Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'скорость':
Найдено статей: 285
  1. Моисеева К.М., Крайнов А.Ю.
    Влияние состава угольной пыли на скорость распространения фронта горения по аэровзвеси с неоднородным распределением частиц
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 221-230

    Задача горения газовзвеси с неоднородным распределением частиц по пространству возникает, например, при сжигании взвеси угольной пыли в камерах сгорания энергетических установок и горелок. Неоднородное распределение частиц по пространству может существенно повлиять на скорость распространения фронта пламени по аэровзвеси угольной пыли. Представляют интерес исследование закономерности распространения фронта горения в газовзвеси при неравномерном распределении концентрации реагирующих частиц в воздухе, а также определение зависимости скорости распространения фронта горения от свойств угольной пыли и неоднородности пространственного ее распределения. Целью настоящей работы является численное исследование влияния неоднородного распределения частиц, а также состава аэровзвеси на скорость распространения фронта горения по аэровзвеси угольной пыли.

    Разработана физико-математическая модель горения аэровзвеси угольной пыли с неоднородным распределением частиц угольной пыли по пространству. Физико-математическая постановка задачи учи- тывает выход горючих летучих компонентов из частиц при их нагреве, последующее реагирование летучих компонентов с воздухом, гетерогенную реакцию на поверхности частиц, зависимость коэффициента теплопроводности газа от температуры. Решение задачи проведено численно.

    Проведено параметрическое исследование влияния массовой концентрации, содержания летучих компонентов и размера частиц угольной пыли на скорость горения взвеси угольной пыли в воздухе. Показано, что скорость горения больше для частиц с меньшим содержанием летучих компонентов. Сравнение скорости горения для частиц разного радиуса показало, что чем больше радиус частиц, тем меньше скорость горения аэровзвеси. Определено, что частицы с большей массовой концентрацией горят быстрее.

    Проведен анализ влияния пространственного распределения частиц на скорость горения аэровзвеси. Показано, что скорость распространения фронта горения по аэровзвеси с неоднородным распределением частиц выше скорости распространения фронта горения по аэровзвеси с однородным распределением частиц. Показано, что неоднородное распределение частиц приводит к искривлению фронта горения. Чем меньше радиус частиц, тем сильнее искривляется фронт горения.

    Просмотров за год: 18.
  2. Килин А.А., Кленов А.И., Тененев В.А.
    Управление движением тела с помощью внутренних масс в вязкой жидкости
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 445-460

    Данная статья посвящена изучению самопродвижения тел в жидкости за счет действия внутренних механизмов, без изменения внешней формы тела. В работе представлен обзор теоретических работ, обосновывающих возможностьда нного перемещения в идеальной и вязкой жидкостях.

    Рассмотрен частный случай самопродвижения твердого тела по поверхности жидкости за счет движения двух внутренних масс по окружностям. В работе представлена математическая модельдвиж ения твердого тела с подвижными внутренними массами в трехмерной постановке. Данная модельу читывает трехмерные колебания тела при движении, возникающие под действием внешних сил — силы тяжести, силы Архимеда и сил, действующих на тело со стороны вязкой жидкости.

    В качестве тела рассмотрен однородный эллиптический цилиндр с килем, расположенным вдоль большей диагонали. Внутри цилиндра расположены две материальные точечные массы, перемещающиеся по окружностям. Центры окружностей лежат на наименьшей диагонали эллипса на равном удалении от центра масс.

    Уравнения движения рассматриваемой системы (тело с двумя материальными точками, помещенное в жидкость) представлены в виде уравнений Кирхгофа с добавлением внешних сил и моментов, действующих на тело. Для описания сил сопротивления движению в жидкости выбрана феноменологическая модель вязкого трения, квадратичная по скорости. Коэффициенты сопротивления движению, используемые в модели, определялись экспериментально. Силы, действующие на киль, определялись с помощью численного моделирования колебаний киля в вязкой жидкости с использованием уравнений Навье–Стокса.

    В данной работе была проведена экспериментальная проверка предложенной математической модели. Представлено несколько серий экспериментов по самопродвижению тела в жидкости с помощью вращения внутренних масс с разными скоростями вращения. Исследована зависимостьс редней скорости продвижения, размаха поперечных колебаний в зависимости от частоты вращения внутренних масс. Проведено сравнение полученных экспериментальных данных с результатами, полученными в рамках предложенной математической модели.

