Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Совершенствование метода парных сравнений для реализации в компьютерных программах, применяемых при оценке качества технических систем
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1125-1135Представлен усовершенствованный метод парных сравнений, в котором посредством табличных форм систематизированы правила логических выводов при сравнении технических систем и формулы проверочных значений. Для этого сформулированы рациональные правила логических выводов при парном сравнении систем. С целью проверки результатов оценки на непротиворечивость введены понятия количества баллов, набранных одной системой, и коэффициента качества систем, а также разработаны формулы расчетов. Для целей практического использования данного метода при разработке программ для ЭВМ предлагаются формализованные варианты взаимосвязанных таблиц: таблица обработки и систематизации экспертной информации, таблица возможных логических выводов по результатам сравнения заданного количества технических систем и таблица проверочных значений при использовании метода парных сравнений при оценке качества определенного количества технических систем. Таблицы позволяют более рационально организовать процедуры обработки информации и в значительной степени исклю- чить влияние ошибок при вводе данных на результаты оценки качества технических систем. Основной положительный эффект от внедрения усовершенствованного метода парных сравнений состоит в существенном сокращении времени и ресурсов на организацию работы с экспертами, обработку экспертной информации, а также на подготовку и проведение дистанционного опроса экспертов по сети Интернет или локальной вычислительной сети предприятия (организации) за счет рационального использования исходных данных о качестве оцениваемых систем. Предлагаемый усовершенствованный метод реали- зован в программах для ЭВМ, предназначенных для оценки эффективности и устойчивости больших технических систем.
-
Подход к решению невыпуклой равномерно вогнутой седловой задачи со структурой
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 225-237В последнее время седловым задачам уделяется большое внимание благодаря их мощным возможностям моделирования для множества задач из различных областей. Приложения этих задач встречаются в многочисленных современных прикладных областях, таких как робастная оптимизация, распределенная оптимизация, теория игр и~приложения машинного обучения, такие как, например, минимизация эмпирического риска или обучение генеративно-состязательных сетей. Поэтому многие исследователи активно работают над разработкой численных методов для решения седловых задач в самых разных предположениях. Данная статья посвящена разработке численного метода решения седловых задач в невыпуклой равномерно вогнутой постановке. В этой постановке считается, что по группе прямых переменных целевая функция может быть невыпуклой, а по группе двойственных переменных задача является равномерно вогнутой (это понятие обобщает понятие сильной вогнутости). Был изучен более общий класс седловых задач со сложной композитной структурой и гёльдерово непрерывными производными высшего порядка. Для решения рассматриваемой задачи был предложен подход, при котором мы сводим задачу к комбинации двух вспомогательных оптимизационных задач отдельно для каждой группы переменных: внешней задачи минимизации и~внутренней задачи максимизации. Для решения внешней задачи минимизации мы используем адаптивный градиентный метод, который применим для невыпуклых задач, а также работает с неточным оракулом, который генерируется путем неточного решения внутренней задачи максимизации. Для решения внутренней задачи максимизации мы используем обобщенный ускоренный метод с рестартами, который представляет собой метод, объединяющий методы ускорения высокого порядка для минимизации выпуклой функции, имеющей гёльдерово непрерывные производные высшего порядка. Важной компонентой проведенного анализа сложности предлагаемого алгоритма является разделение оракульных сложностей на число вызовов оракула первого порядка для внешней задачи минимизации и оракула более высокого порядка для внутренней задачи максимизации. Более того, оценивается сложность всего предлагаемого подхода.
