Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'динамика численности':
Найдено статей: 201
  1. Степанцов М.Е.
    Дискретная математическая модель системы «власть–общество–экономика» на основе клеточного автомата
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 561-572

    Данная работа посвящена модификации ранее предлагавшегося автором дискретного варианта модели А. П. Михайлова «власть–общество». Эта модификация учитывает социально-экономическое развитие системы и коррупцию в ней по аналогии с непрерывной моделью «власть–общество–экономика–коррупция», но имеет в своей основе стохастический клеточный автомат, описывающий динамику распределения власти в иерархии. Новая версия модели построена путем введения в пространство состояний клетки ранее предлагавшегося клеточного автомата переменных, соответствующих численности населения, объему экономического производства, объему основных производственных фондов и уровню коррупции. Структура социально-экономических зависимостей в системе заимствована из модели Солоу и непрерывной детерминированной модели «власть–общество–экономика–коррупция», однако особенностью новой модели является ее гибкость, позволяющая рассматривать в ее рамках региональные различия во всех параметрах социально-экономического развития, различные модели производства и динамики народонаселения, а также транспортные связи между регионами. Построена имитационная система, включающая три уровня властной иерархии, пять регионов и 100 муниципалитетов, при помощи которой проведен ряд вычислительных экспериментов. В ходе этого исследования получены результаты, указывающие на изменение характера динамики распределения власти при повышении уровня коррупции. Если в отсутствие коррупции (аналогично предыдущей версии модели) распределение власти в иерархии асимптотически стремится к одному из стационарных состояний, то при наличии высокого уровня коррупции объем власти в системе испытывает нерегулярные колебательные изменения и лишь в дальнейшем также сходится к стационарному состоянию. Данные результаты можно содержательно интерпретировать как снижение стабильности властной иерархии при усилении коррупции.

    Просмотров за год: 8. Цитирований: 1 (РИНЦ).
  2. Епифанов А.В., Цибулин В.Г.
    О динамике косимметричных систем хищников и жертв
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 799-813

    Для изучения нелинейных эффектов взаимодействия биологических видов развивается численно-аналитический подход, основанный на теории косимметрии, объясняющей явление возникновения непрерывных семейств решений дифференциальных уравнений, когда каждое решение может быть реализовано из соответствующего бассейна начальных данных. В задачах математической экологии возникновение косимметрии обычно связано с выполнением ряда соотношений между параметрами системы. При нарушении этих соотношений происходит разрушение семейств, когда вместо континуума решений возникает конечное число изолированных решений, а процесс установления может занимать большое время. При этом динамический процесс происходит в окрестности семейства, исчезнувшего в результате разрушения косимметрии.

    Рассматривается модель пространственно-временной конкуренции хищников и жертв с учетом направленной миграции, функционального отклика Холлинга типа II и нелинейной функции роста жертв, допускающей эффект Олли. Найдены условия на параметры системы, при которых существует линейная по плотностям популяций косимметрия. Показано, что косимметричность не зависит от вида функции ресурса в случае неоднородного ареала. Для расчета стационарных решений и колебательных режимов и случая пространственной неоднородности применяется вычислительный эксперимент в среде MATLAB.

    Рассмотрены важные случаи взаимодействия трех популяций (жертва и два хищника, две жертвы и хищник). В случае однородного ареала исследованы возникновение семейств стационарных распределений и ответвление предельных циклов от теряющих устойчивость равновесий семейства. Для системы двух жертв и хищника обнаружены области параметров, при которых реализуются три семейства устойчивых решений: сосуществование двух жертв без хищника, стационарные и колебательные распределения трех сосуществующих видов. В численном эксперименте проанализировано разрушение косимметрии и установлено долгое установление, приводящее к решениям с вытеснением одной из жертв или вымиранием хищника.

