Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Синхронные компоненты финансовых временных рядов
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 639-655В статье предлагается метод совместного анализа многомерных финансовых временных рядов, основанный на оценке набора свойств котировок акций в скользящем временном окне и последующем усреднении значений свойств по всем анализируемым компаниям. Основной целью анализа является построение мер совместного поведения временных рядов, реагирующих на возникновение синхронной или когерентной составляющей. Когерентность поведения характеристик сложной системы является важным признаком, позволяющим оценить приближение системы к резким изменениям своего состояния. Фундаментом для поиска предвестников резких изменений является общая идея увеличения корреляции случайных флуктуаций параметров системы по мере ее приближения к критическому состоянию. Приращения временных рядов стоимостей акций имеют выраженный хаотический характер и обладают большой амплитудой индивидуальных помех, на фоне которых слабый общий сигнал может быть выделен лишь на основе его коррелированности в разных скалярных компонентах многомерного временного ряда. Известно, что классические методы анализа, основанные на использовании корреляций между соседними отсчетами, являются малоэффективными при обработке финансовых временных рядов, поскольку с точки зрения корреляционной теории случайных процессов приращения стоимости акций формально имеют все признаки белого шума (в частности, «плоский спектр» и «дельта-образную» автокорреляционную функцию). В связи с этим предлагается перейти от анализа исходных сигналов к рассмотрению последовательностей их нелинейных свойств, вычисленных во временных фрагментах малой длины. В качестве таких свойств используются энтропия вейвлет-коэффициентов при разложении в базис Добеши, показатели мультифрактальности и авторегрессионная мера нестационарности сигнала. Построены меры син- хронного поведения свойств временных рядов в скользящем временном окне с использованием метода главных компонент, значений модулей всех попарных коэффициентов корреляции и множественной спектральной меры когерентности, являющейся обобщением квадратичного спектра когерентности между двумя сигналами. Исследованы акции 16 крупных российских компаний с начала 2010 по конец 2016 годов. С помощью предложенного метода идентифицированы два интервала времени синхронизации российского фондового рынка: с середины декабря 2013 г. по середину марта 2014 г. и с середины октября 2014 г. по середину января 2016 г.
Ключевые слова: финансовые временные ряды, вейвлеты, энтропия, мульти-фракталы, предсказуемость, синхронизация.Просмотров за год: 12. Цитирований: 2 (РИНЦ). -
Кластерный метод математического моделирования интервально-стохастических тепловых процессов в электронных системах
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1023-1038В работе разработан кластерный метод математического моделирования интервально-стохастических тепловых процессов в сложных технических, в частности электронных, системах (ЭС). В кластерном методе конструкция сложной ЭС представляется в виде тепловой модели, являющейся системой кластеров, каждый из которых содержит ядро, объединяющее в себе тепловыделяющие элементы, попадающие в данный кластер, оболочку кластера и поток среды, протекающий через кластер. Состояние теплового процесса в каждом кластере и в каждый момент времени характеризуется тремя интервально-стохастическими переменными состояния, а именно температурами ядра, оболочки и потока среды. При этом элементы каждого кластера, а именно ядро, оболочка и поток среды, находятся в тепловом взаимодействии между собой и элементами соседних кластеров. В отличие от существующих методов кластерный метод позволяет моделировать тепловые процессы в сложных ЭС с учетом неравномерного распределения температуры в потоке среды нагнетаемой в ЭС, сопряженного характера теплообмена между пото- ком среды в ЭС, ядрами и оболочками кластеров и интервально-стохастического характера тепловых процессов в ЭС, вызванного статистическим технологическим разбросом изготовления и монтажа электронных элементов в ЭС, и случайными флуктуациями тепловых параметров окружающей среды. Математическая модель, описывающая состояния тепловых процессов в кластерной тепловой модели, представляет собой систему интервально-стохастических матрично-блочных уравнений с матричными и векторными блоками, соответствующими кластерам тепловой модели. Решением интервально-стохастических уравнений являются статистические меры переменных состояния тепловых процессов в кластерах — математические ожидания, ковариации между переменными состояния и дисперсии. Методика применения кластерного метода показана на примере реальной ЭС.
