Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'метод моментов':
Найдено статей: 93
  1. Фомин А.А., Фомина Л.Н.
    О сходимости неявного итерационного полинейного рекуррентного метода решения систем разностных эллиптических уравнений
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 857-880

    Работа посвящена теоретическому обоснованию неявного итерационного полинейного рекуррентного метода решения систем разностных уравнений, которые возникают при аппроксимации двумерных эллиптических дифференциальных уравнений на регулярной сетке. Высокая эффективность этого метода практически подтверждена при решении сложных тестовых задач, а также задач течения и теплообмена вязкой несжимаемой жидкости. Однако теоретические положения, объясняющие высокую скорость сходимости и устойчивость метода, до сих пор оставались за кадром внимания, что и послужило причиной проведения настоящего исследования. В работе подробно излагается процедура эквивалентных и приближенных преобразований исходной системы линейных алгебраических уравнений (СЛАУ) как в матрично-векторной форме, так и виде расчетных формул метода. При этом для наглядности изложения материала ключевые моменты преобразований иллюстрируются схемами изменения разностных шаблонов, отвечающих преобразованным уравнениям. Конечная цель процедуры преобразований — получение канонической формы записи метода, из которого следует его корректность в случае сходимости решения. На основе анализа структур и элементных составов матричных операторов проводится оценка их норм и, соответственно, доказывается сходимость метода для произвольных начальных векторов.

    В специальном случае слабых ограничений на искомое решение производится оценка нормы оператора перехода. Показывается, что с ростом размерности матрицы этого оператора величина его нормы уменьшается пропорционально квадрату (или кубу, в зависимости от версии метода) шага сеточного разбиения области решения задачи. С помощью простых оценок получено необходимое условие устойчивости метода. Также даются рекомендации относительно выбора по порядку величины оптимального итерационного параметра компенсации. Теоретические выводы проиллюстрированы результатами решения тестовых задач. Показано, что при увеличении размерности сеточного разбиения области решения количество итераций, необходимых для достижения заданной точности решения, при прочих равных условиях уменьшается. Также продемонстрировано, что если слабые ограничения на решение нарушены при выборе его начального приближения, то в полном соответствии с полученными теоретическими результатами скорость сходимости метода существенно уменьшается.

    Просмотров за год: 15. Цитирований: 1 (РИНЦ).
  2. Гасников А.В., Горбунов Э.А., Ковалев Д.А., Мохаммед А.А., Черноусова Е.О.
    Обоснование гипотезы об оптимальных оценках скорости сходимости численных методов выпуклой оптимизации высоких порядков
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 737-753

    В данной работе рассматривается проксимальный быстрый градиентный метод Монтейро – Свайтера (2013 г.), в котором используется один шаг метода Ньютона для приближенного решения вспомогательной задачи на каждой итерации проксимального метода. Метод Монтейро – Свайтера является оптимальным (по числу вычислений градиента и гессиана оптимизируемой функции) для достаточно гладких задач выпуклой оптимизации в классе методов, использующих только градиент и гессиан оптимизируемой функции. За счет замены шага метода Ньютона на шаг недавно предложенного тензорного метода Ю. Е. Нестерова (2018 г.), а также за счет специального обобщения условия подбора шага в проксимальном внешнем быстром градиентном методе удалось предложить оптимальный тензорный метод, использующий старшие производные. В частности, такой тензорный метод, использующий производные до третьего порядка включительно, оказался достаточно практичным ввиду сложности итерации, сопоставимой со сложностью итерации метода Ньютона. Таким образом, получено конструктивное решение задачи, поставленной Ю. Е. Нестеровым в 2018 г., об устранении зазора в точных нижних и завышенных верхних оценках скорости сходимости для имеющихся на данный момент тензорных методов порядка $p \geqslant 3$.

    Просмотров за год: 75.
  3. Спевак Л.Ф., Нефедова О.А.
    Численное решение двумерного нелинейного уравнения теплопроводности с использованием радиальных базисных функций
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 9-22