Ключевые слова: седловая задача, невыпуклая оптимизация, равномерно выпуклая функция, неточный оракул, метод высшего порядка. -
Нейросетевой подход к исследованию задач оптимального управления
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 539-557В статье предлагается метод исследования задач оптимального управления с использованием нейронных сетей. Рассмотрение проводится на примере задачи контроля качества поверхностных вод. При моделировании системы контроля качества поверхностных вод используются теоретико-игровой и иерархический подходы. Исследуется случай динамической двухуровневой системы управления качеством поверхностных вод, включающий ведущего и нескольких ведомых. Рассмотрение ведется с точки зрения ведомых. В этом случае между ними возникает неантагонистическая игра, в которой строится равновесие Нэша. С математической точки зрения при этом решается задача оптимального управления при наличии фазовых ограничений. Для ее аналитического исследования в работе используется принцип максимума Понтрягина, на основе которого формулируются условия оптимальности. Для решения возникающих при этом систем дифференциальных уравнений используется обучаемая нейронная сеть прямого распространения (feedforward). Приводится обзор существующих методов решения подобных задач с помощью нейронных сетей и методов обучения нейронных сетей. Для оценки ошибки решения, получаемого с помощью нейронной сети, предлагается использовать метод анализа дефекта решения, адаптированный для нейронных сетей. Это позволяет получить количественную оценку ошибки численного решения. Приведены примеры использования нейросетевого подхода для решения модельной задачи оптимального управления и задачи контроля качества поверхностных вод. Полученные в этих примерах результаты сравниваются с точным решением и с результатами, полученными методом стрельбы. Во всех случаях величина ошибки оценивается методом анализа дефекта решения. Нейросетевым методом проводится также исследование системы контроля качества поверхностных вод для случаев, когда решение задачи другими методами получить не удалось (большой временной промежуток моделирования и случай нескольких агентов). В статье иллюстрируются возможность использования нейросетевого подхода для решения различных задач оптимального управления и дифференциальных игр, а также возможность количественной оценки точности решения. Полученные результаты численных экспериментов позволяют говорить о необходимости введения регулирующего органа для достижения устойчивого развития системы.
Ключевые слова: оптимальное управление, дифференциальные игры, нейронная сеть, равновесие Нэша, принцип максимума Понтрягина. -
Моделирование нестационарной структуры потока около спускаемого аппарата в условиях марсианской атмосферы
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 701-714В статье представлены результаты численного моделирования вихревого пространственного нестационарного движения среды, возникающего около боковой и донной поверхностей десантного модуля при его спуске в атмосфере Марса. Численное исследование проведено для высокоскоростного режима обтекания при различных углах атаки. Математическое моделирование осуществлено на основе модели Навье – Стокса и модели равновесных химических реакций для газового состава марсианской атмосферы. Результаты моделирования показали, что при рассматриваемых условиях движения спускаемого аппарата около его боковой и донной поверхностей реализуется нестационарное течение, имеющее ярко выраженный вихревой характер. Численные расчеты указывают на то, что в зависимости от угла атаки нестационарность и вихревой характер потока могут проявляться как на всей боковой и донной поверхностях аппарата, так и, частично, на их подветренной стороне. Для различных углов атаки приводятся картины вихревой структуры потока около поверхности спускаемого аппарата и в его ближнем следе, а также картины полей температуры и показателя адиабаты. Нестационарный характер обтекания подтверждается представленными временными зависимостями газодинамических параметров потока в различных точках поверхности аппарата. Проведенные параметрические расчеты позволили построить зависимости аэродинамических характеристик спускаемого аппарата от угла атаки. Математическое моделирование осуществляется на основе являющегося методом конечных объемов консервативного численного метода потоков, основанного на конечно-разностной записи законов сохранения аддитивных характеристик среды с использованием upwind-аппроксимаций потоковых переменных. Для моделирования возникающей при обтекании сложной вихревой структуры потока около спускаемого аппарата используются неравномерные вычислительные сетки, включающие до 30 миллионов конечных объемов с экспоненциальным сгущением к поверхности, что позволило выявить мелкомасштабные вихревые образования. Численные исследования проведены на базе разработанного комплекса программ, основанного на параллельных алгоритмах используемого численного метода и реализованного на современных многопроцессорных вычислительных системах. Приведенные в статье результаты численного моделирования получены при использовании до двух тысяч вычислительных ядер многопроцессорного комплекса.
-
Бессеточный алгоритм расчета взаимодействия крупных частиц с ударным слоем в сверхзвуковых гетерогенных потоках
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1007-1027Работа посвящена численному моделированию двухфазных течений, а именно расчету сверхзвукового обтекания затупленного тела потоком вязкого газа с примесью относительно крупных частиц, масса которых позволяет после отражения от поверхности выйти за пределы ударного слоя, двигаясь по инерции навстречу набегающему потоку. Натурные и вычислительные эксперименты показывают, что движение высокоинерционных частиц существенным образом изменяет структуру течения газа в ударном слое, а формирующиеся при этом направленные на тело импактные струи вызывают увеличение давления газа вблизи участков поверхности и кратный рост конвективного теплового потока.
