Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'процесс':
Найдено статей: 441
  1. Универсальные сценарии перехода к хаосу в динамических системах к настоящему моменту хорошо изучены. К типичным сценариям относятся каскад бифуркаций удвоения периода (сценарий Фейген-баума), разрушение тора малой размерности (сценарий Рюэля–Такенса) и переход через перемежаемость (сценарий Помо–Манневилля). В более сложных пространственно-распределенных динамических системах нарастающая с изменением параметра сложность поведения по времени тесно переплетается с формированием пространственных структур. Однако вопрос о том, могут ли в каком-то сценарии пространственная и временная оси полностью поменяться ролями, до сих пор остается открытым. В данной работе впервые предлагается математическая модель конвекции–реакции–диффузии, в рамках которой реализуется пространственный аналог перехода к хаосу через разрушение квазипериодического режима в рамках сценария Рюэля–Такенса. Исследуемая физическая система представляет собой два водных раствора кислоты (A) и основания (B), в начальный момент времени разделенных по пространству и помещенных в вертикальную ячейку Хеле–Шоу, находящуюся в статическом поле тяжести. При приведении растворов в контакт начинается фронтальная реакция нейтрализации второго порядка: A + B $\to$ C, которая сопровождается выделением соли (С). Процесс характеризуется сильной зависимостью коэффициентов диффузии реагентов от их концентрации, что приводит к возникновению двух локальных зон пониженной плотности, в которых независимо друг от друга возникают хемоконвективные движения жидкости. Слои, в которых развивается конвекция, все время остаются разделенными прослойкой неподвижной жидкости, но они могут влиять друг на друга посредством диффузии реагентов через прослойку. Формирующаяся хемо-конвективная структура представляет собой модулированную стоячую волну, постепенно разрушающуюся со временем, повторяя последовательность бифуркаций сценария разрушения двумерного тора. Показано, что в ходе эволюции системы пространственная ось, направленная вдоль фронта реакции, выполняет роль времени, а само время играет роль управляющего параметра.

  2. Гайко В.А., Савин С.И., Климчик А.С.
    Глобальные бифуркации предельных циклов полиномиальной системы Эйлера–Лагранжа–Льенара
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 693-705

    В данной статье, используя наш бифуркационно-геометрический подход, мы изучаем глобальную динамику и решаем проблему о максимальном числе и распределении предельных циклов (автоколебательных режимов, соответствующих состояниям динамического равновесия) в планарной полиномиальной механической системе типа Эйлера–Лагранжа–Льенара. Такие системы используются также для моделирования электротехнических, экологических, биомедицинских и других систем, что значительно облегчает исследование соответствующих реальных процессов и систем со сложной внутренней динамикой. Они используется, в частности, в механических системах с демпфированием и жесткостью. Существует ряд примеров технических систем, которые описываются с помощью квадратичного демпфирования в динамических моделях второго порядка. В робототехнике, например, квадратичное демпфирование появляется при управлении с прямой связью и в нелинейных устройствах, таких как приводы с переменным импедансом (сопротивлением). Приводы с переменным сопротивлением представляют особый интерес для совместной робототехники. Для исследования характера и расположения особых точек в фазовой плоскости полиномиальной системы Эйлера–Лагранжа–Льенара используется разработанный нами метод, смысл которого состоит в том, чтобы получить простейшую (хорошо известную) систему путем обращения в нуль некоторых параметров (обычно параметров, поворачивающих поле) исходной системы, а затем последовательно вводить эти параметры, изучая динамику особых точек в фазовой плоскости. Для исследования особых точек системы мы используем классические теоремы Пуанкаре об индексе, а также наш оригинальный геометрический подход, основанный на применении метода двух изоклин Еругина, что особенно эффективно при исследовании бесконечно удаленных особых точек. Используя полученную информацию об особых точках и применяя канонические системы с параметрами, поворачивающими векторное поле, а также используя геометрические свойства спиралей, заполняющих внутренние и внешние области предельных циклов, и применяя наш геометрический подход к качественному анализу, мы изучаем бифуркации предельных циклов рассматриваемой системы.