    Просмотров за год: 12. Цитирований: 3 (РИНЦ).
  3. Говорухин В.Н., Загребнева А.Д.
    Популяционные волны и их бифуркации в модели «активный хищник – пассивная жертва»
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 831-843

    В работе изучаются пространственно-временные режимы, реализующиеся в системе типа «хищник– жертва». Предполагается, что хищники перемещаются направленно и случайно, а жертвы распространяются только диффузионно. Демографические процессы в популяции хищников не учитываются, их общая численность постоянна и является параметром. Переменные модели — плотности популяций хищников и жертв, скорость хищников — связаны между собой системой трех уравнений типа «реакция – диффузия – адвекция». Система рассматривается на кольцевом ареале (с периодическими условиями на границах интервала). Исследуются бифуркации волновых режимов при изменении двух параметров — общего количества хищников и их коэффициента таксисного ускорения.

    Основным методом исследования является численный анализ. Пространственная аппроксимация задачи в частных производных производится методом конечных разностей. Интегрирование полученной системы обыкновенных дифференциальных уравнений по времени проводится методом Рунге – Кутты. Для анализа динамических режимов используются построение отображения Пуанкаре, расчет показателей Ляпунова и спектр Фурье.

    Показано, что популяционные волны в предположениях модели могут возникать в результате направленных перемещений хищников. Динамика в системе качественно меняется при росте их общего количества. При малых значениях устойчив стационарный однородный режим, который сменяется автоколебаниями в виде бегущих волн. Форма волн претерпевает изменения с ростом бифуркационного параметра, ее усложнение происходит за счет увеличения числа временных колебательных мод. Большой коэффициент таксисного ускорения приводит к переходу от многочастотных к хаотическим и гиперхаотическим популяционным волнам. При большом количестве хищников реализуется стационарный режим с отсутствием жертв.

  4. Губайдуллин И.М., Язовцева О.С.
    Исследование усредненной модели окислительной регенерации закоксованного катализатора
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 149-161

    Статья посвящена построению и исследованию усредненной математической модели окислительной регенерации алюмокобальтмолибденового катализатора гидрокрекинга. Окислительная регенерация является эффективным средством восстановления активности катализатора при покрытии его гранул коксовыми отложениями.

    Математическая модель указанного процесса представляет собой нелинейную систему обыкновенных дифференциальных уравнений, в которую включены кинетические уравнения для концентраций реагентов и уравнения для учета изменения температуры зерна катализатора и реакционной смеси в результате протекания неизотермических реакций и теплообмена между газом и слоем катализатора. Вследствие гетерогенности процесса окислительной регенерации часть уравнений отличается от стандартных кинетических и построена на основе эмпирических данных. В статье рассмотрена схема химического взаимодействия в процессе регенерации, на основе которой составлены уравнения материального баланса. В ней отражены непосредственное взаимодействие кокса и кислорода с учетом степени покрытия гранулы кокса углерод-водородным и углерод-кислородным комплексами, выделение монооксида и диоксида углерода в процессе горения, а также освобождение кислорода и водорода внутри зерна катализатора. При построении модели учитывается изменение радиуса, а следовательно, и площади поверхности коксовых гранул. Адекватность разработанной усредненной модели подтверждена анализом динамики концентраций веществ и температуры.

    В статье приведен численный эксперимент для математической модели окислительной регенерации алюмокобальтмолибденового катализатора гидрокрекинга. Эксперимент проведен с использованием метода Кутты–Мерсона. Этот метод относится к методам семейства Рунге–Кутты, но разработан для решения жестких систем обыкновенных дифференциальных уравнений. Результаты вычислительного эксперимента визуализированы.

    В работе приведена динамика концентраций веществ, участвующих в процессе окислительной регенерации. На основании соответствия полученных результатов физико-химическим законам сделан вывод об адекватности построенной математической модели. Проанализирован разогрев зерна катализатора и выделение монооксида углерода при изменении радиуса зерна для различных степеней начальной закоксованности. Дано описание полученных результатов.

    В заключении отмечены основные результаты, приведены примеры задач, для решения которых может быть применена разработанная математическая модель.

  5. Статья посвящена исследованию социально-экономических последствий от вирусных эпидемий в условиях неоднородности экономического развития территориальных систем. Актуальность исследования обусловлена необходимостью поиска оперативных механизмов государственного управления и стабилизации неблагоприятной эпидемио-логической ситуации с учетом пространственной неоднородности распространения COVID-19, сопровождающейся концентрацией инфекции в крупных мегаполисах и на территориях с высокой экономической активностью.

