяции жертв. На некотором интервале изменения этого параметра система демонстрирует большое разнообразие динамических режимов: равновесных, колебательных и хаотических. Важной особенностью этой модели является мультистабильность. В данной работе мы фокусируемся на изучении параметрической зоны тристабильности, когда в системе сосуществуют устойчивое равновесие и два предельных цикла. Такая биритмичность в присутствии случайных возмущений порождает новые динамические режимы, не имеющие аналогов в детерминированном случае. Целью статьи является детальное изучение стохастических явлений, вызванных случайными флуктуациями скорости роста второй популяции жертв. В качестве математической модели таких флуктуаций мы рассматриваем белый гауссовский шум. Методами прямого численного моделирования решений соответствующей системы стохастических дифференциальных уравнений выявлены и описаны следующие феномены: однонаправленные стохастические переходы с одного цикла на другой; триггерный режим, вызванный переходами между циклами; индуцированный шумом переход с циклов на равновесие, отвечающее вымиранию популяции хищника и второй жертвы. В статье представлены результаты анализа этих явлений с помощью показателей Ляпунова, выявлены параметрические условия переходов от порядка к хаосу и от хаоса к порядку. Для аналитического исследования таких вызванных шумом многоэтапных переходов были применены техника функций стохастической чувствительности и метод доверительных областей. В статье показано, как этот математический аппарат позволяет спрогнозировать интенсивность шума, приводящего к качественным трансформациям режимов стохастической популяционной динамики.

  8. В первой части статьи сформулирована общая цель работы, состоящая в численном исследовании химических, ионизационных, оптических и температурных характеристик нижней ионосферы, возмущенной мощным потоком радиоизлучения. Дан краткий обзор основных экспериментальных и теоретических исследований физических явлений в ионосфере при воздействии на нее потока радиоволн коротковолнового диапазона, генерируемого нагревными стендами различной мощности. Показана определяющая роль $D$-области ионосферы в поглощении энергии радиолуча. Выполнен подробный анализ кинетических процессов в возмущенной $D$-области ионосферы, которая является наиболее сложной в кинетическом отношении. Показано, что для полного описания ионизационно-химических и оптических характеристик возмущенной области необходимо учитывать более 70 компонент, которые по своему основному физическому содержанию удобно разделить на пять групп. Представлена кинетическая модель для описания изменения концентраций взаимодействующих между собой компонентов (общее число реакций — 259). Система кинетических уравнений решалась с помощью специально адаптированного к такого рода задачам полунеявного численного метода. На основе предложенной структуры разработан программный комплекс, в котором схема алгоритма допускала менять как содержимое отдельных блоков программы, так и их количество, что позволило проводить подробные численные исследования отдельных процессов в поведении параметров возмущенной области. Полный численный алгоритм основан на двухтемпературном приближении, в котором главное внимание уделялось расчету электронной температуры, так как на ее поведение определяющее влияние оказывают неупругие кинетические процессы с участием электронов. Постановка задачи носит общий характер и позволяет рассчитывать параметры возмущенной ионосферы в широком диапазоне мощностей и частот радиоизлучения. На основе разработанной численной методики можно исследовать широкий круг явлений как в естественной, так и в возмущенной ионосфере.

  9. Рассматривается нелинейная краевая задача водородопроницаемости, соответствующая следующему эксперименту. Нагретая до достаточно высокой температуры мембрана из исследуемого конструкционного материала служит перегородкой вакуумной камеры. После предварительного вакуумирования и практически полной дегазации на входной стороне создается постоянное давление газообразного (молекулярного) водорода. С выходной стороны в условиях вакуумирования с помощью масс-спектрометра определяется проникающий поток.

    Принята линейная модель зависимости коэффициента диффузии растворенного атомарного водорода в объеме от концентрации, температурная зависимость в соответствии с законом Аррениуса. Поверхностные процессы растворения и сорбции-десорбции учтены в форме нелинейных динамических краевых условий (дифференциальные уравнения динамики поверхностных концентраций атомарного водорода). Математическая особенность краевой задачи состоит в том, что производные по времени от концентраций входят как в уравнение диффузии, так и в граничные условия с квадратичной нелинейностью. В терминах общей теории функционально-дифференциальных уравнений это приводит к так называемым уравнениям нейтрального типа и требует разработки более сложного математического аппарата. Представлен итерационный вычислительный алгоритм второго (повышенного) порядка точности решения соответствующей нелинейной краевой задачи на основе явно-неявных разностных схем. Явная составляющая применяется к более медленным подпроцессам, что позволяет на каждом шаге избегать решения нелинейной системы уравнений.

    Приведены результаты численного моделирования, подтверждающие адекватность модели экспериментальным данным. Определены степени влияния вариаций параметров водородопроницаемости («производные») на проникающий поток и распределение концентрации атомов H по толщине образца, что важно, в частности, для задач проектирования защитных конструкций от водородного охрупчивания и мембранных технологий получения особо чистого водорода. Вычислительный алгоритм позволяет использовать модель и при анализе экстремальных режимов для конструкционных материалов (перепады давления, высокие температуры, нестационарный нагрев), выявлять лимитирующие факторы при конкретных условиях эксплуатации и экономить на дорогостоящих экспериментах (особенно это касается дейтерий-тритиевых исследований).

  10. В статье рассматриваются модели «хищник – жертва» и проводится глобальный бифуркационный анализ системы Лесли – Говера с аддитивным эффектом Олли и упрощенным функциональным откликом Холлинга III типа, которая моделирует динамику популяций хищников и их жертв в заданной экологической или биомедицинской системе. В данной системе используется наиболее распространенная математическая форма выражения эффекта (или закона) Олли через функцию роста жертвы. Закон Олли гласит, что существует вполне определенное соотношение между индивидуальной приспособленностью к условиям жизни и численностью либо плотностью индивидов данного вида, а именно: с увеличением численности популяции способность к выживанию и репродуктивная способность также увеличиваются. После алгебраических преобразований рациональную систему Лесли – Говера с аддитивным эффектом Олли и упрощенным функциональным откликом Холлинга III типа можно записать в виде квинтико-секстичной динамической системы, т.е. в виде системы с полиномами пятой и шестой степени. Используя информацию о ее особых точках и применяя наш бифуркационно-геометрический подход к качественному анализу, мы изучаем глобальные бифуркации предельных циклов квинтико-секстичной системы. Чтобы контролировать все бифуркации предельных циклов, особенно бифуркации кратных предельных циклов, необходимо знать свойства и комбинировать действия всех параметров, поворачивающих векторное поле системы. Это может быть сделано с помощью принципа окончания Уинтнера – Перко, согласно которому максимальное однопараметрическое семейство кратных предельных циклов заканчивается либо в особой точке, которая, как правило, имеет ту же кратность (цикличность), либо на сепаратрисном цикле, который также, как правило, имеет ту же кратность (цикличность). Этот принцип является следствием принципа естественного окончания, который был сформулирован для многомерных динамических систем Уинтнером, который изучал однопараметрические семейства периодических орбит ограниченной задачи трех тел и доказал, что в аналитическом случае любое однопараметрическое семейство периодических орбит может быть однозначно продолжено через любую бифуркацию, кроме бифуркации удвоения периода. Применяя планарный принцип Уинтнера – Перко, мы доказываем, что если цикличность фокуса в рассматриваемой системе равна трем, то система может иметь не более трех предельных циклов, окружающих одну особую точку.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.