Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'алгоритм A*':
Найдено статей: 337
  1. Стонякин Ф.С., Савчyк О.С., Баран И.В., Алкуса М.С., Титов А.А.
    Аналоги условия относительной сильной выпуклости для относительно гладких задач и адаптивные методы градиентного типа
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 413-432

    Данная статья посвящена повышению скоростных гарантий численных методов градиентного типа для относительно гладких и относительно липшицевых задач минимизации в случае дополнительных предположений о некоторых аналогах сильной выпуклости целевой функции. Рассматриваются два класса задач: выпуклые задачи с условием относительного функционального роста, а также задачи (вообще говоря, невыпуклые) с аналогом условия градиентного доминирования Поляка – Лоясиевича относительно дивергенции Брэгмана. Для первого типа задач мы предлагаем две схемы рестартов методов градиентного типа и обосновываем теоретические оценки сходимости двух алгоритмов с адаптивно подбираемыми параметрами, соответствующими относительной гладкости или липшицевости целевой функции. Первый из этих алгоритмов проще в части критерия выхода из итерации, но для него близкие к оптимальным вычислительные гарантии обоснованы только на классе относительно липшицевых задач. Процедура рестартов другого алгоритма, в свою очередь, позволила получить более универсальные теоретические результаты. Доказана близкая к оптимальной оценка сложности на классе выпуклых относительно липшицевых задач с условием функционального роста, а для класса относительно гладких задач с условием функционального роста получены гарантии линейной скорости сходимости. На классе задач с предложенным аналогом условия градиентного доминирования относительно дивергенции Брэгмана были получены оценки качества выдаваемого решения с использованием адаптивно подбираемых параметров. Также мы приводим результаты некоторых вычислительных экспериментов, иллюстрирующих работу методов для второго исследуемого в настоящей статье подхода. В качестве примеров мы рассмотрели линейную обратную задачу Пуассона (минимизация дивергенции Кульбака – Лейблера), ее регуляризованный вариант, позволяющий гарантировать относительную сильную выпуклость целевой функции, а также некоторый пример относительно гладкой и относительно сильно выпуклой задачи. В частности, с помощью расчетов показано, что относительно сильно выпуклая функция может не удовлетворять введенному относительному варианту условия градиентного доминирования.

  2. Аксёнов А.А., Похилко В.И., Моряк А.П.
    Использование приповерхностных сеток для численного моделирования вязкостных явлений в задачах гидродинамики судна
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 995-1008

    Численное моделирование обтекания судового корпуса, работы гребного винта, а также решение других задач гидродинамики судна в адаптивных локально-измельченных сетках на основе прямоугольных начальных сеток обладают рядом преимуществ в области подготовки расчетов и являются весьма удобными для проведения экспресс-анализа. Однако при необходимости существенного уточнения моделирования вязкостных явлений возникает ряд сложностей, связанных с резким ростом числа неизвестных при адаптации расчетной сетки до высоких уровней, которая необходима для разрешения пограничных слоев, и снижением шага по времени в расчетах со свободной поверхностью из-за уменьшения пролетного времени проадаптированных ячеек. Для ухода от этих недостатков предлагается использовать для разрешения пограничных слоев дополнительные приповерхностные сетки, представляющие собой одномерные адаптации ближайших к стенке слоев расчетных ячеек основной сетки. Приповерхностные сетки являются дополнительными (или химерными), их объем не вычитается из объема основной сетки. Уравнения движения жидкости интегрируются в обеих сетках одновременно, а стыковка решений происходит по специальному алгоритму. В задаче моделирования обтекания судового корпуса приповерхностные сетки могут обеспечивать нормальное функционирование низкорейнольдсовых моделей турбулентности, что существенно уточняет характеристики потока в пограничном слое у гладких поверхностей при их безотрывном обтекании. При наличии на поверхности корпуса отрывов потока или других сложных явлений можно делить поверхность корпуса на участки и использовать приповерхностные сетки только на участках с простым обтеканием, что тем не менее обеспечивает большую экономию ресурсов. В задаче моделирования работы гребного винта приповерхностные сетки могут обеспечивать отказ от пристеночных функций на поверхности лопастей, что ведет к значительному уточнению получаемых на них гидродинамических сил. Путем изменения числа и конфигурации слоев приповерхностных ячеек можно варьировать разрешение в пограничном слое без изменения основной сетки, что делает приповерхностные сетки удобным инструментом исследования масштабных эффектов в рассмотренных задачах.