-
Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.
Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.
-
Стохастическое моделирование химических реакций в субдиффузионной среде
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 87-104В последние десятилетия активно развивается теория аномальной диффузии, объединяющая различные транспортные процессы, в которых характерное среднеквадратичное рассеяние растет со временем по степенному закону, а не линейно, как для нормальной диффузии. Так, к примеру, диффузия жидкостей в пористых телах, перенос зарядов в аморфных полупроводниках и молекулярный транспорт в вязких средах демонстрируют аномальное «замедление» по сравнению со стандартной моделью.
Удобным инструментом исследования таких процессов является прямое стохастическое моделирование. В работе описана одна из возможных схем такого рода, в основе которой лежит процесс восстановления с временами ожидания, имеющими степенную асимптотику. Аналитические построения показывают тесную связь между рассмотренным классом случайных процессов и уравнениями с производными нецелого порядка. Этот подход легко можно распространить ( соответствующий алгоритм представлен в тексте) на системы, в которых, помимо транспорта, возможны химические реакции. Актуальность исследований в этой области продиктована тем, что точный вид интегро-дифференциальных уравнений, описывающих химическую кинетику в системах с аномальной диффузией, остается пока предметом дискуссии.
Поскольку рассматриваемый класс случайных процессов не обладает марковским свойством, здесь возникают принципиально новые проблемы по сравнению с моделированием химических реакций при нормальной диффузии. Главная из них заключается в способе, которым определяется, какие молекулы должны «погибнуть» в ходе реакции. Поскольку точная схема, отслеживающая каждую возможную комбинацию реактантов, неприемлема с вычислительной точки зрения из-за слишком большого числа таких комбинаций, было предложено несколько простых эвристических процедур. Серия вычислительных экспериментов показала, что результаты весьма чувствительны к выбору одной из этих эвристик.
-
Мультифрактальные и энтропийные статистики сейсмического шума на Камчатке в связи с сильнейшими землетрясениями
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1507-1521В основу изучения свойств сейсмического шума на Камчатке положена идея, что шум является важным источником информации о процессах, предшествующих сильным землетрясениям. Рассматривается гипотеза, что увеличение сейсмической опасности сопровождается упрощением статистической структуры сейсмического шума и увеличением пространственных корреляций его свойств. В качестве статистик, характеризующих шум, использованы энтропия распределения квадратов вейвлет-коэффициентов, ширина носителя мультифрактального спектра сингулярности и индекс Донохо–Джонстона. Значения этих параметров отражают сложность: если случайный сигнал близок по своим свойствам к белому шуму, то энтропия максимальна, а остальные два параметра минимальны. Используемые статистики вычисляются для шести кластеров станций. Для каждого кластера станций вычисляются ежесуточные медианы свойств шума в последовательных временных окнах длиной 1 сутки, в результате чего образуется 18-мерный (3 свойства и 6 кластеров станций) временной ряд свойств. Для выделения общих свойств изменения параметров шума используется метод главных компонент, который применяется для каждого кластера станций, в результате чего информация сжимается до 6-мерного ежесуточного временного ряда главных компонент. Пространственные когерентности шума оцениваются как совокупность максимальных попарных квадратичных спектров когерентности между главным компонентами кластеров станций в скользящем временном окне длиной 365 суток. С помощью вычисления гистограмм распределения номеров кластеров, в которых достигаются минимальные и максимальные значения статистик шума в скользящем временном окне длиной 365 суток, оценивалась миграция областей сейсмической опасности в сопоставлении с сильными землетрясениями с магнитудой не менее 7.