  3. Божко А.Н.
    Моделирование процессов разборки сложных изделий
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 525-537

    Работа посвящена моделированию процессов разборки сложных изделий в системах автоматизированного проектирования. Возможность демонтажа изделия в заданной последовательности формируется на ранних этапах проектирования, а реализуется в конце жизненного цикла. Поэтому современные системы автоматизированного проектирования должны иметь инструменты для оценки сложности демонтажа деталей и сборочных единиц. Предложена гиперграфовая модель механической структуры изделия. Показано, что математическим описанием когерентных и секвенциальных операций разборки является нормальное разрезание ребра гиперграфа. Доказана теорема о свойствах нормальных разрезаний. Данная теорема позволяет организовать простую рекурсивную процедуру генерации всех разрезаний гиперграфа. Множество всех разрезаний представляется в виде И–ИЛИ-дерева. Дерево содержит информацию о планах разборки изделия и его частей. Предложены математические описания процессов разборки различного типа: полной, неполной, линейной, нелинейной. Показано, что решающий граф И–ИЛИ-дерева представляет собой модель разборки изделия и всех его составных частей, полученных в процессе демонтажа. Рассмотрена важная характеристика сложности демонтажа деталей — глубина вложения. Разработан способ эффективного расчета оценки снизу данной характеристики.

  4. Веричев Н.Н., Веричев С.Н., Ерофеев В.И.
    Стационарные состояния и бифуркации в одномерной активной среде осцилляторов
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 491-512

    В предлагаемой статье приводятся результаты аналитического и компьютерного исследования коллективных динамических свойств цепочки автоколебательных систем (условно — осцилляторов). Предполагается, что связи отдельных элементов цепочки являются невзаимными, однонаправленными. Точнее, предполагается, что каждый элемент цепочки находится под воздействием предыдущего, в то время как обратная реакция отсутствует (физически несущественна). В этом состоит главная особенность цепочки. Данную систему можно интерпретировать как активную дискретную среду с однонаправленным переносом, в частности переносом вещества. Подобные цепочки могут являться математическими моделями реальных систем с решеточной структурой, имеющих место в самых различных областях естествознания и техники: в физике, химии, биологии, радиотехнике, экономике и др. Также они могут быть моделями технологических и вычислительных процессов. В качестве элементов решетки выбраны нелинейные автоколебательные системы (условно — осцилляторы) с широким спектром потенциально возможных индивидуальных автоколебаний: от периодических до хаотических. Это позволяет исследовать различные динамические режимы цепочки от регулярных до хаотических, меняя параметры элементов и не меняя природу самих элементов. Совместное применение качественных методов теории динамических систем и качественно-численных методов позволяет получить обозримую картину всевозможных динамических режимов цепочки. Исследуются условия существования и устойчивости пространственно однородных динамических режимов (детерминированных и хаотических) цепочки. Аналитические результаты иллюстрированы численным экспериментом. Исследуются динамические режимы цепочки при возмущениях параметров на ее границе. Показывается возможность управления динамическими режимами цепочки путем включения необходимого возмущения на границе. Рассматриваются различные случаи динамики цепочек, составленных из неоднородных (различных по своим параметрам) элементов. Аналитически и численно исследуется глобальная (всех осцилляторов цепочки) хаотическая синхронизация.

  5. Антонов И.В., Бруттан Ю.В.
    Синтез структуры организованных систем как центральная проблема эволюционной кибернетики
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1103-1124

    В статье рассматриваются подходы к эволюционному моделированию синтеза организованных систем и анализируются методологические проблемы эволюционных вычислений этого направления. На основе анализа работ по эволюционной кибернетике, теории эволюции, теории систем и синергетике сделан вывод о наличии открытых проблем в задачах формализации синтеза организованных систем и моделирования их эволюции. Показано, что теоретической основой для практики эволюционного моделирования являются положения синтетической теории эволюции. Рассмотрено использование виртуальной вычислительной среды для машинного синтеза алгоритмов решения задач. На основе полученных в процессе моделирования результатов сделан вывод о наличии ряда условий, принципиально ограничивающих применимость методов генетического программирования в задачах синтеза функциональных структур. К основным ограничениям относятся необходимость для фитнес-функции отслеживать поэтапное приближение к решению задачи и неприменимость данного подхода к задачам синтеза иерархически организованных систем. Отмечено, что результаты, полученные в практике эволюционного моделирования в целом за все время его существования, подтверждают вывод о принципиальной ограниченности возможностей генетического программирования при решении задач синтеза структуры организованных систем. В качестве источников принципиальных трудностей для машинного синтеза системных структур указаны отсутствие направлений для градиентного спуска при структурном синтезе и отсутствие закономерности случайного появления новых организованных структур. Сделан вывод об актуальности рассматриваемых проблем для теории биологической эволюции. Обосновано положение о биологической специфике практически возможных путей синтеза структуры организованных систем. В качестве теоретической интерпретации обсуждаемой проблемы предложено рассматривать системно-эволюционную концепцию П.К. Анохина. Процесс синтеза функциональных структур рассматривается в этом контексте как адаптивная реакция организмов на внешние условия, основанная на их способности к интегративному синтезу памяти, потребностей и информации о текущих условиях. Приведены результаты актуальных исследований, свидетельствующие в пользу данной интерпретации. Отмечено, что физические основы биологической интегративности могут быть связаны с явлениями нелокальности и несепарабельности, характерными для квантовых систем. Отмечена связь рассматриваемой в данной работе проблематики с проблемой создания сильного искусственного интеллекта.