  3. Нечаевский А.В., Стрельцова О.И., Куликов К.В., Башашин М.В., Бутенко Ю.А., Зуев М.И.
    Разработка вычислительной среды для математического моделирования сверхпроводящих наноструктур с магнетиком
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1349-1358

    В настоящее время основная исследовательская деятельность в области нанотехнологий направлена на создание, изучение и применение новых материалов и новых структур. Большое внимание в последнее время привлекает возможность управления магнитными свойствами с помощью сверхпроводящего тока, а также влияние магнитной динамики на вольт-амперные характеристики гибридных наноструктур типа «сверхпроводник/ферромагнетик» (S/F). В частности, к таким структурам относятся джозефсоновский S/F/S-переход или молекулярные наномагниты, связанные с джозефсоновскими переходами. Теоретические исследования динамики подобных структур неизменно приводят к моделям, расчет которых требует численного решения большого количества нелинейных уравнений. Численное моделирование гибридных наноструктур «сверхпроводник/магнетик» подразумевает расчет как магнитной динамики, так и динамики сверхпроводящей фазы, что многократно увеличивает их комплексность и масштабность, поэтому возникает задача решения сложных систем нелинейных дифференциальных уравнений, что требует значительных временных и вычислительных ресурсов.

    На сегодняшний день активно развиваются алгоритмы и фреймворки для моделирования динамики намагничивания в различных структурах. Однако функционал существующих пакетов не позволяет в полной мере реализовать нужную схему вычислений.

    Целью настоящей работы является разработка единой вычислительной среды для моделирования гибридных наноструктур «сверхпроводник/магнетик», предоставляющей доступ к решателям и разработанным алгоритмам, позволяющей проводить исследования сверхпроводящих элементов в наноразмерных структурах с магнетиками и гибридных квантовых материалов. В работе представлены результаты использования разрабатываемой вычислительной среды по исследованию резонансных явлений в системе наномагнита, связанного с джозефсоновским переходом. Для исследования возможности переориентации намагниченности в зависимости от параметров модели численно решалась задача Коши для системы нелинейных уравнений. Непосредственно сама вычислительная среда разрабатывалась и развернута на базе гетерогенной вычислительной платформы HybriLIT. Проведенное в рамках вычислительной среды исследование показало эффективность применения развернутого стека технологий и перспективность его использования в дальнейшем для оценки физических параметров в гибридных наноструктурах «сверхпроводник/магнетик».

  4. Сухов Е.А., Чекина Е.А.
    Программный комплекс для численного моделирования движения систем многих тел
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 161-174

    В настоящей работе решается задача численного моделирования движения механических систем, состоящих из твердых тел с произвольными массово-инерционными характеристиками. Предполагается, что рассматриваемые системы являются пространственными и могут содержать замкнутые кинематические цепи. Движение системы происходит под действием внешних и внутренних сил достаточно произвольного вида.

    Моделирование движения механической системы производится полностью автоматически при помощи вычислительного алгоритма, состоящего из трех основных этапов. На первом этапе на основе задаваемых пользователем начальных данных выполняется построение графа механической системы, представляющего ее иерархическую структуру. На втором этапе происходит вывод дифференциально-алгебраических уравнений движения системы. Для вывода уравнений движения используется так называемый метод шарнирных координат. Отличительной чертой данного метода является сравнительно небольшое количество получаемых уравнений движения, что позволяет повысить производительность вычислений. На третьем этапе выполняются численное интегрирование уравнений движения и вывод результатов моделирования.

    Указанный алгоритм реализован в виде программного комплекса, содержащего систему символьной математики, библиотеку графов, механический решатель, библиотеку численных методов и пользовательский интерфейс.

  5. Кривовичев Г.В.
    Разностные схемы расщепления для системы одномерных уравнений гемодинамики
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 459-488

    Работа посвящена построению и анализу разностных схем для системы уравнений гемодинамики, полученной осреднением уравнений гидродинамики вязкой несжимаемой жидкости по поперечному сечению сосуда. Рассматриваются модели крови как идеальной и как вязкой ньютоновской жидкости. Предложены разностные схемы, аппроксимирующие уравнения со вторым порядком по пространственной переменной. Алгоритмы расчета по построенным схемам основаны на методе расщепления по физическим процессам, в рамках которого на одном шаге по времени уравнения модели рассматриваются раздельно и последовательно. Практическая реали- зация предложенных схем приводит к последовательному решению на каждом шаге по времени двух линейных систем с трехдиагональными матрицами. Показано, что схемы являются $\rho$-устойчивыми при незначительных ограничениях на шаг по времени в случае достаточно гладких решений.

