Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Условия применимости статистической модели Райса и расчет параметров райсовского сигнала методом максимума правдоподобия
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 13-25Просмотров за год: 2. Цитирований: 4 (РИНЦ).В работе развивается теория нового, так называемого двухпараметрического подхода к анализу и обработке случайных сигналов. Проведены математическое моделирование и сопоставление результатов решения задачи в условиях статистических моделей Гаусса и Райса. Дается обоснование применимости статистической модели Райса в условиях анализа огибающей измеряемого сигнала в задачах обработки данных и изображений. Развит и теоретически обоснован метод решения задачи шумоподавления и восстановления райсовского сигнала посредством одновременного вычисления двух статистических параметров — величины математического ожидания исходного сигнала и дисперсии шума — на основе принципа максимума правдоподобия. Проанализированы особенности функции правдоподобия для распределения Райса и вытекающие из них возможности оценки параметров сигнала и шума.
-
Маршевый алгоритм решения задачи переноса излучения методом коротких характеристик
Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 203-215Просмотров за год: 10. Цитирований: 3 (РИНЦ).В работе изложена процедура построения численных решений для задачи переноса излучения. В этом подходе численное решение строится последовательно от границы области вдоль направления распространения излучения. Проведено тестирование алгоритма задаче распространения излучения нагретого шара.
-
Идентификация онлайн-подписи с помощью оконного преобразования Фурье и радиального базиса
Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 357-364В данной работе описан метод идентификации онлайн-подписи с использованием оконного преобразования Фурье и вейвлет-преобразования с радиальным базисом специального вида. При идентификации используются динамические характеристики подписи. Приведены оценки достоверности предложенной процедуры.
Ключевые слова: онлайн-подпись, оконное преобразование Фурье, вейвлет-преобразование, радиальный базис.Просмотров за год: 4. Цитирований: 3 (РИНЦ). -
Алгоритм численного интегрирования потенциально-потоковых уравнений в сосредоточенных параметрах с контролем корректности приближенного решения
Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 479-493Просмотров за год: 4. Цитирований: 3 (РИНЦ).Данная работа посвящена разработке алгоритма численного интегрирования системы дифференциальных уравнений потенциально-потокового метода моделирования неравновесных процессов. Этот метод был разработан автором в опубликованных им ранее работах. В настоящей работе рассмотрение ограничивается системами с сосредоточенными параметрами. Также ранее была разработана автором методика анализа корректности приближенного решения системы потенциально-потоковых уравнений для систем в сосредоточенных параметрах. Целью настоящей статьи является объединение этой методики с современными численными методами интегрирования систем обыкновенных дифференциальных уравнений и разработка методики численного интегрирования систем уравнений потенциально-потокового метода, позволяющей гарантировать корректность приближенного решения.
-
Неявный итерационный полинейный рекуррентный метод в применении к решению задач динамики несжимаемой вязкой жидкости
Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 35-50Просмотров за год: 3. Цитирований: 3 (РИНЦ).В работе рассматриваются результаты применения неявного итерационного полинейного рекуррентного метода решения систем разностных эллиптических уравнений, возникающих при численном моделировании динамики несжимаемой вязкой жидкости. Исследование проводится на примере решения задачи о стационарном течении в плоской каверне с подвижной крышкой, сформулированной в естественных переменных ($u, \,v, \,p$) при больших значениях чисел Re (до 20 000) и сеточных разрешений (до 2049×2049). Демонстрируется высокая эффективность метода при расчете полей поправки давления. Анализируются проблемы решения задачи при больших числах Re.
-
Поляризация вакуума скалярного поля на группах Ли с биинвариантной метрикой
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 989-999В работе рассматривается эффект поляризации вакуума скалярного поля на группах Ли с биинвариантной метрикой Робертсона–Уокера. При помощи метода орбит найдены выражения для вакуумных средних тензора энергии-импульса скалярного поля, которые определяются характером представления группы. Показана совместность уравнений Эйнштейна с данным тензором энергии-импульса. В качестве примера рассмотрена модель перемешанного мира.