    Работа посвящена численному решению задачи о движении тепловой волны для вырождающегося нелинейного уравнения второго порядка параболического типа с источником. Нелинейность уравнения обусловлена степенной зависимостью коэффициента теплопроводности от температуры. Рассматривается задача для случая двух пространственных переменных при краевом условии, задающем закон движения фронта тепловой волны. Предложен новый алгоритм решения на основе разложения по радиальным базисным функциям и метода граничных элементов. Решение строится по шагам по времени с разностной аппроксимацией по времени. На каждом шаге решается краевая задача для уравнения Пуассона, соответствующего исходному уравнению для фиксированного момента времени. Решение такой задачи строится итерационно в виде суммы частного решения, удовлетворяющего неоднородному уравнению, и решения соответствующего однородного уравнения, удовлетворяющего граничным условиям. Однородное уравнение решается методом граничных элементов, частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Алгоритм реализован в виде программы, написанной на языке программирования С++. Организация параллельных вычислений построена с использованием открытого стандарта OpenCL, что позволило запускать одну и ту же программу, выполняющую параллельные вычисления, как на центральных многоядерных процессорах, так и на графических процессорах. Для оценки эффективности предложенного метода решения и корректности разработанной вычислительной технологии были решены тестовые примеры. Результаты расчетов сравнивались как с известными точными решениями, так и с данными, полученными авторами ранее в других работах. Проведена оценка точности решений и времени проведения расчетов. Проведен анализ эффективности использования различных систем радиальных базисных функций для решения задач рассматриваемого типа. Определена наиболее подходящая система функций. Проведенный комплексный вычислительный эксперимент показал более высокую точность расчетов по предложенному новому алгоритму по сравнению с разработанным ранее.

  4. Полосин В.Г.
    Квантильные меры формы для распределений с тяжелыми хвостами
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1041-1077

    Современная литература содержит многочисленные примеры применения распределений с тяжелыми хвостами для прикладных исследований сложных систем. Моделирование экстремальных данных обычно ограничено небольшим набором форм распределений, которые исторически применяются в данной области прикладных исследований. Расширение набора форм возможно посредством сопоставления мер форм распределений. В работе на примере бета-распределения второго рода показано, что неопределенность моментов тяжелохвостых бета-распределений ограничивает применимость классических методов моментов для исследования их форм. На данном этапе сохраняется актуальность построения методов сопоставления распределений с помощью квантильных мер формы, которые освобождены от ограничений на параметры формы. Цель работы состоит в компьютерном исследовании возможности построения пространства квантильных мер форм для проведения сравнения распределений с тяжелыми хвостами. На основе компьютерного моделирования проводится картирование реализаций распределений в пространстве параметрических, квантильных и информационных мер формы. Картирование распределений в пространстве только параметрических мер формы показало, что наложение множества распределений с тяжелыми хвостами в пространстве квантильных мер асимметрии и эксцесса не позволяет сопоставить формы распределений, принадлежащие разным типам распределений. Хорошо известно, что информационные меры содержат дополнительную информацию о мере формы распределений. В работе предложен квантильный коэффициент энтропии в качестве дополнительной независимой меры формы, построенной на отношении интервалов энтропийной и квантильной неопределенностей. На примере логнормального распределения и распределения Парето иллюстрируются возможности сравнения форм распределений с реализациями бета-распределения второго рода. В частности показано, что, несмотря на близость положений форм в трехмерном пространстве, формы реализаций логнормального распределения отсутствуют среди реализаций бета-распределения второго рода. Картирование положения устойчивых распределений в трехмерном пространстве квантильных мер форм позволило оценить параметры формы бета-распределения второго рода, для которого форма наиболее близка к форме распределения Леви. Из материала статьи следует, что отображение распределений в трехмерном пространстве квантильных мер форм значительно расширяет возможность сравнения форм для распределений с тяжелыми хвостами.

  5. В работе представлены результаты теоретического исследования особенностей статистического распределения фазы квазигармонического сигнала, формируемого в результате воздействия гауссовского шума на исходно гармонический сигнал. Выявленные особенности распределения фазы легли в основу развиваемого оригинального метода оценивания параметров исходного, неискаженного сигнала. Показано, что задача оценивания исходного значения фазы может эффективно решаться расчетом математического ожидания результатов выборочных измерений фазы, в то время как для решения задачи оценивания второго параметра распределения фазы — параметра уровня сигнала относительно шума — предлагается использовать зависимость дисперсии выборочных значений фазы от данного параметра. Для решения этой задачи используются полученные в явном виде аналитические формулы для моментов низших порядков распределения фазы, развит и обоснован новый подход к оцениванию параметров квазигармонического сигнала на основе измерения величины второго центрального момента, т. е. разброса выборочных значений фазы. В частности, применение данного метода обеспечивает высокоточное измерение амплитудных характеристик анализируемого сигнала посредством проведения лишь фазовых измерений. Численные результаты, полученные в ходе проведенного компьютерного моделирования, подтверждают теоретические выводы и эффективность разработанного метода. В работе обоснованы существование и единственность решения задачи оценивания параметров сигнала методом моментов. Показано, что функция, отображающая зависимость второго центрального момента от искомого параметра отношения сигнала к шуму, является монотонно убывающей и тем самым однозначной функцией искомого параметра. Разработанный метод оценивания параметров сигнала представляет интерес для решения широкого круга научных и прикладных задач, связанных с необходимостью измерения уровня сигнала и его фазы, в таких областях, как обработка данных в системах медицинской диагностической визуализации, обработка радиосигналов, радиофизика, оптика, радионавигация, метрология.