    Просмотров за год: 21. Цитирований: 2 (РИНЦ).
  3. Проведено численное исследование нестационарных режимов смешанной конвекции в открытом частично пористом горизонтальном канале при наличии тепловыделяющего элемента. Наружные поверхности горизонтальных стенок конечной толщины являлись адиабатическими. В канале находилась ньютоновская теплопроводная жидкость, вязкость которой зависит от температуры по экспоненцильному закону. Дискретный тепловыделяющий теплопроводный элемент расположен внутри нижней стенки канала. Температура жидкости равна температуре твердого скелета внутри пористой вставки, и расчеты ведутся в рамках модели теплового равновесия. Пористая вставка изотропна, однородна и проницаема для жидкости. Для моделирования пористой среды использована модель Дарси–Бринкмана. Математическая модель, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости – температура» на основе приближения Буссинеска, реализована численно с помощью метода конечных разностей. Уравнения дисперсии завихренности и энергии решались на основе локально-одномерной схемы А.А. Самарского. Диффузионные слагаемые аппроксимировались центральными разностями, конвективные — с использованием монотонной аппроксимации А.А. Самарского. Разностные уравнения решались методом прогонки. Разностное уравнение Пуассона для функции тока решалось отдельно, с применением метода последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. Разработанная вычислительная модель была протестирована на множестве равномерных сеток, а также верифицирована путем сравнения полученных результатов при решении модельной задачи с данными других авторов.

    Численные исследования нестационарных режимов смешанной конвекции жидкости с переменной вязкостью в горизонтальном канале с тепловыделяющим источником были проведены при следующих значениях безразмерных параметров: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Все распределения изолиний функции тока и температуры, а также зависимости среднего числа Нуссельта и средней температуры были получены в стационарном режиме, когда наблюдается установление картины течения и теплопереноса. В результате анализа установлено, что введение пористой вставки позволяет интенсифицировать теплосъем с поверхности источника энергии. Увеличение размеров пористой ставки, а также использование рабочих сред с разными теплофизическими характеристиками приводят к снижению температуры в источнике энергии.

    Просмотров за год: 34.
  4. Фаворская А.В.
    Исследование свойств материала пластины лазерным ультразвуком при помощи анализа кратных волн
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 653-673

    Ультразвуковое исследование свойств материалов является прецизионным методом определения их упругих и прочностных свойств в связи с маленькой по сравнению с толщиной пластины длиной волны, образующейся в материале после воздействия лазерным пучком. В данной работе подробно рассмотрены волновые процессы, возникающие в ходе проведения этих измерений. Показано, что полноволновое численное моделирование позволяет детально изучать типы волн, геометрические характеристики их профиля, скорость прихода волн в различные точки, выявлять типы волн, измерения по которым оптимальны для исследований образца с заданными материалом и формой, разрабатывать методики измерений.

    Для осуществления полноволнового моделирования в данной работе был применен сеточно-характеристический метод на структурированных сетках и решалась гиперболическая система уравнений, описывающая распространение упругих волн в материале рассматриваемой пластины конечной толщины на конкретном примере отношения толщины к ширине 1:10.

    Для моделирования упругого фронта, возникшего в пластине от воздействия лазерного пучка, предложена соответствующая постановка задачи. Выполнено сравнение возникающих при ее использовании волновых эффектов со случаем точечного источника и с данными физических экспериментов о распространении лазерного ультразвука в металлических пластинах.

    Проведено исследование, на основании которого были выявлены характерные геометрические особенности рассматриваемых волновых процессов. Исследованы основные типы упругих волн, возникающие в процессе воздействия лазерного пучка, проанализирована возможность их использования для исследования свойств материалов и предложен метод, основанный на анализе кратных волн. Проведено тестирование предложенного метода по изучению свойств пластины при помощи кратных волн на синтетических данных, показавшее хорошие результаты.

    Следует отметить, что большая часть исследований кратных волн направлена на разработку методов их подавления. Кратные волны не используются для обработки результатов ультразвуковых исследований в связи со сложностью их выявления в регистрируемых данных физического эксперимента.

    За счет применения полноволнового моделирования и анализа пространственных динамических волновых процессов в данной работе кратные волны рассмотрены подробно и предложено деление материалов на три класса, позволяющее использовать кратные волны для получения информации о материале пластины.

    Основными результатами работы являются разработанные постановки задачи для численного моделирования исследования пластин конечной толщины лазерным ультразвуком; выявленные особенности волновых явлений, возникающих в пластинах конечной толщины; разработанная методика исследования свойств пластины на основе кратных волн; разработанная классификация материалов.