    Целью работы является разработка комплексного подхода к исследованию пространственной неоднородности распространения коронавирусной инфекции с точки зрения экономических последствий пандемии в регионах России. В работе особое внимание уделяется моделированию последствий ухудшающейся эпидемиологической ситуации на динамике экономического развития региональных систем, определению полюсов роста распространения коронавирусной инфекции, пространственных кластеров и зон их влияния с оценкой межтерриториальных взаимосвязей. Особенностью разработанного подхода является пространственная кластеризация региональных систем по уровню заболеваемости COVID-19, проведенная с использованием глобального и локальных индексов пространственной автокорреляции, различных матриц пространственных весов и матрицы взаимовлияния Л.Анселина на основе статистической информации Росстата. В результате проведенного исследования были выявлены пространственный кластер, отличающийся высоким уровнем инфицирования COVID-19 с сильной зоной влияния и устойчивыми межрегиональными взаимосвязями с окружающими регионами, а также сформировавшиеся полюса роста, которые являются потенциальными полюсами дальнейшего распространения коронавирусной инфекции. Проведенный в работе регрессионный анализ с использованием панельных данных позволил сформировать модель для сценарного прогнозирования последствий от распространения коронавирусной инфекции и принятия управленческих решений органами государственной власти.

    В работе выявлено, что увеличение числа заболевших коронавирусной инфекцией влияет на сокращение среднесписочной численности работников, снижение средней начисленной заработной платы. Предложенный подход к моделированию последствий COVID-19 может быть расширен за счет использования полученных результатов исследования при проектировании агент-ориентированной моделей, которые позволят оценить средне- и долгосрочные социально-экономические последствия пандемии с точки зрения особенностей поведения различных групп населения. Проведение компьютерных экспериментов позволит воспроизвести социально-демографическая структуру населения и оценить различные ограничительные меры в регионах России и сформировать пространственные приоритеты поддержки населения и бизнеса в условиях пандемии. На основе предлагаемого методологического подхода может быть разработана агент-ориентированная модель в виде программного комплекса, предназначенного для системы поддержки принятия решений оперативным штабам, центрам мониторинга эпидемиологической ситуации, органам государственного управления на федеральном и региональном уровнях.

  6. Проблема отсутствия сбалансированности спроса и предложения на рынке труда специалистов высшей и средней квалификации не только приводит к потерям человеческого капитала, но также в значительной мере препятствует инновационному и научно-технологическому развитию. Предварительный анализ показал, что во многом несбалансированность спроса и предложения труда инженерно-технических специалистов в России связана с процессом деиндустриализации и снижения престижности инженерной профессии, что привело к увеличению доли специалистов, не работающих по полученной специальности.

    В работе предложена макроэкономическая модель, которая позволяет проводить сценарные прогнозы, а также с помощью решения оптимизационных задач определить условия достижения сбалансированности спроса и предложения труда инженерно-технических специалистов на среднесрочную перспективу. Модель состоит из 14 блоков, включая блоки для анализа спроса и предложения труда инженерно-технических специалистов, а также блоки для моделирования выпуска в промышленности, секторе услуг, экономике в целом, динамики инвестиций и основных фондов.

    Результаты расчетов свидетельствуют о возможности существования сбалансированности спроса и предложения труда инженерно-технических специалистов при реализации сценариев одновременного роста доли инвестиций в основные фонды промышленности и относительной заработной платы в промышленности, а также показывают, что достижению сбалансированности способствует снижение оттока кадров из специальности, что также не противоречит выводам, полученным в результате экономического анализа. Следует отметить, что снижение доли специалистов, не работающих по специальности, может быть результатом как роста относительной заработной платы в промышленности и количества рабочих мест, так и реализации мероприятий по улучшению условий труда и повышения привлекательности профессии. Обобщая полученные результаты, в случае самого простого сценария, не учитывающего дополнительные меры по улучшению качества рабочих мест и повышению престижности профессии, для достижения сбалансированности требуются несколько менее высокие темпы роста инвестиций в промышленность, чем в сценариях, предусматривающих рост численности занятых инженерно-технических специалистов за счет увеличения доли работающих по специальности. В случае когда предполагается постепенное снижение доли не работающих по специальности инженерно-технических специалистов, возникает необходимость, вероятно, более высоких инвестиционных затрат в промышленности для привлечения специалистов и создания новых рабочих мест, а также дополнительных мер по повышению престижности профессии.