  6. Корчак А.Б.
    Контроль точности при ускоренном схемотехническом моделировании
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 365-370

    Разработан алгоритм ускоренного моделирования КМОП СБИС (Сверх Больших Интегральных Схем с Комплементарной логикой на транзисторах Металл-Окисел-Проводник) под управлением точности. Алгоритм обеспечивает возможность проведения параллельного числительного эксперимента в много процессорной вычислительной среде. Ускорение расчета осуществляется за счет применения блочно-матричной и структурной (DCCC) декомпозиций. Особенность подхода состоит в выборе моментов и способов обмена параметрами и в применении многоскоростных методов интегрирования в процессе расчета подсистем. Благодаря этому имеется возможность оценивать и контролировать погрешность по требуемым характеристикам.

    Цитирований: 1 (РИНЦ).
  7. В работе решается двухпараметрическая задача совместного расчета параметров сигнала и шума в условиях распределения Райса методами математической статистики: методом максимума правдоподобия и вариантами метода моментов. Рассматриваемые варианты метода моментов включают в себя совместный расчет сигнала и шума на основе измерений 2-го и 4-го моментов (ММ24) и на основе измерений 1-го и 2-го моментов (ММ12). В рамках каждого из рассматриваемых методов получены в явном виде системы уравнений для искомых параметров сигнала и шума. Важный математический результат проведенного исследования состоит в том, что решение системы двух нелинейных уравнений с двумя неизвестными — искомыми параметрами сигнала и шума — сведено к решению одного уравнения с одной неизвестной, что важно с точки зрения как теоретического исследования метода, так и его практического применения, позволяя существенно сократить необходимые для реализации метода вычислительные ресурсы. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации. В результате проведенного теоретического анализа получен важный практический вывод: решение двухпараметрической задачи не приводит к увеличению требуемых вычислительных ресурсов по сравнению с однопараметрическим приближением. Теоретические выводы подтверждаются результатами численного эксперимента.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  8. Матюшкин И.В.
    Клеточно-автоматные методы решения классических задач математической физики на гексагональной сетке. Часть 1
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 167-186

    Статья носит методический характер и посвящена решению трех классических уравнений математической физики (Лапласа, диффузии и волнового) простейшими численными схемами в формулировке клеточных автоматов (КА). Особое внимание уделяется законам сохранения вещества и неприятному эффекту избыточной гексагональной симметрии (ИГС).

    Делается вывод о том, что по сравнению с классическими конечно-разностными методами, хотя локальная функция перехода (ЛФП) КА терминологически эквивалентна шаблону вычислительной двухслоевой явной схемы, различие состоит в замене матричных (direct) методов (например, метода прогонки для трехдиагональной матрицы) итерационными. Из этого следуют более жесткие требования к дискретизации условий для граничных КА-ячеек.

    Для гексагональной сетки и консервативных граничных условий записана корректная ЛФП для граничных ячеек, справедливая, по крайней мере, для границ прямоугольной и круговой формы. Предложена идея разделения ЛФП на internal, boundary и postfix. На примере этой задачи заново осмыслено значение числа Куранта–Леви как соотношения скорости сходимости КА к решению задачи, данному на фиксированный момент времени, и скорости изменения самого решения в динамике.