  6. Свириденко А.Б.
    Оценка числа итераций для сильно полиномиальных алгоритмов линейного программирования
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 249-285

    Рассматривается прямой алгоритм решения задачи линейного программирования (ЛП), заданной в каноническом виде. Алгоритм состоит из двух последовательных этапов, на которых прямым методом решаются приведенные ниже задачи ЛП: невырожденная вспомогательная задача (на первом этапе) и некоторая задача, равносильная исходной (на втором). В основе построения вспомогательной задачи лежит мультипликативный вариант метода исключения Гаусса, в самой структуре которого заложены возможности: идентификации несовместности и линейной зависимости ограничений; идентификации переменных, оптимальные значения которых заведомо равны нулю; фактического исключения прямых переменных и сокращения размерности пространства, в котором определено решение исходной задачи. В процессе фактического исключения переменных алгоритм генерирует последовательность мультипликаторов, главные строки которых формируют матрицу ограничений вспомогательной задачи, причем возможность минимизация заполнения главных строк мультипликаторов заложена в самой структуре прямых методов. При этом отсутствует необходимость передачи информации (базис, план и оптимальное значение целевой функции) на второй этап алгоритма и применения одного из способов устранения зацикливания для гарантии конечной сходимости.

    Представлены два варианта алгоритма решения вспомогательной задачи в сопряженной канонической форме. Первый основан на ее решении прямым алгоритмом в терминах симплекс-метода, а второй — на решении задачи, двойственной к ней, симплекс-методом. Показано, что оба варианта алгоритма для одинаковых исходных данных (входов) генерируют одинаковую последовательность точек: базисное решение и текущее двойственное решение вектора оценок строк. Отсюда сделан вывод, что прямой алгоритм — это алгоритм типа симплекс-метода. Также показано, что сравнение вычислительных схем приводит к выводу, что прямой алгоритм позволяет уменьшить по кубическому закону число арифметических операций, необходимых для решения вспомогательной задачи, по сравнению с симплекс-методом. Приводится оценка числа итераций.

  7. Гогуев М.В., Кислицын А.А.
    Моделирование траекторий временных рядов с помощью уравнения Лиувилля
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 585-598

    Представлен алгоритм моделирования ансамбля траекторий нестационарных временных рядов. Построена численная схема аппроксимации выборочной плотности функции распределения в задаче с закрепленными концами, когда начальное распределение за заданное количество шагов переходит в определенное конечное распределение, так, что на каждом шаге выполняется полугрупповое свойство решения уравнения Лиувилля. Модель позволяет численно построить эволюционирующие плотности функций распределения при случайном переключении состояний системы, порождающей исходный временной ряд.

    Основная проблема, рассматриваемая в работе, связана с тем, что при численной реализации левосторонней разностной производной по времени решение становится неустойчивым, но именно такой подход отвечает моделированию эволюции. При выборе неявных устойчивых схем с «заходом в будущее» используется итерационный процесс, который на каждом своем шаге не отвечает полугрупповому свойству. Если же моделируется некоторый реальный процесс, в котором предположительно имеет место целеполагание, то желательно использовать схемы, которые порождают модель переходного процесса. Такая модель используется в дальнейшем для того, чтобы построить предиктор разладки, который позволит определить, в какое именно состояние переходит изучаемый процесс до того, как он действительно в него перешел. Описываемая в статье модель может использоваться как инструментарий моделирования реальных нестационарных временных рядов.

    Схема моделирования состоит в следующем. Из заданного временного ряда отбираются фрагменты, отвечающие определенным состояниям, например трендам с заданными углами наклона и дисперсиями. Из этих фрагментов составляются эталонные распределения состояний. Затем определяются эмпирические распределения длительностей пребывания системы в указанных состояниях и длительности времени перехода из состояния в состояние. В соответствии с этими эмпирическими распределениями строится вероятностная модель разладки и моделируются соответствующие траектории временного ряда.