    Результаты исследований, приведенные в настоящей работе, могут быть интересны для разработок не только в области ультразвуковых исследований материалов, но и в области сейсмической разведки земных недр, так как предложенный подход может быть расширен на более сложные случаи гетерогенных сред и применен в геофизике.

    Просмотров за год: 3.
  5. Стогний П.В., Петров И.Б.
    Численное моделирование распространения сейсмических волн в моделях с ледовым полем в зоне арктического шельфа
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 73-82

    В зоне арктического шельфа расположены огромные запасы углеводородов. Проведение исследовательских работ на данной территории осложняется наличием различных ледовых образований, например айсбергов, торосов, ледовых полей. Во время проведения сейсморазведочных работ последние из выше перечисленных ледовых образований, ледовые поля, вносят в сейсмограммы многочисленные отражения сейсмического сигнала от границ «лед–вода» и «лед–воздух», распространяющиеся по всей поверхности льда. Данные многочисленные отражения необходимо учитывать при анализе сейсмограмм, а также уметь их исключать с целью получения отраженных волн от нижележащих геологических слоев, включая залежи углеводородов.

    В работе решается задача о распространении сейсмических волн в неоднородной среде. Геологические среды описываются системами уравнений линейной упругости и акустики. Представлено подробное описание численного решения данных систем уравнений с помощью сеточно-характеристического метода. Для решения конечных одномерных уравнений переноса, к которым приводятся системы, применяется схема Русанова третьего порядка точности. В работе рассматривается способ подавления многочисленных отражений во льду путем заглубления источника сейсмического сигнала вплоть до границы с водой. Такой способ подавления кратных волн часто используется в реальных геологических работах. Представлены результаты численных расчетов распространения сейсмических волн в моделях с заглубленным источником импульса, а также в моделях с сейсмическим источником на поверхности льда для трехмерного случая. Результатами численного моделирования являются волновые картины, графики значений продольной компоненты скорости и сейсмограммы для двух рассматриваемых постановок задач. В работе проводится анализ влияния различных постановок источника на уменьшение продольных компонент скорости в слое льда, на результирующие сейсмограммы и волновые поля. Делается вывод о том, что заглубление источника только ухудшает конечный результат при условии помещения источника и приемников сигнала на границе «лед–вода». Уменьшение продольных компонент скорости во льду показала постановка источника на поверхности льда.

  6. Маловичко М.С., Петров И.Б.
    О численном решении совместных обратных задач геофизики с использованием требования структурного подобия
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 329-343

    Решение обратных геофизических задач сложно в силу их математически некорректной постановки и большой вычислительной емкости. Геофизическая разведка малоизученных регионов, таких как шельф северных морей, дополнительно осложнена отсутствием надежных геологических данных. В этих условиях большое значение приобретают способы совместного использования информации, полученной различными геофизическими методами. Настоящая работа посвящена развитию подхода к совместной инверсии, основанного на требовании обращения в ноль определителя матрицы Грама для векторов параметров тех типов, которые используются в инверсии. В рамках этого подхода минимизируется нелинейный функционал, состоящий из суммы квадратов взвешенных невязок, суммы стабилизирующих функционалов и члена, отвечающего за наложение условия структурного подобия. Мы применяем этот подход к инверсии двух типов геофизических данных: сейсмики и электроразведки. Мы изучаем инверсию акустических данных совместно с низкочастотным электрическим полем с наложением требования структурного подобия на результирующие распределения скорости звука и электропроводности.

    Рассмотрены постановка задачи обратной задачи и численный метод оптимизации. Нелинейная минимизация выполняется методом сопряженных градиентов. Эффективность разработанного подхода продемонстрирована на численном примере, в котором трехмерное распределение электропроводности считалось известным точно, а распределение скорости звука подбиралось путем решения соответствующей обратной задачи. Для численного эксперимента было использовано распределение скорости звука, построенное на основании упрощенных сейсмических горизонтов реального морского месторождения. Для этого распределения рассчитывались синтетические сейсмограммы, которые служили входными данными для алгоритма инверсии. Результирующее распределение скорости звука не только обеспечивало совпадение данных до заданной точности, но и было согласовано с заданным распределением электропроводности. На численных примерах продемонстрировано, что оптимально выбранный вес структурного ограничения может существенно улучшить детальность решения обратной задачи и позволяет восстановить особенности, которые иначе были бы не разрешены.