    Просмотров за год: 6.
  9. Веренцов С.И., Магеррамов Э.А., Виноградов В.А., Гизатуллин Р.И., Алексеенко А.Е., Холодов Я.А.
    Байесовская вероятностная локализация автономного транспортного средства путем ассимиляции сенсорных данных и информации о дорожных знаках
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 295-303

    Локализация транспортного средства является важной задачей в области интеллектуальных транспортных систем. Хорошо известно, что слияние показаний с разных датчиков (англ. Sensor Fusion) позволяет создавать более робастные и точные навигационные системы для автономных транспортных средств. Стандартные подходы, такие как расширенный фильтр Калмана или многочастичный фильтр, либо неэффективны при работе с сильно нелинейными данными, либо потребляют значительные вычислительные ресурсы, что осложняет их использование во встроенных системах. При этом точность сливаемых сенсоров может сильно различаться. Значительный прирост точности, особенно в ситуации, когда GPS (англ. Global Positioning System) не доступен, может дать использование ориентиров, положение которых заранее известно, — таких как дорожные знаки, светофоры, или признаки SLAM (англ. Simultaneous Localization and Mapping). Однако такой подход может быть неприменим в случае, если априорные локации неизвестны или неточны. Мы предлагаем новый подход для уточнения координат транспортного средства с использованием визуальных ориентиров, таких как дорожные знаки. Наша система представляет собой байесовский фреймворк, уточняющий позицию автомобиля с использованием внешних данных о прошлых наблюдениях дорожных знаков, собранных методом краудсорсинга (англ. Crowdsourcing — сбор данных широким кругом лиц). Данная статья представляет также подход к комбинированию траекторий, полученных с помощью глобальных GPS-координат и локальных координат, полученных с помощью акселерометра и гироскопа (англ. Inertial Measurement Unit, IMU), для создания траектории движения транспортного средства в неизвестной среде. Дополнительно мы собрали новый набор данных, включающий в себя 4 проезда на автомобиле в городской среде по одному маршруту, при которых записывались данные GPS и IMU смартфона, видеопоток с камеры, установленной на лобовом стекле, а также высокоточные данные о положении с использованием специализированного устройства Real Time Kinematic Global Navigation Satellite System (RTK-GNSS), которые могут быть использованы для валидации. Помимо этого, с использованием той же системы RTK-GNSS были записаны точные координаты знаков, присутствующих на маршруте. Результаты экспериментов показывают, что байесовский подход позволяет корректировать траекторию движения транспортного средства и дает более точные оценки при увеличении количества известной заранее информации. Предложенный метод эффективен и требует для своей работы, кроме показаний GPS/IMU, только информацию о положении автомобилей в моменты прошлых наблюдений дорожных знаков.

    Просмотров за год: 22.
  10. Шаклеин А.А., Карпов А.И., Болкисев А.А.
    Анализ численного метода решения задачи о распространении пламени по вертикальной поверхности горючего материала
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 755-774

    Снижение пожарной опасности при использовании полимерных материалов является одной из актуальных научно-технических задач. В связи со сложностью проведения экспериментальных исследований в данной области важным направлением современной фундаментальной науки является развитие теоретических основ описания реагирующих течений. Для решения вопросов, связанных с распространением пламени по поверхности горючего материала, необходимо совершенствовать методы математического моделирования, что обусловлено большим количеством протекающих физико-химических процессов, требующих моделирования каждого из них в отдельности, и сложным характером взаимодействия между этими процессами как в газовой среде, так и в твердом теле.

    Распространение пламени вверх по вертикальной поверхности твердого горючего материала сопровождается нестационарными вихревыми структурами течения газа вблизи области горения, образование которых происходит в результате тепловой нестабильности и за счет действия сил естественной конвекции, ускоряющей горячие продукты сгорания. За счет вихревых структур от горячего газофазного пламени в твердый материал в каждый момент времени поступает разное количество тепловой энергии. Поэтому адекватный расчет теплового потока и, соответственно, вихревого течения имеет важное значение для оценки скорости распространения пламени.

    Данная работа появящена оценкам параметров численного метода решения задачи распространения пламени по поверхности горючего материала, учитывающего сопряженный характер взаимодействия газовой среды и твердого тела и вихревое течение, вызванное естественной конвекцией. В работе рассмотрены особенности использования различных аппроксимационных схем, используемых при интегрировании исходных дифференциальных уравнений по пространству и во времени, релаксации полей при итерировании внутри шага по времени, различных шагов интегрирования по времени.

    Сформулированная в работе математическая модель позволяет описывать процесс распространения пламени по поверхности горючего материала. Газодинамика моделируется системой уравнений Навье – Стокса, вихревое течение описывается комбинированной моделью турбулентности RANS–LES (DDES), турбулентное горение — комбинированной моделью горения Eddy Break-Up с учетом кинетических эффектов, теплопередача излучением — методом сферических гармоник первого порядка аппроксимации (P1). Решение уравнений производится в программном пакете OpenFOAM.

    Просмотров за год: 33.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.