Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'имитационная модель':
Найдено статей: 58
  1. Махов С.А.
    Долгосрочная макромодель мировой динамики на основе эмпирических данных
    Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 883-891

    В работе обсуждаются методические основы и проблемы моделирования мировой динамики. Излагаются подходы к построению новой имитационной модели глобального развития и первичные результаты моделирования. В основу построения модели положен эмпирический подход, основанный на анализе статистики основных социально-экономических показателей. На основании этого анализа выделены основные переменные. Для этих переменных составлены динамические уравнения (в непрерывно-дифференциальной форме). Связи между переменными подбирались исходя из динамики соответствующих показателей в прошлом и на основании экспертных оценок, при этом использовались эконометрические методы, основанные на регрессионном анализе. Были проведены расчеты по полученной системе динамических уравнений, результаты представлены в виде пучка траекторий для тех показателей, которые непосредственно наблюдаемы и по которым имеется статистика. Таким образом, имеется возможность оценить разброс траекторий и понять прогнозные возможности представленной модели.

    Просмотров за год: 4. Цитирований: 3 (РИНЦ).
  2. Бабина О.И.
    Разработка оптимизационной имитационной модели для поддержки процессов планирования складских систем
    Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 295-307

    В статье рассматриваются вопросы применения метода оптимизации для поддержки процессов планирования складских системах с помощью технологии имитационного моделирования. Исследованы механизмы взаимосвязи оптимизационной и имитационной моделей, а также подробно описан алгоритм разработки оптимизационной имитационной модели складской системы для поддержки процессов планирования.

    Просмотров за год: 2. Цитирований: 3 (РИНЦ).
  3. Прядеин Р.Б., Степанцов М.Е.
    Об одном подходе к имитационному моделированию спортивной игры с непрерывным временем
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 455-460

    Работа посвящена обсуждению методов статистического моделирования исходов спортивных соревнований вообще и спортивной игры с непрерывным временем в частности. Предложен основанный на имитационном моделировании хода такой игры подход к предсказанию результата игры, представляющий собой некоторый промежуточный вариант между чистым статистическим моделированием и агентным моделированием действий отдельных игроков, участвующих в матче. Приведен пример ретроспективного прогноза на основе предложенной модели.

    Просмотров за год: 3. Цитирований: 2 (РИНЦ).
  4. Классические численные методы, применяемые для предсказания эволюции гидродинамических систем, предъявляют высокие требования к вычислительным ресурсам и накладывают ограничения на число вариантов геолого-гидродинамических моделей, расчет эволюции состояний которых возможно осуществлять в практических условиях. Одним из перспективных подходов к разработке эвристических оценок, которые могли бы ускорить рассмотрение вариантов гидродинамических моделей, является имитационное моделирование на основе обучающих данных. В рамках этого подхода методы машинного обучения используются для настройки весов искусственной нейронной сети (ИНС), предсказывающей состояние физической системы в заданный момент времени на основе начальных условий. В данной статье описаны оригинальная архитектура ИНС и специфическая процедура обучения, формирующие эвристическую модель двухфазного течения в гетерогенной пористой среде. Основанная на ИНС модель с приемлемой точностью предсказывает состояния расчетных блоков моделируемой системы в произвольный момент времени (с известными ограничениями) на основе только начальных условий: свойств гетерогенной проницаемости среды и размещения источников и стоков. Предложенная модель требует на порядки меньшего процессорного времени в сравнении с классическим численным методом, который послужил критерием оценки эффективности обученной модели. Архитектура ИНС включает ряд подсетей, обучаемых в различных комбинациях на нескольких наборах обучающих данных. Для обучения ИНС в рамках многоэтапной процедуры применены техники состязательного обучения и переноса весов из обученной модели.