  7. Моторин А.А., Ступицкий Е.Л.
    Физический анализ и математическое моделирование параметров области взрыва, произведенного в разреженной ионосфере
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 817-833

    В работе выполнен физический и численный анализ динамики и излучения продуктов взрыва, образующихся при проведении российско-американского эксперимента в ионосфере с использованием взрывного генератора на основе гексогена и тротила. Основное внимание уделяется анализу взаимосвязи излучения возмущенной области с динамикой процессов взрывчатого вещества и плазменной струи на поздней стадии. Проанализирован подробный химический состав продуктов взрыва и определены начальные концентрации наиболее важных молекул, способных излучать в инфракрасном диапазоне спектра, и приведены их излучательные константы. Определены начальная температура продуктов взрыва и показатель адиабаты. Проанализирован характер взаимопроникновения атомов и молекул сильно разреженной ионосферы в сферически расширяющееся облако продуктов. Разработана приближенная математическая модель динамики продуктов взрыва в условиях подмешивания к ним разреженного воздуха ионосферы и рассчитаны основные термодинамические характеристики системы. Показано, что на время 0,3–3 с происходит существенное повышение температуры разлетающейся смеси в результате ее торможения. Для анализа и сравнения на основе лагранжевого подхода разработан численный алгоритм решения двухобластной газодинамической задачи, в которой продукты взрыва и фоновый газ разделены контактной границей. Требовалось выполнение специальных условий на контактной границе при ее движении в покоящемся газе. В данном случае существуют определенные трудности в описании параметров продуктов взрыва вблизи контактной границы, что связано с большим различием в размерах массовых ячеек продуктов взрыва и фона из-за перепада плотности на 13 порядков. Для сокращения времени расчета данной задачи в области продуктов взрыва применялась неравномерная расчетная сетка. Расчеты выполнялись с различными показателями адиабаты. Получены результаты, наиболее важным из которых является температура, хорошо согласуется с результатами, полученными по методике, приближенно учитывающей взаимопроникновение. Получено поведение во времени коэффициентов излучения ИК-активных молекул в широком диапазоне спектра. Данное поведение качественно согласуется с экспериментами по ИК-свечению разлетающихся продуктов взрыва.

  8. Ревуцкая О.Л., Неверова Г.П., Фрисман Е.Я.
    Простейшая модель лимитированной популяции с половой структурой: результаты моделирования и апробация
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 941-961

    В данной работе предлагается и исследуется дискретная по времени математическая модель динамики численности популяции с сезонным характером размножения, позволяющая учесть влияние плотностно-зависимой регуляции и половой структуры на динамику численности животных. При построении модели предполагается, что рождаемость популяции зависит от численности самок. Регуляция роста численности осуществляется путем лимитирования выживаемости молоди, когда с увеличением численности популяции экспоненциально уменьшается выживаемость неполовозрелых особей. Проведено аналитическое и численное исследование предложенной модели. Показано, что когда в популяции выживает более половины самок и самцов, то популяция характеризуется устойчивой динамикой в большей части параметрического пространства при весьма высоком коэффициенте рождаемости. При этом колебания возникают, когда лимитирование выживаемости самок более выражено, чем лимитирование выживаемости самцов. Примечательно, что увеличение интенсивности лимитирования выживаемости самцов может стабилизировать динамику популяции, что особенно ярко проявляется при малой доле новорожденных самок. В результате исследования выявлено, что в зависимости от значений популяционных параметров модель может демонстрировать стабильную, периодическую и нерегулярную динамику. При этом возможно возникновение мультистабильности, когда вариация текущей численности в результате внешних факторов может привести к смене наблюдаемого режима динамики. С целью апробации предложенной структурированной модели предложен подход, позволяющий оценивать демографические параметры реальных популяций на основе их общей численности. Ключевая идея заключается в сведении дискретной во времени двухкомпонентной модели динамики численности лимитированной популяции с половой структурой к уравнению с запаздыванием, зависящему только от общей численности. В этом случае начальная половая структура определяется через общую численность популяции и зависит от демографических параметров популяции. Полученное одномерное уравнение применялось к описанию и оценке популяционных параметров, характеризующих половую структуру популяции конкретных видов, а именно охотничьих видов копытных Еврейской автономной области. Продемонстрировано, что уравнение с запаздыванием от общей численности довольно хорошо описывает реальную динамику копытных, улавливая тенденции изменения численности, и, как результат, вполне может применяться к описанию и анализу их динамики. Полученные в рамках работы точечные оценки располагаются в области биологически содержательных значений параметров и демонстрируют динамику численности популяций, подобную наблюдаемой в природе. Показано, что динамика численности популяций лося, косули и кабарги соответствует стабильному типу. Возникающие ежегодные колебания численности копытных в основном обусловлены влиянием внешних факторов и представляют собой отклонения от состояния равновесия. В целом полученные точечные оценки позволяют анализировать динамику структурированной популяции с сопутствующим краткосрочным прогнозом.

