Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Влияние хвостовых плавников на скорость водного робота, приводимого в движение внутренними подвижными массами
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 869-882В данной работе представлено описание конструкции водного робота, движущегося по поверхности жидкости и приводимого в движение двумя внутренними подвижными массами. Корпус водного робота в сечении имеет форму симметричного крылового профиля с острой кромкой. На данном прототипе две внутренние массы перемещаются по окружностям и приводятся во вращение за счет одного двигателя постоянного тока и зубчатого механизма, передающего вращательный момент от двигателя к каждой массе. В качестве управляющего воздействия используются угловые скорости подвижных масс, а разработанная кинематическая схема передачи вращения от двигателя к подвижным массам позволяет реализовать вращение двух масс с равными по модулю угловыми скоростями, но при этом разным направлением вращения. А также на корпус данного робота имеется возможность устанавливать дополнительные хвостовые плавники различных форм и размеров. Также в работе для данного объекта представлены уравнения движения, записанные в форме уравнений Кирхгофа для движения твердого тела в идеальной жидкости, дополненные слагаемыми вязкого сопротивления. Представлено математическое описание дополнительных сил, действующих на гибкий хвостовой плавник. С разработанным прототипом робота проведены экспериментальные исследования по влиянию различных хвостовых плавников на скорость передвижения в жидкости. В данной работе на робота устанавливались хвостовые плавники одной формы и размеров, при этом обладающие разной жесткостью. Эксперименты проводились в бассейне с водой, над которым устанавливалась камера, на которую были получены видеозаписи всех экспериментов. Дальнейшая обработка видеозаписей позволила получить перемещения объекта, а также его линейные и угловые скорости. В работе показано различие в развиваемых роботом скоростях при движении без хвостового плавника, а также с хвостовыми плавниками, имеющими разную жесткость. Приведено сравнение развиваемых роботом скоростей, полученных в экспериментальных исследованиях, с результатами математического моделирования системы.
Ключевые слова: мобильный робот, водный робот, моделирование движения, экспериментальные исследования. -
Управление движением тела с помощью внутренних масс в вязкой жидкости
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 445-460Просмотров за год: 21. Цитирований: 2 (РИНЦ).Данная статья посвящена изучению самопродвижения тел в жидкости за счет действия внутренних механизмов, без изменения внешней формы тела. В работе представлен обзор теоретических работ, обосновывающих возможностьда нного перемещения в идеальной и вязкой жидкостях.
Рассмотрен частный случай самопродвижения твердого тела по поверхности жидкости за счет движения двух внутренних масс по окружностям. В работе представлена математическая модельдвиж ения твердого тела с подвижными внутренними массами в трехмерной постановке. Данная модельу читывает трехмерные колебания тела при движении, возникающие под действием внешних сил — силы тяжести, силы Архимеда и сил, действующих на тело со стороны вязкой жидкости.
В качестве тела рассмотрен однородный эллиптический цилиндр с килем, расположенным вдоль большей диагонали. Внутри цилиндра расположены две материальные точечные массы, перемещающиеся по окружностям. Центры окружностей лежат на наименьшей диагонали эллипса на равном удалении от центра масс.
Уравнения движения рассматриваемой системы (тело с двумя материальными точками, помещенное в жидкость) представлены в виде уравнений Кирхгофа с добавлением внешних сил и моментов, действующих на тело. Для описания сил сопротивления движению в жидкости выбрана феноменологическая модель вязкого трения, квадратичная по скорости. Коэффициенты сопротивления движению, используемые в модели, определялись экспериментально. Силы, действующие на киль, определялись с помощью численного моделирования колебаний киля в вязкой жидкости с использованием уравнений Навье–Стокса.
В данной работе была проведена экспериментальная проверка предложенной математической модели. Представлено несколько серий экспериментов по самопродвижению тела в жидкости с помощью вращения внутренних масс с разными скоростями вращения. Исследована зависимостьс редней скорости продвижения, размаха поперечных колебаний в зависимости от частоты вращения внутренних масс. Проведено сравнение полученных экспериментальных данных с результатами, полученными в рамках предложенной математической модели.