Построена математическая модель обтекания затупленного тела сверхзвуковым потоком вязкого газа с твердыми частицами. Решение системы нестационарных уравнений Навье–Стокса в консервативных переменных осуществляется бессеточным методом, в основе которого лежит аппроксимация частных пространственных производных газодинамических величин и содержащих их функций методом наименьших квадратов на множестве распределенных в области расчета узлов. Расчет невязких потоков выполняется методом HLLC в сочетании с MUSCL-реконструкцией третьего порядка, вязких потоков — схемой второго порядка. МНК-аппроксимация частных производных параметров газа по направлению также применяется для реализации краевых условий Неймана на выходной границе области расчета, а также поверхностях обтекаемых тел, которые считаются изотермическими твердыми стенками.
Каждое движущееся тело окружено облаком расчетных узлов, принадлежащих его домену и перемещающихся вместе с ним в пространстве. Реализовано два подхода к моделированию перемещения объектов с учетом обратного влияния на течение газа: метод скользящих облаков фиксированной формы и эволюции единого облака узлов, представляющего собой объединение узлов разных доменов. Проведенные численные эксперименты подтвердили применимость предложенных методов к решению целевых задач моделирования движения крупных частиц в сверхзвуковом потоке.
Выполнена программная реализация представленных алгоритмов на основе технологии параллельных гетерогенных вычислений OpenCL. Представлены результаты моделирования движения крупной частицы вдоль оси симметрии сферы навстречу набегающему потоку с числом Маха $\mathrm{M}=6$.
-
Численное решение обратной задачи для уравнения гиперболической теплопроводности с малым параметром
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 245-258В данной работе приведен алгоритм численного решения обратной начально-краевой задачи для гиперболического уравнения с малым параметром перед второй производной по времени, которая состоит в нахождении начального распределения по заданному конечному. Данный алгоритм позволяет для заданной наперед точности получить решение задачи (в допустимых пределах точности). Данный алгоритм позволяет избежать сложностей, аналогичных случаю с уравнением теплопроводности с обращенным временем. Предложенный алгоритм позволяет подобрать оптимальный размер конечно-разностной схемы путем обучения на относительно больших разбиениях сетки и малом числе итераций градиентного метода. Предложенный алгоритм позволяет получить оценку для константы Липшица градиента целевого функционала. Также представлен способ оптимального выбора малого параметра при второй производной для ускорения решения задачи. Данный подход может быть применен и в других задачах с похожей структурой, например в решении уравнений состояния плазмы, в социальных процессах или в различных биологических задачах. Новизна данной работы заключается в разработке оптимальной процедуры выбора размера шага путем применения экстраполяции Ричардсона и обучения на малых размерах сетки для решения задач оптимизации с неточным градиентом в обратных задачах.