  5. В работе исследуется дискретная модификация модели А.П. Михайлова «власть – общество», ранее предложенная автором. Эта модификация основана на стохастическом клеточном автомате, то есть имеет микродинамику, принципиально отличную от базовой непрерывной, основанной на дифференциальных уравнениях модели. При этом макродинамика дискретной модификации, как показано в предыдущих работах, совпадает с макродинамикой исходной модели. Этот важный результат, однако, вызывает вопрос, в чем смысл использования дискретной модели. Ее главной особенностью является гибкость, позволяющая добавлять в рассмотрение самые разные факторы, учет которых в непрерывной модели либо приводит к существенному росту вычислительной сложности, либо в принципе невозможен.

    В данной работе рассматриваются несколько примеров подобного расширения области применимости модели, при помощи которого решается ряд прикладных задач.

    Одна из модификаций модели учитывает экономические связи между регионами и муниципалитетами, что не могло быть исследовано в базовой модели. Вычислительные эксперименты подтвердили улучшение социально-экономических показателей системы при наличии таких связей.

    Вторая модификация включает в себя возможность внутренней миграции в системе. С ее помощью был получен ряд результатов, связанных с социально-экономическим развитием более благополучного региона, притягивающего мигрантов.

    Кроме этого, была исследована динамика системы при изменении количества регионов и муниципалитетов в системе. Показано негативное влияние этого процесса на социально-экономические показатели системы и найдено возможное управление, имеющее целью преодоление этого негативного влияния.

    Результатами данного исследования, таким образом, явились как решение отдельных прикладных задач, так и демонстрация на их примере более широких возможностей дискретной модели по сравнению с базовой непрерывной.

  6. Припутина И.В., Фролова Г.Г., Шанин В.Н.
    Выбор оптимальных схем посадки лесных культур: компьютерный эксперимент
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 333-343

    В статье проанализированы результаты компьютерного эксперимента по оценке влияния пространственного размещения (схем посадки) деревьев на продукционный процесс и динамику почвенного плодородия в лесных плантациях. Для имитации роста плантаций нативной формы осины (Populus tremula L.) с коротким (30 лет) оборотом рубки использована система моделей EFIMOD и почвенно-климатические данные, соответствующие условиям лесной зоны Республики Марий Эл. По результатам модельных оценок, схемы посадки с расстоянием между деревьями в ряду 1–4 м и междурядьями 4–6 м характеризуются наибольшими показателями продукции биомассы, повышением почвенных запасов органического вещества и минимальными потерями азота почв за оборот рубки.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  7. Степанцов М.Е.
    Дискретная математическая модель системы «власть–общество–экономика» на основе клеточного автомата
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 561-572

    Данная работа посвящена модификации ранее предлагавшегося автором дискретного варианта модели А. П. Михайлова «власть–общество». Эта модификация учитывает социально-экономическое развитие системы и коррупцию в ней по аналогии с непрерывной моделью «власть–общество–экономика–коррупция», но имеет в своей основе стохастический клеточный автомат, описывающий динамику распределения власти в иерархии. Новая версия модели построена путем введения в пространство состояний клетки ранее предлагавшегося клеточного автомата переменных, соответствующих численности населения, объему экономического производства, объему основных производственных фондов и уровню коррупции. Структура социально-экономических зависимостей в системе заимствована из модели Солоу и непрерывной детерминированной модели «власть–общество–экономика–коррупция», однако особенностью новой модели является ее гибкость, позволяющая рассматривать в ее рамках региональные различия во всех параметрах социально-экономического развития, различные модели производства и динамики народонаселения, а также транспортные связи между регионами. Построена имитационная система, включающая три уровня властной иерархии, пять регионов и 100 муниципалитетов, при помощи которой проведен ряд вычислительных экспериментов. В ходе этого исследования получены результаты, указывающие на изменение характера динамики распределения власти при повышении уровня коррупции. Если в отсутствие коррупции (аналогично предыдущей версии модели) распределение власти в иерархии асимптотически стремится к одному из стационарных состояний, то при наличии высокого уровня коррупции объем власти в системе испытывает нерегулярные колебательные изменения и лишь в дальнейшем также сходится к стационарному состоянию. Данные результаты можно содержательно интерпретировать как снижение стабильности властной иерархии при усилении коррупции.

