Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'вероятностное моделирование':
Найдено статей: 23
  1. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 279-283
    Просмотров за год: 18.
  2. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 689-692
  3. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1261-1264
  4. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 455-457
  5. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  6. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1341-1343
  7. Предложено обобщение блочного клеточного автомата Марголуса на гексагональную сетку. Проведена статистическая обработка результатов вероятностных клеточно-автоматных вычислений для ряда модификаций схемы, решающей тестовую задачу диффузии вещества. Показано, что выбор блоков в виде гексагонов на 25% эффективнее, чем в виде Y-блоков. Показано, что алгоритмы имеют полиномиальную сложность, причем степень полинома для параллельных вычислителей лежит в пределах 0.6÷0.8, а для последовательных — в пределах 1.5÷1.7. Исследовалось влияние внедренных в поле клеточного автомата дефектных ячеек на скорость сходимости.

    Просмотров за год: 8. Цитирований: 4 (РИНЦ).
  8. Гогуев М.В., Кислицын А.А.
    Моделирование траекторий временных рядов с помощью уравнения Лиувилля
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 585-598

    Представлен алгоритм моделирования ансамбля траекторий нестационарных временных рядов. Построена численная схема аппроксимации выборочной плотности функции распределения в задаче с закрепленными концами, когда начальное распределение за заданное количество шагов переходит в определенное конечное распределение, так, что на каждом шаге выполняется полугрупповое свойство решения уравнения Лиувилля. Модель позволяет численно построить эволюционирующие плотности функций распределения при случайном переключении состояний системы, порождающей исходный временной ряд.

    Основная проблема, рассматриваемая в работе, связана с тем, что при численной реализации левосторонней разностной производной по времени решение становится неустойчивым, но именно такой подход отвечает моделированию эволюции. При выборе неявных устойчивых схем с «заходом в будущее» используется итерационный процесс, который на каждом своем шаге не отвечает полугрупповому свойству. Если же моделируется некоторый реальный процесс, в котором предположительно имеет место целеполагание, то желательно использовать схемы, которые порождают модель переходного процесса. Такая модель используется в дальнейшем для того, чтобы построить предиктор разладки, который позволит определить, в какое именно состояние переходит изучаемый процесс до того, как он действительно в него перешел. Описываемая в статье модель может использоваться как инструментарий моделирования реальных нестационарных временных рядов.

    Схема моделирования состоит в следующем. Из заданного временного ряда отбираются фрагменты, отвечающие определенным состояниям, например трендам с заданными углами наклона и дисперсиями. Из этих фрагментов составляются эталонные распределения состояний. Затем определяются эмпирические распределения длительностей пребывания системы в указанных состояниях и длительности времени перехода из состояния в состояние. В соответствии с этими эмпирическими распределениями строится вероятностная модель разладки и моделируются соответствующие траектории временного ряда.

  9. Воронцов К.В., Потапенко А.А.
    Регуляризация, робастность и разреженность вероятностных тематических моделей
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 693-706

    Предлагается обобщенное семейство вероятностных тематических моделей коллекций текстовых документов, в котором эвристики регуляризации, сэмплирования, частого обновления параметров, робастности относительно шума и фона могут включаться независимо друг от друга в любых сочетаниях, порождая как известные модели PLSA, LDA, CVB0, SWB, так и новые. Показано, что робастная тематическая модель на основе PLSA, разделяющая термины на тематические, шумовые и фоновые, не нуждается в регуляризации и обеспечивает разреженность искомых дискретных распределений тем в документах и терминов в темах.

    Просмотров за год: 25. Цитирований: 12 (РИНЦ).
  10. Житнухин Н.А., Жадан А.Ю., Кондратов И.В., Аллахвердян А.Л., Граничин О.Н., Петросян О.Л., Романовский А.В., Харин В.С.
    Многоагентный протокол локального голосования для онлайнового планирования DAG
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 29-44

    Планирование вычислительных рабочих процессов, представленных направленными ациклическими графами (DAG), имеет ключевое значение для многих областей информатики, таких как облачные/edge задачи с распределенной рабочей нагрузкой и анализ данных. Сложность онлайнового планирования DAG усугубляется большим количеством вычислительных узлов, задержками передачи данных, неоднородностью (по типу и вычислительной мощности) исполнителей, ограничениями предшествования, накладываемыми DAG, и неравномерностью поступления задач. В данной статье представлен мультиагентный протокол локального голосования (MLVP) — новый подход, ориентированный на динамическое распределение нагрузки при планировании DAG в гетерогенных вычислительных средах, где исполнители представлены в виде агентов. MLVP использует протокол локального голосования для достижения эффективного распределения нагрузки, формулируя проблему как дифференцированное достижение консенсуса. Алгоритм вычисляет агрегированную метрику DAG для каждой пары исполнитель – узел на основе зависимостей между узлами, доступности узлов и производительности исполнителей. Баланс этих метрик как взвешенная сумма оптимизируется с помощью генетического алгоритма для вероятностного распределения задач, что позволяет добиться эффективного распределения рабочей нагрузки за счет обмена информацией и достижения консенсуса между исполнителями всей системы и, таким образом, улучшить время выполнения. Эффективность MLVP демонстрируется путем сравнения с современным алгоритмом планирования DAG и популярными эвристиками, такими как DONF, FIFO, Min-Min и Max-Min. Численное моделирование показывает, что MLVP достигает улучшения makepsan до 70% на определенных топологиях графов и среднего сокращения makepan на 23,99% по сравнению с DONF (современная эвристика планирования DAG) на случайно сгенерированном разнообразном наборе DAG. Примечательно, что масштабируемость алгоритма подтверждается ростом производительности при увеличении числа исполнителей и узлов графа.

Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.