Ключевые слова: обратные задачи, гиперболическая теплопроводность, неточный градиент, схема Ричардсона, регуляризация. -
Сравнение сложных динамических систем на основе топологического анализа данных
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 513-525В работе рассматривается возможность сравнения и классификации динамических систем на основе топологического анализа данных. Определение мер взаимодействия между каналами динамических систем на основе методов HIIA (Hankel Interaction Index Array) и PM (Participation Matrix) позволяет построить графы HIIA и PM и их матрицы смежности. Для любой линейной динамической системы может быть построен аппроксимирующий ориентированный граф, вершины которого соответствуют компонентам вектора состояния динамической системы, а дуги — мерам взаимного влияния компонент вектора состояния. Построение меры расстояния (близости) между графами различных динамических систем имеет важное значение, например для идентификации штатного функционирования или отказов динамической системы или системы управления. Для сравнения и классификации динамических систем в работе предварительно формируются взвешенные ориентированные графы, соответствующие динамическим системам, с весами ребер, соответствующими мерам взаимодействия между каналами динамической системы. На основе методов HIIA и PM определяются матрицы мер взаимодействия между каналами динамических систем. В работе приведены примеры формирования взвешенных ориентированных графов для различных динамических систем и оценивания расстояния между этими системами на основе топологического анализа данных. Приведен пример формирования взвешенного ориентированного графа для динамической системы, соответствующей системе управления компонентами вектора угловой скорости летательного аппарата, который рассматривается как твердое тело с главными моментами инерции. Метод топологического анализа данных, используемый в настоящей работе для оценки расстояния между структурами динамических систем, основан на формировании персистентных баркодов и функций персистентного ландшафта. Методы сравнения динамических систем на основе топологического анализа данных могут быть использованы при классификации динамических систем и систем управления. Применение традиционной алгебраической топологии для анализа объектов не позволяет получить достаточное количество информации из-за уменьшения размерности данных (в связи потерей геометрической информации). Методы топологического анализа данных обеспечивают баланс между уменьшением размерности данных и характеристикой внутренней структуры объекта. В настоящей работе используются методы топологического анализа данных, основанные на применении фильтраций Vietoris-Rips и Dowker для присвоения каждому топологическому признаку геометрической размерности. Для отображения персистентных диаграмм метода топологического анализа данных в гильбертово пространство и последующей количественной оценки сравнения динамических систем используются функции персистентного ландшафта. На основе построения функций персистентного ландшафта предлагаются сравнение графов динамических систем и нахождение расстояний между динамическими системами. Для этой цели предварительно формируются взвешенные ориентированные графы, соответствующие динамическим системам. Приведены примеры нахождения расстояния между объектами (динамическими системами).
Ключевые слова: сложная динамическая система, персистентные гомологии, функции персистентного ландшафта. -
Использование функций обратных связей для решения задач параметрического программирования
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1125-1151Рассматривается конечномерная оптимизационная задача, постановка которой, помимо искомых переменных, содержит параметры. Ее решение есть зависимость оптимальных значений переменных от параметров. В общем случае такие зависимости не являются функциями, поскольку могут быть неоднозначными, а в функциональном случае — быть недифференцируемыми. Кроме того, область их существования может оказаться уже области определения функций в условии задачи. Эти свойства затрудняют решение как исходной задачи, так и задач, в постановку которых входят данные зависимости. Для преодоления этих затруднений обычно применяются методы типа недифференцируемой оптимизации.
В статье предлагается альтернативный подход, позволяющий получать решения параметрических задач в форме, лишенной указанных свойств. Показывается, что такие представления могут исследоваться стандартными алгоритмами, основанными на формуле Тейлора. Данная форма есть функция, гладко аппроксимирующая решение исходной задачи. При этом величина погрешности аппроксимации регулируется специальным параметром. Предлагаемые аппроксимации строятся с помощью специальных функций, устанавливающих обратные связи между переменными и множителями Лагранжа. Приводится краткое описание этого метода для линейных задач с последующим обобщением на нелинейный случай.
Построение аппроксимации сводится к отысканию седловой точки модифицированной функции Лагранжа исходной задачи. Показывается, что необходимые условия существования такой седловой точки подобны условиям теоремы Каруша – Куна – Таккера, но не содержат в явном виде ограничений типа неравенств и условий дополняющей нежесткости. Эти необходимые условия аппроксимацию определяют неявным образом. Поэтому для вычисления ее дифференциальных характеристик используется теорема о неявных функциях. Эта же теорема применяется для уменьшения погрешности аппроксимации.
Особенности практической реализации метода функций обратных связей, включая оценки скорости сходимости к точному решению, демонстрируются для нескольких конкретных классов параметрических оптимизационных задач. Конкретно: рассматриваются задачи поиска глобального экстремума функций многих переменных и задачи на кратный экстремум (максимин-минимакс). Также рассмотрены оптимизационные задачи, возникающие при использовании многокритериальных математических моделей. Для каждого из этих классов приводятся демонстрационные примеры.