Ключевые слова: сейсмический шум, вейвлеты, энтропия, мультифракталы, многомерный временной ряд, главные компоненты, когерентность. -
Методика анализа шумоиндуцированных явлений в двухкомпонентных стохастических системах реакционно-диффузионного типа со степенной нелинейностью
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 277-291В работе построена и исследуется обобщенная модель, описывающая двухкомпонентные системы реакционно-диффузионного типа со степенной нелинейностью и учитывающая влияние внешних шумов. Для анализа обобщенной модели разработана методология, включающая в себя линейный анализ устойчивости, нелинейный анализ устойчивости и численное моделирование эволюции системы. Методика проведения линейного анализа опирается на базовые подходы, в которых для получения характеристического уравнения используется матрица линеаризации. Нелинейный анализ устойчивости проводится с точностью до моментов третьего порядка включительно. Для этого функции, описывающие динамику компонент, раскладываются в ряд Тейлора до слагаемых третьего порядка. Затем с помощью теоремы Новикова проводится процедура усреднения. В результате полученные уравнения образуют бесконечную иерархично подчиненную структуру, которую в определенный момент необходимо прервать. Для этого пренебрегаем вкладом слагаемых выше третьего порядка как в самих уравнениях, так и при построении уравнений моментов. Полученные уравнения образуют набор линейных уравнений, из которых формируется матрица устойчивости. Эта матрица имеет довольно сложную структуру, в связи с чем ее решение может быть получено только численно. Для проведения численного исследования эволюции системы выбран метод переменных направлений. Из-за наличия в анализируемой системе стохастической части метод был модифицирован таким образом, что на целых слоях проводится генерация случайных полей с заданным распределением и функцией корреляции, отвечающих за шумовой вклад в общую нелинейность. Апробация разработанной методологии проведена на предложенной Barrio et al. модели реакции – диффузии, по результатам исследования которой им показана схожесть получаемых структур с пигментацией рыб. В настоящей работе внимание сосредоточено на анализе поведения системы в окрестности ненулевой стационарной точки. Изучена зависимость действительной части собственных значений от волнового числа. В линейном анализе получена область значений волновых чисел, при которых возникает неустойчивость Тьюринга. Нелинейный анализ и численное моделирование эволюции системы проводятся для параметров модели, которые, напротив, находятся вне области неустойчивости Тьюринга. В рамках нелинейного анализа найдены интенсивности аддитивного шума, при которых, несмотря на отсутствие условий для возникновения диффузионной неустойчивости, система переходит в неустойчивое состояние. Результаты численного моделирования эволюции апробируемой модели демонстрируют процесс образования пространственных структур тьюрингового типа при воздействии на нее аддитивного шума.
-
Синхронизация и хаос в сетях связанных отображений в приложении к моделированию сердечной динамики
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 439-453На основе отображения, построенного путем упрощения и редукции модели Луо–Руди, исследуется динамика ансамблей связанных элементов в приложении к моделированию пространственно-временных процессов в сердечной мышце. В частности, представлены возможности отображения в воспроизведении различных режимов сердечной активности, в том числе возбудимого и осцилляторного режимов. Рассмотрена динамика цепочек и решеток связанных осцилляторных элементов со случайным распределением индивидуальных частот. Обнаружены эффекты кластерной синхронизации и переход к глобальной синхронизации при увеличении силы связи. Проанализировано распространение импульсов по цепочке, а также концентрических и спиральных волн в двумерной решетке связанных отображений, моделирующих динамику возбудимых сред. Изучены характеристики спиральной волны в зависимости от изменения индивидуальных параметров и связи. Проведено исследование смешанных ансамблей, состоящих из возбудимых и осцилляторных элементов с градиентным изменением свойств, в том числе в приложении к задаче описания нормального и патологического характера функционирования синоатриального узла.
Ключевые слова: отображение, возбудимая клетка, осцилляторная клетка, синхронизация, пространственно-временная динамика.Цитирований: 3 (РИНЦ). -
Об одном подходе к имитационному моделированию спортивной игры с дискретным временем
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 271-279Просмотров за год: 9.В статье предлагается подход к имитационному моделированию спортивной игры, состоящей из дискретного набора отдельных поединков, основанный на рассмотрении матча как случайного процесса, в общем случае не являющегося марковским. Первоначально ход игры рассматривается как марковский процесс, на основании чего строятся рекуррентные соотношения между вероятностями достижения состояний теннисного матча, а также между вторичными показателями, такими как математическое ожидание и дисперсия числа розыгрышей, остающихся до завершения гейма. Затем, в рамках имитационной системы, моделирующей матч, мы позволяем произвольное изменение вероятностей исходов составляющих матч поединков, в том числе и в зависимости от результатов предыдущих. Данная работа посвящена модификации модели, ранее предлагавшейся авторами для спортивных игр с непрерывным временем.