  9. Гриневич А.А., Рясик А.А., Якушевич Л.В.
    Динамические свойства полинуклеотидной цепи, состоящей из двух неодинаковых однородных последовательностей, разделенных границей
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 241-253

    Для исследования динамики неоднородной полинуклеотидной цепочки ДНК была использована упрощенная Y-модель с нулевым диссипативным членом. На основе этой модели с помощью численных методов были проведены расчеты, демонстрирующие поведение нелинейного конформационного возмущения (кинка), распространяющегося вдоль неоднородной полинуклеотидной цепи, состоящей из двух разных однородных последовательностей нуклеотидов. Как показал численный анализ, нелинейное возмущение в виде кинка, распространяющееся вдоль рассматриваемой модельной молекулы ДНК, может вести себя тремя разными способами. При достижении границы между двумя однородными последовательностями, состоящими из разных типов оснований, кинк может: а) отразиться, б) пройти границу с ускорением (увеличить скорость), в) пройти границу с замедлением (уменьшить скорость).

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  10. Абрамова Е.П., Рязанова Т.В.
    Динамические режимы стохастической модели «хищник –жертва» с учетом конкуренции и насыщения
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 515-531

    В работе рассматривается модель «хищник – жертва» с учетом конкуренции жертв, хищников за отличные от жертвы ресурсы и их взаимодействия, описываемого трофической функцией Холлинга второго типа. Проводится анализ аттракторов модели в зависимости от коэффициента конкуренции хищников. В детерминированном случае данная модель демонстрирует сложное поведение, связанное с локальными (Андронова–Хопфа и седлоузловая) и глобальной (рождение цикла из петли сепаратрисы) бифуркациями. Важной особенностью этой модели является исчезновение устойчивого цикла вследствие седлоузловой бифуркации. В силу наличия внутривидовой конкуренции в обеих популяциях возникают параметрические зоны моно- и бистабильности. В зоне параметров бистабильности система имеет сосуществующие аттракторы: два равновесия или цикл и равновесие. Проводится исследование геометрического расположения аттракторов и сепаратрис, разделяющих их бассейны притяжения. Понимание взаимного расположения аттракторов и сепаратрис, в совокупности с чувствительностью аттракторов к случайным воздействиям, является важной составляющей в изучении стохастических явлений. В рассматриваемой модели сочетание нелинейности и случайных возмущений приводит к появлению новых феноменов, не имеющих аналогов в детерминированном случае, таких как индуцированные шумом переходы через сепаратрису, стохастическая возбудимость и генерация осцилляций смешанных мод. Для параметрического исследования этих феноменов используются аппарат функции стохастической чувствительности и метод доверительных областей, эффективность которых проверялась на широком круге моделей нелинейной динамики. В зонах бистабильности проводится исследование деформации равновесного или осцилляционного режимов под действием шума. Геометрическим критерием возникновения такого рода качественных изменений служит пересечение доверительных областей с сепаратрисой детерминированной модели. В зоне моностабильности изучаются феномены резкого изменения численности и вымирания одной или обеих популяций при малых изменениях внешних условий. С помощью аппарата доверительных областей решается задача оценки близости стохастической популяции к опасным границам, при достижении которых сосуществование популяций разрушается и наблюдается их вымирание.

    Просмотров за год: 28.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.