    Просмотров за год: 8. Цитирований: 1 (РИНЦ).
  8. Белотелов Н.В., Сушко Д.А.
    Агентная модель социальной динамики с использованием подходов роевого интеллекта
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1513-1527

    В работе рассматривается применение технологии роевого интеллекта для построения агентных имитационных моделей. В качестве примера построена минимальная модель, иллюстрирующая влияние информационных воздействий на правила поведения агентов в простейшей модели конкуренции между двумя популяциями, агенты которых выполняют простейшую задачу переноса ресурса из подвижного источника на свою территорию. Алгоритм движения агентов в пространстве модели реализован на основе классического алгоритма роя частиц. Агенты имеют жизненный цикл, то есть учитываются процессы рождения и гибели. В модели учитываются информационные процессы, которые определяют целевые функции поведения вновь появившихся агентов. Эти процессы (обучение и переманивание) определяются информационными воздействиями со стороны популяций. При определенных условиях в системе агентов возникает третья популяция. Агенты такой популяции информационно воздействуют на агентов остальных популяций в некотором радиусе вокруг себя, изменяя их правила поведения в соответствии со своими, что в определенных условиях вытесняет остальные популяции.

    В результате проведенных имитационных экспериментов было показано, что в системе реализуются следующие финальные состояния: вытеснение новой популяцией остальными, сосуществование новой популяции и остальных популяций и отсутствие такой популяции. Было показано, что с увеличением радиуса влияния агентов популяция с измененными правилами поведения вытесняет все остальные. Также показано, что в случае труднодоступного ресурса стратегия переманивания агентов конкурирующей популяции более выгодна.

  9. Зенюк Д.А., Малинецкий Г.Г., Фаллер Д.С.
    Имитационная модель коррупции в иерархических системах
    Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 321-329

    Предложена имитационная модель коррупционного поведения в иерархических системах, учитывающая индивидуальные стратегии отдельных элементов и позволяющая описывать коллективное поведение достаточно больших групп. Были рассмотрены зависимости различных характеристик системы, таких как уровень коррумпированности и доля коррупционеров в иерархии, от управляющих параметров. Численный анализ позволил исследовать эффективность различных антикоррупционных стратегий.

    Просмотров за год: 8. Цитирований: 11 (РИНЦ).
  10. Белотелов Н.В., Логинов Ф.В.
    Агентная модель межкультурных взаимодействий: возникновение культурных неопределенностей
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1143-1162

    В статье описывается имитационная агентная модель межкультурных взаимодействий в стране, население которой принадлежит к разным культурам. Считается, что пространство культур может быть представлено как гильбертово пространство, в котором различным культурам соответствуют определенные подпространства. В модели понятие «культура» понимается как некоторое структурированное подпространство гильбертова пространства. Это позволяет описывать состояние агентов вектором в гильбертовом пространстве. Считается, что каждый агент описывается принадлежностью к определенной культуре. Численности агентов, принадлежащие определенным культурам, определяются демографическими процессами, которые соответствуют данным культурам, глубиной и целостностью образовательного процесса, а также интенсивностью межкультурных контактов. Взаимодействие между агентами происходит внутри кластеров, на которые по определенным критериям разбивается все множество агентов. При взаимодействии между агентами по определенному алгоритму изменяются длина и угол, характеризующий состояние агента. В процессе имитации в зависимости от количества агентов, относящихся к различным культурам, интенсивности демографических и образовательных процессов, а также интенсивности межкультурных контактов формируются совокупности агентов (кластеры), агенты которых принадлежат разным культурам. Такие межкультурные кластеры не принадлежат целиком ни к одной из рассматриваемых первоначально в модели культур. Такие межкультурные кластеры порождают неопределенности в культурной динамике. В работе приводятся результаты имитационных экспериментов, которые иллюстрируют влияние демографических и образовательных процессов на динамику межкультурных кластеров. Обсуждаются вопросы развития предложенного подхода к изучению (обсуждению) переходных состояний развития культур.

Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.