-
Бикомпактные схемы для HOLO-алгоритма решения уравнения переноса излучения совместно с уравнением энергии
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1429-1448Численное решение системы уравнений высокотемпературной радиационной газовой динамики (ВРГД) является вычислительно трудоемкой задачей, так как взаимодействие излучения с веществом нелинейно и нелокально. Коэффициенты поглощения излучения зависят от температуры, а поле температур определяется как газодинамическими процессами, так и переносом излучения. Обычно для решения системы ВРГД используется метод расщепления по физическим процессам, выделяется блок решения уравнения переноса совместно с уравнением баланса энергии вещества при известных давлениях и температурах. Построенные ранее разностные схемы, используемые для решения этого блока, обладают порядками сходимости не выше второго. Так как даже на современном уровне развития вычислительной техники имеются ограничения по памяти, то для решения сложных технических задач приходится применять не слишком подробные сетки. Это повышает требования к порядку аппроксимации разностных схем. В данной работе впервые реализованы бикомпактные схемы высокого порядка аппроксимации для алгоритма совместного решения уравнения переноса излучения и уравнения баланса энергии. Предложенный метод может быть применен для решения широкого круга практических задач, так как обладает высокой точностью и подходит для решения задач с разрывами коэффициентов. Нелинейность задачи и использование неявной схемы приводит к итерационному процессу, который может медленно сходиться. В данной работе используется мультипликативный HOLO-алгоритм — метод квазидиффузии В.Я. Гольдина. Ключевая идея HOLO-алгоритмов состоит в совместном решении уравнений высокого порядка (high order, HO) и низкого порядка (low order, LO). Уравнением высокого порядка (HO) является уравнение переноса излучения, которое решается в многогрупповом приближении, далее уравнение осредняется по угловой переменной и получается система уравнений квазидиффузии в многогрупповом приближении (LO1). Следующим этапом является осреднение по энергии, при этом получается эффективная одногрупповая система уравнений квазидиффузии (LO2), которая решается совместно с уравнением энергии. Решения, получаемые на каждом этапе HOLO-алгоритма, оказываются тесно связанными, что в итоге приводит к ускорению сходимости итерационного процесса. Для каждого из этапов HOLO-алгоритма предложены разностные схемы, построенные методом прямых в рамках одной ячейки и обладающие четвертым порядком аппроксимации по пространству и третьим порядком по времени. Схемы для уравнения переноса были разработаны Б.В. Роговым и его коллегами, схемы для уравнений LO1 и LO2 разработаны авторами. Предложен аналитический тест, на котором демонстрируются заявленные порядки сходимости. Рассматриваются различные варианты постановки граничных условий и исследовано их влияние на порядок сходимости по времени и пространству.
-
Статистическое распределение фазы квазигармонического сигнала: основы теории и компьютерное моделирование
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 287-297В работе представлены результаты фундаментального исследования, направленного на теоретическое изучение и компьютерное моделирование свойств статистического распределения фазы квазигармонического сигнала, формируемого в результате воздействия гауссовского шума на исходно гармонический сигнал. Методами математического анализа получены в явном виде формулы для основных характеристик данного распределения — функции распределения, функции плотности вероятности, функции правдоподобия. В результате проведенного компьютерного моделирования проанализированы зависимости данных функций от параметров распределения фазы. В работе разработаны и обоснованы методы оценивания параметров распределения фазы, несущих информацию об исходном, не искаженном шумом сигнале. Показано, что задача оценивания исходного значения фазы квазигармонического сигнала может эффективно решаться простым усреднением результатов выборочных измерений фазы, в то время как для решения задачи оценивания второго параметра распределения фазы — параметра уровня сигнала относительно шума — предлагается использовать метод максимума правдоподобия. В работе представлены графические материалы, полученные путем компьютерного моделирования основных характеристик исследуемого статистического распределения фазы. Существование и единственность максимума функции правдоподобия позволяют обосновать возможность и эффективность решения задачи оценивания уровня сигнала относительно уровня шума методом максимума правдоподобия. Развиваемый в работе метод оценивания уровня незашумленного сигнала относительно уровня шума, т.е. параметра, характеризующего интенсивность сигнала, на основании измерений фазы сигнала является оригинальным, принципиально новым, открывающим перспективы использования фазовых измерений как инструмента анализа стохастических данных. Данное исследование является значимым для решения задач расчета фазы и уровня сигнала методами статистической обработки выборочных фазовых измерений. Предлагаемые методы оценивания параметров распределения фазы квазигармонического сигнала могут использоваться при решении различных научных и прикладных задач, в частности, в таких областях, как радиофизика, оптика, радиолокация, радионавигация, метрология.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"