Ключевые слова: поляризация вакуума, метод орбит.Просмотров за год: 2. -
Статистический анализ блочно-поворотного механизма Марголуса в клеточно-автоматной модели диффузии в среде с дискретными особенностями
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1155-1175Просмотров за год: 8. Цитирований: 4 (РИНЦ).Предложено обобщение блочного клеточного автомата Марголуса на гексагональную сетку. Проведена статистическая обработка результатов вероятностных клеточно-автоматных вычислений для ряда модификаций схемы, решающей тестовую задачу диффузии вещества. Показано, что выбор блоков в виде гексагонов на 25% эффективнее, чем в виде Y-блоков. Показано, что алгоритмы имеют полиномиальную сложность, причем степень полинома для параллельных вычислителей лежит в пределах 0.6÷0.8, а для последовательных — в пределах 1.5÷1.7. Исследовалось влияние внедренных в поле клеточного автомата дефектных ячеек на скорость сходимости.
-
Интегрирование релятивистских волновых уравнений в космологической модели Бъянки IX
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 433-443В работе рассматривается интегрирование уравнений Клейна–Гордона и Дирака в космологической модели Бъянки IX. При помощи метода некоммутативного интегрирования дифференциальных уравнений найдены новые точные решения для осесимметричной модели.
Метод некоммутативного интегрирования в данной задаче основан на использовании специального бесконечномерного голоморфного представления группы вращений, которое строится по невырожденной орбите коприсоединенного представления и комплексной поляризации невырожденного ковектора. Матричные элементы данного представления образуют полный и ортогональный набор и позволяют ввести обобщенное преобразование Фурье. Оператор Казимира группы вращений при этом преобразовании переходит в константу, а операторы симметрии, порожденные векторными полями Киллинга, — в линейные дифференциальные операторы первого порядка от одной зависимой переменной. Таким образом, релятивистские волновые уравнения на группе вращений допускают некоммутативную редукцию к обыкновенному дифференциальному уравнению. В отличие от широко известного метода разделения переменных метод некоммутативного интегрирования учитывает неабелеву алгебру операторов симметрии и дает решения, несущие информацию о некоммутативной симметрии задачи. Такие решения могут быть полезны для учета вакуумных квантовых эффектов и расчета конечных функций Грина методом раздвижки точек.
В работе для осесимметричной модели проведено сравнение полученных решений с известными, которые получаются методом разделения переменных. Показано, что некоммутативные решения выражаются через элементарные функции, тогда как известные решения определяются функцией Вигнера. Причем некоммутативно редуцированное уравнение Клейна–Гордона для осесимметричной модели совпадает с уравнением, редуцированным методом разделения переменных. А некоммутативно редуцированное уравнение Дирака эквивалентно редуцированному уравнению, полученному методом разделения переменных.