-
Метод самосогласованных уравнений при решении задач рассеяния волн на системах цилиндрических тел
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 725-733Рассматривается один из численных методов решения задач рассеяния электромагнитных волн на системах, образованных параллельно ориентированными цилиндрическими элементами, — двумерных фотонных кристаллах. Описываемый метод является развитием метода разделения переменных при решении волнового уравнения. Его суть применительно к дифракционным задачам заключается в представлении поля в виде суммы первичного поля и неизвестного рассеянного на элементах среды вторичного поля. Математическое выражение для последнего записывается в виде бесконечных рядов по элементарным волновым функциям с неизвестными коэффициентами. В частности, поле, рассеянное на $N$ элементах, ищется в виде суммы $N$ дифракционных рядов, в которой один из рядов составлен из волновых функций одного тела, а волновые функции в остальных рядах выражены через собственные волновые функции первого тела при помощи теорем сложения. Далее из удовлетворения граничным условиям на поверхности каждого элемента получаются системы линейных алгебраических уравнений с бесконечным числом неизвестных — искомых коэффициентов разложения, которые разрешаются стандартными способами. Особенностью метода является использование аналитических выражений, описывающих дифракцию на одиночном элементе системы. В отличие от большинства строгих численных методов данный подход при его использовании позволяет получить информацию об амплитудно-фазовых или спектральных характеристиках поля только в локальных точках структуры. Отсутствие необходимости определения параметров поля во всей области пространства, занимаемой рассматриваемой многоэлементной системой, обуславливает высокую эффективность данного метода. В работе сопоставляются результаты расчета спектров пропускания двумерных фотонных кристаллов рассматриваемым методом с экспериментальными данными и численными результатами, полученными с использованием других подходов. Демонстрируется их хорошее согласие.
Ключевые слова: численные методы, дифракция, фотонные кристаллы, спектральное разложение, теорема сложения. -
Численное исследование динамики движения тела квадратной формы в сверхзвуковом потоке за ударной волной
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 755-766В ряде фундаментальных и прикладных задач возникает необходимость описания динамики движения частиц сложной формы в высокоскоростном потоке газа. В качестве примера можно привести движение угольных частиц за фронтом сильной ударной волныв о время взрыва в угольной шахте. Статья посвящена численному моделированию динамики поступательного и вращательного движения тела квадратной формык ак модельного примера частицы более сложной, чем круглая, формы, в сверхзвуковом потоке за проходящей ударной волной. Постановка задачи приближенно соответствует натурным экспериментам В. М. Бойко и С. В. Поплавского (ИТПМ СО РАН).
Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием разработанного ранее и верифицированного метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величиныш ага, расчет динамики движения тела (определение силыи момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. Для расчета численного потока через ребра ячеек, пересекаемых границами тела, используется двухволновое приближение при решении задачи Римана и схема Стигера – Уорминга.
Движение квадрата со стороной 6 мм инициировалось прохождением ударной волныс числом Маха 3,0, распространяющейся в плоском канале длиной 800 мм и шириной 60 мм. Канал был заполнен воздухом при пониженном давлении. Рассматривалась различная начальная ориентация квадрата относительно оси канала. Обнаружено, что начальное положение квадрата стороной поперек потока является менее устойчивым при его движении, чем начальное положение диагональю поперек потока. В этом расчетные результаты качественно соответствуют экспериментальным наблюдениям. Для промежуточных начальных положений квадрата описан типичный режим его движения, состоящий из колебаний, близких к гармоническим, переходящих во вращение с постоянной средней угловой скоростью. В процессе движения квадрата наблюдается в среднем монотонное уменьшение расстояния между центром масс и центром давления до нуля.
Ключевые слова: ударная волна, метод декартовых сеток, уравнения Эйлера, сверхзвуковой поток, тело квадратной формы, вращение. -
Моделирование теплового поля неподвижных симметричных тел в разреженной низкотемпературной плазме
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 73-91В работе исследуется процесс самосогласованной релаксации области возмущений, созданных в разреженной бинарной низкотемпературной плазме неподвижным заряженным шаром или цилиндром с абсорбирующей поверхностью. Особенностью подобных задач является их самосогласованный кинетический характер, при котором нельзя отделить процессы переноса в фазовом пространстве и формирования электромагнитного поля. Представлена математическая модель, позволяющая описывать и анализировать состояние газа, электрическое и тепловое поле в окрестности тела. Многомерность кинетической формулировки создает определенные проблемы при численном решении, поэтому для задачи подобрана криволинейная система неголономных координат, которая минимизирует ее фазовое пространство, что способствует повышению эффективности численных методов. Для таких координат обоснована и проанализирована форма кинетического уравнения Власова. Для его решения использован вариант метода крупных частиц с постоянным форм-фактором. В расчетах применялась подвижная сетка, отслеживающая смещение в фазовом пространстве носителя функции распределения, что дополнительно уменьшило объем контролируемой области фазового пространства. Раскрыты ключевые детали модели и численного метода. Модель и метод реализованы в виде кода на языке Matlab. На примере решения задачи для шара показано наличие в возмущенной зоне существенного неравновесия и анизотропии в распределении частиц по скорости. По результатам расчетов представлены картины эволюции структуры функции распределения частиц, профилей основных макроскопических характеристик газа — концентрации, тока, температуры и теплового потока, характеристик электрического поля в возмущенной области. Установлен механизм разогрева притягивающихся частиц в возмущенной зоне и показаны некоторые важные особенности процесса формирования теплового потока. Получены результаты, хорошо объяснимые с физической точки зрения, что подтверждает адекватность модели и корректность работы программного инструмента. Отмечаются создание и апробация основы для разработки в перспективе инструментов решения и более сложных задач моделирования поведения ионизированных газов вблизи заряженных тел.