Предлагаемый подход позволяет оценивать не только вероятность того или иного исхода матча, но и вероятности достижения каждого из возможных промежуточных результатов, а также вторичные показатели игры, такие как число таких отдельных поединков, потребовавшееся для завершения матча. Подробно изложено построение имитационной системы для гейма теннисного матча, по аналогии с которой осуществляется моделирование сета и всего матча. Доказано утверждение относительно справедливости правил подачи в теннисе, понимаемой в смысле отсутствия влиянии права первой подачи на исход матча. В качестве примера проведены моделирование и анализ планировавшейся, но не состоявшейся игры одного из турниров серии ATP. Получены наиболее вероятные промежуточные и окончательные результаты матча для трех сценариев хода игры.
Основным результатом данной работы является предлагаемая методика имитационного моделирования матча, применимая не только к теннису, но и к другим видам спортивных игр с дискретным временем.
-
О некоторых свойствах коротковолновой статистики временных рядов FOREX
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 657-669Просмотров за год: 10.Финансовая математика является одним из наиболее естественных приложений для статистического анализа временных рядов. Действительно, финансовые временные ряды являются порождением одновременной деятельности большого числа различных экономических агентов, что дает основания ожидать, что к ним могут быть применимы методы статистической физики и теории случайных процессов.
В настоящей работе проведен статистический анализ временных рядов для пар валют на рынке FOREX. Особый интерес представляет сравнение поведения временного ряда как функции, с одной стороны, физического времени и, с другой стороны, условного торгового времени, измеряемого в числе элементарных актов изменения цены (тиков). Экспериментально наблюдаемая статистика рассмотренных временных рядов (пар валют «евро–доллар» для первых половин 2007 и 2009 годов и «британский фунт–доллар» для 2007 года) радикально отличается в зависимости от выбора способа измерения времени. Так, при измерении времени в единицах тиков распределение приращений цены может быть хорошо описано нормальным распределением уже на масштабе порядка десяти тиков. При этом при измерении приращений цены как функции реального физического времени распределение приращений продолжает радикально отличаться от нормального, вплоть до масштабов порядка минут и даже часов.
Для объяснения этого явления нами исследованы статистические свойства элементарных приращений по цене и по времени. В частности, показано, что распределение времени между тиками для всех трех рассмотренных временных рядов имеет длинные (1-2 порядка по времени) степенные хвосты с экспоненциальным обрезанием на больших временах. Получены приближенные выражения для распределений времен ожидания для всех трех рассмотренных случаев. Другие статистические характеристики временного ряда (распределение элементарных изменений цены, парные корреляционные функции для приращений цены и для времен ожидания) демонстрируют достаточно простое поведение. Таким образом, именно аномально широкое распределение времен ожидания играет наиболее важную роль в наблюдаемом отклонении распределения приращений от нормального. В связи с этим результатом мы обсуждаем возможность применения модели случайного процесса с непрерывным временем (continuous time random walk, CTRW) для описания временных рядов FOREX.
-
Методы оценивания параметров случайных точечных полей с локальным взаимодействием
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 323-332В работе дается краткий обзор методов оценивания параметров случайных точечных процессов с локальным взаимодействием между точками. Показано, что общепринятый метод максимального псевдоправдоподобия является частным случаем методов оценивания, основанных на использовании вспомогательного марковского процесса, инвариантная мера которого является гиббсовским точечным полем с параметрами, подлежащими оцениванию. Предложено обобщение данного метода, приводящее к такому виду уравнений для получения оценок неизвестных параметров, который не может быть получен с помощью универсального метода Такача–Фикселя. Компьютерные эксперименты показывают, что новый метод позволяет получать оценки, качество которых выше, чем качество оценок широко используемого метода максимального правдоподобия.
Ключевые слова: гиббсовское точечное поле, оценивающая функция, псевдоправдоподобие, оценивание параметров.Просмотров за год: 3.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