  7. Михеев П.В., Горынин Г.Л., Борисова Л.Р.
    Модифицированная модель влияния концентрации напряжений вблизи разорванного волокна на прочность высокопрочных композитов при растяжении (MLLS-6)
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 559-573

    В статье предложена модель для оценки потенциальной прочности композиционного материала на основе современных волокон, разрушающихся хрупко.

    Моделируются материалы, состоящие из параллельных цилиндрических волокон, которые квазистатически растягиваются в одном направлении. Предполагается, что в выборке не меньше 100 штук, что соответствует практически значимым случаям. Известно, что волокна имеют разброс предельной деформации в выборке и разрушаются не одновременно. Обычно разброс их свойств описывается распределением Вейбулла–Гнеденко. Для моделирования прочности композита используется модель накопления разрывов волокон. Предполагается, что волокна, объединенные матрицей, дробятся до удвоенной неэффективной длины — расстояния, на котором возрастают напряжения от торца разорванного волокна до среднего. Однако такая модель сильно завышает прогноз прочности композитов с хрупкими волокнами. Например, так разрушаются углеродные и стеклянные волокна.

    В ряде случаев ранее делались попытки учесть концентрацию напряжений около разорванного волокна (модель Хеджепеста, модель Ермоленко, сдвиговой анализ), однако такие модели требовали или очень много исходных данных или не совпадали с экспериментом. Кроме того, такие модели идеализировали упаковку волокон в композите до регулярной гексагональной упаковки.

    В модели объединены подход сдвигового анализа к распределению напряжений около разрушенного волокна и статистический подход прочности волокон на основе распределения Вейбулла–Гнеденко, при этом введен ряд предположений, упрощающих расчет без потери точности.

    Предполагается, что перенапряжение на соседнем волокне увеличивает вероятность его разрушения в соответствии с распределением Вейбулла и число таких волокон с повышенной вероятностью разрушения прямо связано с числом уже разрушенных до этого. Все исходные данные могут быть получены из простых экспериментов. Показано, что учет перераспределения только на ближайшие волокна дает точный прогноз.

    Это позволило провести полный расчет прочности композита. Экспериментальные данные, полученные нами на углеродных волокнах, стеклянных волокнах и модельных композитах на их основе, качественно подтверждают выводы модели.

  8. Садин Д.В.
    Анализ диссипативных свойств гибридного метода крупных частиц для структурно сложных течений газа
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 757-772

    Изучаются вычислительные свойства параметрического класса конечно-объемных схем с настраиваемыми диссипативными свойствами с расщеплением по физическим процессам на лагранжев, эйлеров и заключительный этапы (гибридный метод крупных частиц). Метод обладает вторым порядком аппроксимации по пространству и времени на гладких решениях. Регуляризация численного решения на лагранжевом этапе осуществляется нелинейной коррекцией искусственной вязкости, величина которой, независимо от разрешения сетки, стремится к нулю вне зоны разрывови экстремумовв решении. На эйлеровом и заключительном этапе вначале реконструируются примитивные переменные (плотность, скорость и полная энергия) путем взвешенной ограничителем потоков аддитивной комбинации противопоточной и центральной аппроксимаций. Затем из них формируются численные дивергентные потоки. При этом выполняются дискретные аналоги законов сохранения.

    Выполнен анализ диссипативных свойств метода с использованием известных ограничителей вязкости и потоков, а также их линейной комбинации. Разрешающая способность схемы и качество численных решений продемонстрированы на примерах двумерных тестов с обтеканием ступеньки потоком газа с числами Маха 3, 10 и 20, двойным маховским отражением сильной ударной волны и с импульсным сжатием газа. Изучено влияние схемной вязкости метода на численное воспроизведение неустойчивости на контактных поверхностях газов. Установлено, что уменьшение уровня диссипативных свойств схемы в задаче с импульсным сжатием газа приводит к разрушению симметричного решения и формированию хаотической неустойчивости на контактной поверхности.

    Численные решения сопоставлены с результатами других авторов, полученных по схемам повышенного порядка аппроксимации: КАБАРЕ, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge–Kutta Discontinuous Galerkin), с гибридной взвешенной нелинейной интерполяцией CCSSR-HW4 и CCSSR-HW6. К достоинствам гибридного метода крупных частиц относятся расширенные возможности решения задач гиперболического и смешанного типов, хорошее соотношение диссипативных и дисперсионных свойств, сочетание алгоритмической простоты и высокой разрешающей способности в задачах со сложной ударно-волновой структурой, развитием неустойчивости и вихреобразованием на контактных границах.