Работа будет полезной специалистам в области математического моделирования, процессов тепло- и массообмена, физики низкотемпературной плазмы, аспирантам и студентам старших курсов, специализирующимся в указанных направлениях.
-
Сверхзвуковое обтекание системы тел
Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 969-980Просмотров за год: 1. Цитирований: 19 (РИНЦ).Работа посвящена аэродинамическим свойствам системы тел, обтекаемой сверхзвуковым потоком. Рассматривается вопрос об уменьшении взаимного влияния с увеличением размера, характеризующего разлет элементов системы. Для моделирования течения применен метод построения сетки из набора сеток. Одна из сеток, регулярная с прямоугольными ячейками, отвечает за интерференцию между телами и служит для описания внешнего невязкого течения. Другие сетки связаны с поверхностями обтекаемых тел и позволяют описать вязкие слои около обтекаемых тел. Эти сетки накладываются на первую, без совмещения каких-либо узлов. Граничные условия реализуются через интерполяцию функций на границах с одной сетки на другую.
-
Влияние поверхности на особенности аморфизации системы Ni-Ag
Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 263-269Просмотров за год: 1. Цитирований: 1 (РИНЦ).В рамках метода молекулярной динамики, с использованием многочастичного потенциаламежатомного взаимодействия, на модели свободной частицы Ni60Ag40 диаметром 40 Å, исследована структурная эволюция в процессе закалки. Проведен сравнительный анализ структурных перестроек для моделей частицы и массивного образца. Отмечено снижение температуры начала и конца превращений для частицы. Показано, что в образовании перколяционного кластера из взаимопроникающих и контактирующих между собой икосаэдров, для модели свободной частицы, задействовано на 10 % атомов больше, чем для модели массивного тела.
-
Оценка анизотропии сейсмического отклика от трещиноватых геологических объектов
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 231-240Просмотров за год: 11. Цитирований: 4 (РИНЦ).Сейсмическая разведка является наиболее распространённым методом поиска и разведки месторождений полезных ископаемых: нефти и природного газа. Зародившись в начале XX века, она получила значительное развитие и в настоящий момент используется практически всеми сервисными нефтяными компаниями. Основными ее преимуществами являются приемлемая стоимость проведения полевых работ (по сравнению с бурением скважин) и точность восстановления характеристик подповерхностного пространства. Однако с открытием нетрадиционных месторождений (например, Арктический шельф, Баженовская свита) актуальной стала задача усовершенствования существующих и создания новых технологий обработки сейсмических данных. Значительное развитие в данном направлении возможно с использованием численного моделирования распространения сейсмических волн в реалистичных моделях геологического массива, поскольку реализуется возможность задания произвольной внутренней структуры среды с последующей оценкой синтетического сигнала-отклика.
Настоящая работа посвящена исследованию пространственных динамических процессов, протекающих в геологических средах, содержащих трещиноватые включения, в процессе сейсмической разведки. Авторами построена трехмерная модель слоистого массива, содержащего пласт из флюидонасыщенных трещин, позволяющая оценить сигнал-отклик при варьировании структуры неоднородного включения. Для описания физических процессов используется система уравнений линейно-упругого тела в частных производных второго порядка, которая решается численно сеточно-характеристическим методом на гексаэдральных расчетных сетках. При этом плоскости трещин выделяются на этапе построения расчетной сетки, в дальнейшем используется дополнительная корректировка, обеспечивающая корректный сейсмический отклик для параметров модели, характерных для геологических сред.
В работе получены площадные трехкомпонентные сейсмограммы с общим пунктом взрыва. На их основе проведена оценка влияния структуры трещиноватой среды на анизотропию сейсмического отклика, регистрируемого на дневной поверхности на различном удалении от источника. Установлено, что кинематические характеристики сигнала остаются постоянными, тогда как динамические характеристики для упорядоченных и неупорядоченных моделей могут различаться на десятки процентов.