  8. Божко А.Н., Ливанцов В.Э.
    Оптимизация стратегии геометрического анализа в автоматизированных системах проектирования
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 825-840

    Автоматизация проектирования процессов сборки сложных изделий — это важная и сложная научно-техническая проблема. Последовательность сборки и содержание сборочных операций в значительной степени зависят от механической структуры и геометрических свойств изделия. Приведен обзор методов геометрического моделирования, которые применяются в современных системах автоматизированного проектирования. Моделирование геометрических препятствий при сборке методами анализа столкновений, планирования перемещений и виртуальной реальности требует очень больших вычислительных ресурсов. Комбинаторные методы дают только слабые необходимые условия геометрической разрешимости. Рассматривается важная задача минимизации числа геометрических проверок при синтезе сборочных операций и процессов. Формализация этой задачи основана на гиперграфовой модели механической структуры изделия. Эта модель дает корректное математическое описание когерентных и секвенциальных сборочных операций, которые доминируют в современном дискретном производстве. Введено ключевое понятие геометрической ситуации. Это такая конфигурация деталей при сборке, которая требует проверки на свободу от препятствий, и эта проверка дает интерпретируемые результаты. Предложено математическое описание геометрической наследственности при сборке сложных изделий. Аксиомы наследственности позволяют распространить результаты проверки одной геометрической ситуации на множество других ситуаций. Задача минимизации числа геометрических тестов поставлена как неантагонистическая игра ЛПР и природы, в которой требуется окрасить вершины упорядоченного множества в два цвета. Вершины представляют собой геометрические ситуации, а цвет — это метафора результата проверки на свободу от коллизий. Ход ЛПР заключается в выборе неокрашенной вершины, ответ природы — это цвет вершины, который определяется по результатам моделирования данной геометрической ситуации. В игре требуется окрасить упорядоченное множество за минимальное число ходов. Обсуждается проектная ситуация, в которой ЛПР принимает решение в условиях риска. Предложен способ подсчета вероятностей окраски вершин упорядоченного множества. Описаны основные чистые стратегии рационального поведения в данной игре. Разработан оригинальный синтетический критерий принятия рациональных решений в условиях риска. Предложены две эвристики, которые можно использовать для окрашивания упорядоченных множеств большой мощности и сложной структуры.

  9. Омарова А.Г., Бейбалаев В.Д.
    Численное решение третьей начально-краевой задачи для нестационарного уравнения теплопроводности с дробными производными
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1345-1360

    В последнее время для описания различных математических моделей физических процессов широко используется дробно-дифференциальное исчисление. В связи с этим большое внимание уделяется уравнениям в частных производных дробного порядка, которые являются обобщением уравнений в частных производных целого порядка.

    Нагруженными дифференциальными уравнениями в литературе называют уравнения, содержащие значения решения или его производных на многообразиях меньшей размерности, чем размерность области определения искомой функции. В настоящее время широко используются численные методы для решения нагруженных уравнений в частных производных целого и дробного порядка, поскольку аналитические методы решения сложны в реализации. Достаточно эффективным методом численного решения такого рода задач является метод конечных разностей, или метод сеток.

    Исследована начально-краевая задача в прямоугольнике $\overline{D}=\{(x,\,t)\colon 0\leqslant x\leqslant l,\;0\leqslant t\leqslant T\}$ для нагруженного дифференциального уравнения теплопроводности с композицией дробной производной Римана – Лиувилля и Капуто – Герасимова и с граничными условиями первого и третьего рода. С помощью метода энергетических неравенств получена априорная оценка в дифференциальной и в разностной форме. Полученные неравенства означают единственность решения и непрерывную зависимость решения от входных данных задачи. Получен разностный аналог для композиции дробной производной Римана – Лиувилля и Капуто – Герасимова порядка $(2-\beta )$ и построена разностная схема, аппроксимирующая исходную задачу с порядком $O\left(\tau +h^{2-\beta } \right)$. Доказана сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью, равной порядку аппроксимации разностной схемы.

  10. Корчак А.Б.
    Контроль точности при ускоренном схемотехническом моделировании
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 365-370

    Разработан алгоритм ускоренного моделирования КМОП СБИС (Сверх Больших Интегральных Схем с Комплементарной логикой на транзисторах Металл-Окисел-Проводник) под управлением точности. Алгоритм обеспечивает возможность проведения параллельного числительного эксперимента в много процессорной вычислительной среде. Ускорение расчета осуществляется за счет применения блочно-матричной и структурной (DCCC) декомпозиций. Особенность подхода состоит в выборе моментов и способов обмена параметрами и в применении многоскоростных методов интегрирования в процессе расчета подсистем. Благодаря этому имеется возможность оценивать и контролировать погрешность по требуемым характеристикам.

    Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.