  9. Садин Д.В.
    Приложение гибридного метода крупных частиц к расчету взаимодействия ударной волны со слоем газовзвеси
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1323-1338

    Для модельного неоднородного уравнения переноса с источником выполнен анализ устойчивости линейной гибридной схемы (комбинации противопоточной и центральной аппроксимаций). Получены условия устойчивости, зависящие от параметра гибридности, фактора интенсивности источника (произведения интенсивности на шаг по времени) и весового коэффициента линейной комбинации мощности источника на нижнем и верхнем временном слое. В нелинейном случае для уравнений движения неравновесной по скоростям и температурам газовзвеси расчетным путем подтвержден линейный анализ устойчивости. Установлено, что предельно допустимое число Куранта гибридного метода крупных частиц второго порядка точности по пространству и времени при неявном учете трения и теплообмена между газом и частицами не зависит от фактора интенсивности межфазных взаимодействий, шага расчетной сетки и времен релаксации фаз (K-устойчивость). В традиционном случае явного способа расчета источниковых членов для значений безразмерного фактора интенсивности больше 10 наблюдается катастрофическое (на несколько порядков) снижение предельно допустимого числа Куранта, при котором расчетный шаг по времени становится неприемлемо малым.

    На основе базовых соотношений распада разрыва в равновесной гетерогенной среде получено асимптотически точное автомодельное решение задачи взаимодействия ударной волны со слоем газовзвеси, к которому сходится численное решение двухскоростной двухтемпературной динамики газовзвеси при уменьшении размеровди сперсных частиц.

    Изучены динамика движения скачка уплотнения в газе и его взаимодействия с ограниченным слоем газовзвеси для различных размеров дисперсных частиц: 0.1, 2 и 20 мкм. Задача характеризуется двумя распадами разрывов: отраженной и преломленной ударными волнами на левой границе слоя, отраженной волной разрежения и прошедшим скачком уплотнения на правой контактной границе. Обсуждено влияние релаксационных процессов (безразмерных времен релаксации фаз) на характер течения газовзвеси. Для мелких частиц времена выравнивания скоростей и температур фаз малы, а зоны релаксации являются подсеточными. Численное решение в характерных точках с относительной точностью $O\, (10^{−4})$  сходится к автомодельным решениям.

  10. Котлярова Е.В., Гасников А.В., Гасникова Е.В., Ярмошик Д.В.
    Поиск равновесий в двухстадийных моделях распределения транспортных потоков по сети
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 365-379

    В работе описывается двухстадийная модель равновесного распределения транспортных потоков. Модель состоит из двух блоков, где первый блок — модель расчета матрицы корреспонденций, а второй блок — модель равновесного распределения транспортных потоков по путям. Первая модель, используя матрицу транспортных затрат (затраты на перемещение из одного района в другой, в данном случае — время), рассчитывает матрицу корреспонденций, описывающую потребности в объемах передвижения из одного района в другой район. Для решения этой задачи предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийную модель. Вторая модель на базе равновесного принципа Нэша–Вардропа (каждый водитель выбирает кратчайший для себя путь) описывает, как именно потребности в перемещениях, задаваемые матрицей корреспонденций, распределяются по возможным путям. Таким образом, зная способы распределения потоков по путям, можно рассчитать матрицу затрат. Равновесием в двухстадийной модели транспортных потоков называют неподвижную точку цепочки из этих двух моделей. Практически ранее отмеченную задачу поиска неподвижной точки решали методом простых итераций. К сожалению, на данный момент вопрос сходимости и оценки скорости сходимости для этого метода не изучен. Кроме того, при численной реализации алгоритма возникает множество проблем. В частности, при неудачном выборе точки старта возникают ситуации, в которых алгоритм требует вычисления экстремально больших чисел и превышает размер доступной памяти даже в самых современных вычислительных машинах. Поэтому в статье предложены способ сведения задачи поиска описанного равновесия к задаче выпуклой негладкой оптимизации и численный способ решения полученной задачи оптимизации. Для обоих методов решения задачи были проведены численные эксперименты. Авторами использовались данные для Владивостока (для этого была обработана информация из различных источников и собрана в новый пакет) и двух небольших городов США. Методом простой прогонки двух блоков сходимости добиться не удалось, тогда как вторая модель для того же набора данных продемонстрировала скорость сходимости $k^{−1.67}$.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.