-
Интерпретация результатов радиоволнового просвечивания методами машинного обучения
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 675-684В настоящий момент значительно возросла глубина работ по разведке кимберлитовых тел и рудных месторождений. Традиционные геологические методы поиска оказались неэффективными. Практически единственным прямым методом поиска является бурение системы скважин до глубин, которые обеспечивают доступ к вмещающим породам. Из-за высокой стоимости бурения возросла роль межскважинных методов. Они позволяют увеличить среднее расстояние между скважинами без существенного снижения вероятности пропуска кимберлитового или рудного тела. Метод радиоволнового просвечивания особенно эффективен при поиске объектов, отличающихся высокой контрастностью электропроводящих свойств. Физическую основу метода составляет зависимость распространения электромагнитной волны от проводящих свойств среды распространения. Источником и приемником электромагнитного излучения является электрический диполь. При измерениях они размещаются в соседних скважинах. Расстояние между источником и приемником известно. Поэтому, измерив величину уменьшения амплитуды электромагнитной волны при ее распространении между скважинами, можно оценить коэффициент поглощения среды. Породе с низким электрическим сопротивлением соответствует высокое поглощение радиоволн. Поэтому данные межскважинных измерений позволяют оценить эффективное электрическое сопротивление породы. Обычно источник и приемник синхронно погружаются в соседние скважины. Измерение величины амплитуды электрического поля в приемнике позволяет оценить среднее значение коэффициента затухания на линии, соединяющей источник и приемник. Измерения проводятся во время остановок, приблизительно каждые 5 м. Расстояние между остановками значительно меньше расстояния между соседними скважинами. Это приводит к значительной пространственной анизотропии в распределении данных. При проведении разведочного бурения скважины покрывают большую площадь. Наша цель состоит в построении трехмерной модели распределения электрических свойств межскважинного пространства на всем участке по результатом совокупности измерений. Анизотропия пространственного распределения измерений препятствует использованию стандартных методов геостатистики. Для построения трехмерной модели коэффициента затухания мы использовали один из методов теории машинного обучения — метод ближайших соседей. В этом методе коэффициент поглощения в заданной точке определяется его значениями для $k$ ближайших измерений. Число $k$ определяется из дополнительных соображений. Влияния анизотропии пространственного распределения измерений удается избежать, изменив пространственный масштаб в горизонтальном направлении. Масштабный множитель $\lambda$ является еще одним внешним параметром задачи. Для выбора значений параметров $k$ и $\lambda$ мы использовали коэффициент детерминации. Для демонстрации процедуры построения трехмерного образа коэффициента поглощения мы воспользовались данными межскважинного радиоволнового просвечивания, полученные на одном из участков в Якутии.
Ключевые слова: межскважинное зондирование, радиоволновое просвечивание, машинное обучение, kNN-алгоритм.Просмотров за год: 3. -
Модель формирования первичных поведенческих паттернов с адаптивным поведением на основе использования комбинации случайного поиска и опыта
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 941-950Просмотров за год: 6. Цитирований: 2 (РИНЦ).В работе предложен адаптивный алгоритм, моделирующий процесс формирования начальных поведенческих навыков на примере системы «глаза–манипулятор» анимата. Ситуация формирования начальных поведенческих навыков возникает, например, когда ребенок осваивает управление своими руками на основе понимания связи между исходно неидентифицированными пятнами на сетчатке своих глаз и положением реального предмета. Поскольку навыки управления телом не «вшиты» исходно в головной и спинной мозг на уровне инстинктов, то человеческому ребенку, как и большинству детенышей других млекопитающих, приходится осваивать эти навыки в режиме поискового поведения. Поисковое поведение начинается с метода проб и ошибок в чистом виде, затем его вклад постепенно уменьшается по мере освоения своего тела и окружающей среды. Поскольку образцов правильного поведения на этом этапе развития организм не имеет, то единственным способом выделения правильных навыков является положительное подкрепление при достижении цели. Ключевой особенностью предлагаемого алгоритма является фиксация в режиме импринтинга только завершающих действий, которые привели к успеху, или, что очень важно, привели к уже знакомой запечатленной ситуации, однозначно приводящей к успеху. Со временем непрерывная цепочка правильных действий удлиняется — максимально используется предыдущий позитивный опыт, а негативный «забывается» и не используется. Тем самым наблюдается постепенная замена случайного поиска целенаправленными действиями, что наблюдается и у реальных детенышей.
Тем самым алгоритм способен устанавливать соответствие между закономерностями окружающего мира и «внутренними ощущениями», внутренним состоянием самого анимата. В предлагаемой модели анимата использовалось 2 типа нейросетей: 1) нейросеть NET1, на вход которой подавались текущие положения кисти руки и целевой точки, а на выходе — двигательные команды, направляющие «кисть» манипулятора анимата к целевой точке; 2) нейросеть NET2, которая на входе получала координаты цели и текущей координаты «кисти», а на выходе формировала значение вероятности того, что анимату уже «знакома» эта ситуация и он «знает», как на нее реагировать. Благодаря такой архитектуре у анимата есть возможность опираться на «опыт» нейросети в распознанных ситуациях, когда отклик от сети NET2 близок к 1, и, с другой стороны, запускать случайный поиск, когда опыта функционирования в этой области зрительного поля у анимата нет (отклик NET2 близок к 0).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"