Ключевые слова: некоммутативное интегрирование, Бъянки IX.Просмотров за год: 5. -
Классификация динамических режимов переключения намагниченности в трехслойной ферромагнитной структуре в зависимости от спин-поляризованного тока инжекции и внешнего магнитного поля. I. Продольная анизотропия
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 605-620Просмотров за год: 2. Цитирований: 6 (РИНЦ).В приближении однородной намагниченности построена математическая модель ячейки памяти MRAM c осью анизотропии, расположенной в плоскости запоминающего ферромагнитного слоя ячейки и ориентированной параллельно ее краю (продольная анизотропия). Модель базируется на уравнении Ландау–Лифшица–Гильберта с токовым членом в форме Слончевского–Берже. Выведена система обыкновенных дифференциальных уравнений в нормальном виде, описывающая динамику намагниченности в трехслойной вентильной структуре Co/Cu/Co в зависимости от величины тока инжекции и внешнего магнитного поля, параллельного оси анизотропии магнитных слоев. Показано, что при любых токах и полях система имеет два основных состояния равновесия, расположенных на оси, совпадающей с осью анизотропии. Проведен анализ устойчивости этих состояний равновесия. Выписаны уравнения для определения дополнительных состояний равновесия. Показано, что в зависимости от величины внешнего магнитного поля и тока инжекции система может иметь всего два, четыре и шесть симметричных относительно оси анизотропии положений равновесия. Построены бифуркационные диаграммы, характеризующие основные типы динамики вектора намагниченности свободного слоя. Проведена классификация фазовых портретов на единичной сфере в зависимости от управляющих параметров (тока и поля). Изучены особенности динамики вектора намагниченности в каждой из характерных областей бифуркационной диаграммы и численно построены траектории переключения. Для построения траекторий использовался метод Рунге–Кутты. Найдены параметры, при которых существуют неустойчивые и устойчивые предельные циклы. Установлено, что неустойчивые предельные циклы существуют вокруг основного устойчивого равновесия на оси, совпадающей с осью анизотропии, а устойчивые циклы — вокруг неустойчивых дополнительных равновесий. Граница области существования устойчивых предельных циклов рассчитана численно. Обнаружены новые типы динамики под влиянием внешнего магнитного поля и спин-поляризованного тока инжекции: случайное и неполное переключение намагниченности. Аналитически определены значения пороговых токов переключения в зависимости от внешнего магнитного поля. Численно выполнены оценки времени переключения в зависимости от величин управляющих параметров.
-
О построении и свойствах WENO-схем пятого, седьмого, девятого, одиннадцатого и тринадцатого порядков. Часть 1. Построение и устойчивость
Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 721-753Просмотров за год: 9. Цитирований: 1 (РИНЦ).В настоящее время для численного моделирования начально-краевых задач для систем гиперболических уравнений в частных производных (например, уравнения газовой динамики, МГД, деформируемого твердого тела и т. д.) применяются различные нелинейные численные схемы пространственной аппроксимации. Это связано с необходимостью повышения порядка аппроксимации и расчета разрывных решений, часто возникающих в таких системах. Необходимость в нелинейных схемах связана с ограничением, следующим из теоремы С. К. Годунова о невозможности построения линейной схемы порядка больше первого для монотонной аппроксимации уравнений такого типа. Одними из наиболее точных нелинейных схем являются схемы типа ENO (существенно не осциллирующие схемы и их модификации), в том числе схемы WENO (взвешенные, существенно не осциллирующие схемы). Последние получили наибольшее распространение, поскольку при одинаковой ширине шаблона имеют более высокий порядок аппроксимации чем ENO-схемы. Плюсом ENO- и WENO-схем является сохранение высокого порядка аппроксимации на немонотонных участках решения. Исследование данных схем затруднительно в связи с тем, что сами схемы нелинейны и применяются для аппроксимации нелинейных уравнений. В частности, условие линейной устойчивости ранее было получено только для схемы WENO5 (пятого порядка аппроксимации на гладких решениях) и является приближенным. В настоящей работе рассматриваются вопросы построения и устойчивости схем WENO5, WENO7, WENO9, WENO11 и WENO13 для конечно-объемной схемы для уравнения Хопфа. В первой части статьи рассмотрены методы WENO в общем случае и приведены явные выражения для коэффициентов полиномов и весов линейных комбинаций, необходимых для построения схем. Доказывается ряд утверждений, позволяющих сделать выводы о порядках аппроксимации в зависимости от локального вида решения. Проводится анализ устойчивости на основе принципа замороженных коэффициентов. Рассматриваются случаи гладкого и разрывного поведения решения в области линеаризации при замороженных коэффициентах на гранях конечного объема и анализируется спектр схем для этих случаев. Доказываются условия линейной устойчивости для различных методов Рунге–Кутты при применении со схемами WENO. В результате приводятся рекомендации по выбору максимально возможного параметра устойчивости, которое наименьшим образом влияет на нелинейные свойства схем. Следуя полученным ограничениям, делается вывод о сходимости схем.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