    При решении задачи с известным аналитическим решением показано, что имеет место сходимость численного решения со вторым порядком по пространственной переменной в широком диапазоне значений шага сетки. При проведении вычислительных экспериментов по моделированию течения крови в модельных сосудистых системах производилось сравнение предложенных схем с такими известными явными схемами, как схема Лакса – Вендроффа, Лакса – Фридрихса и МакКормака. При решении задач показано, что результаты, полученные с помощью предложенных схем, близки к результатам расчетов, полученных по другим вычислительными схемам, в том числе построенным на основе других методов дискретизации. Показано, что в случае разных пространственных сеток время расчетов для предложенных схем значительно меньше, чем в случае явных схем, несмотря на необходимость решения на каждом шаге систем линейных уравнений. Недостатками схем является ограничение на шаг по времени в случае разрывных или сильно меняющихся решений и необходимость использования экстраполяции значений в граничных точках сосудов. В связи с этим актуальными для дальнейших исследований являются вопросы об адаптации схем расщепления к решению задач с разрывными решениями и в случаях специальных типов условий на концах сосудов.

  6. Варшавский Л.Е.
    Итерационные методы декомпозиции при моделировании развития олигополистических рынков
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1237-1256

    Один из принципов формирования рыночной конкурентной среды состоит в создании условий для реализации экономическими агентами стратегий, оптимальных по Нэшу – Курно. При стандартном подходе к определению рыночных стратегий, оптимальных по Нэшу – Курно, экономические агенты должны обладать полной информацией о показателях и динамических характеристиках всех участников рынка. Что не соответствует действительности.

    В связи с этим для отыскания оптимальных по Нэшу – Курно решений в динамических моделях необходимо наличие координатора, обладающего полной информацией об участниках. Однако в случае большого числа участников игры, даже при наличии у координатора необходимой информации, появляются вычислительные трудности, связанные с необходимостью решения большого числа связанных (coupled) уравнений (в случае линейных динамических игр с квадратическим критерием — матричных уравнений Риккати).

    В связи с этим возникает необходимость в декомпозиции общей задачи определения оптимальных стратегий участников рынка на частные (локальные) задачи. Применительно к линейным динамическим играм с квадратическим критерием исследовались подходы, основанные на итерационной декомпозиции связанных матричных уравнений Риккати и решении локальных уравнений Риккати. В настоящей статье рассматривается более простой подход к итерационному определению равновесия по Нэшу – Курно в олигополии путем декомпозиции с использованием операционного исчисления (операторного метода).

    Предлагаемый подход основан на следующей процедуре. Виртуальный координатор, обладающий информацией о параметрах обратной функции спроса, формирует цены на перспективный период. Олигополисты при заданной фиксированной динамике цен определяют свои стратегии в соответствии с несколько измененным критерием оптимальности. Оптимальные объемы продукции олигополистов поступают к координатору, который на основе итерационного алгоритма корректирует динамику цены на предыдущем шаге.

    Предлагаемая процедура иллюстрируется на примере статической и динамической моделей рационального поведения участников олигополии, которые максимизируют чистую текущую стоимость (NPV).

    При использовании методов операционного исчисления (и, в частности, обратного Z-преобразования) найдены условия, при которых итерационная процедура приводит к равновесным уровням цены и объемов производства в случае линейных динамических игр как с квадратичными, так и с нелинейными (вогнутыми) критериями оптимизации.

    Рассмотренный подход использован применительно к примерам дуополии, триополии, дуополии на рынке с дифференцированным продуктом, дуополии с взаимодействующими олигополистами при линейной обратной функции спроса. Сопоставление результатов расчетов динамики цены и объемов производства олигополистов для рассмотренных примеров на основе связанных (coupled) уравнений матричных уравнений Риккати в Matlab, а также в соответствии с предложенным итерационным методом в широко доступной системе Excel показывает их практическую идентичность.

    Кроме того, применение предложенной итерационной процедуры проиллюстрировано на примере дуополии с нелинейной функцией спроса.

  7. Ветчанин Е.В., Тененев В.А., Шаура А.С.
    Управление движением жесткого тела в вязкой жидкости
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 659-675

    Решена задача оптимального управления движением мобильного объекта с внешней жесткой оболочкой вдользаданной траектории в вязкой жидкости. Рассматриваемый мобильный робот обладает свойством самопродвижения. Самопродвижение осуществляется за счет возвратнопоступательных колебаний внутренней материальной точки. Оптимальное управление движением построено на основе системы нечеткого логического вывода Сугено. Для получения базы нечетких правил предложен подход, основанный на построении деревьев решений с помощью разработанного генетического алгоритма структурно-параметрического синтеза.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  8. Русяк И.Г., Тененев В.А.
    Моделирование баллистики артиллерийского выстрела с учетом пространственного распределения параметров и противодавления
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1123-1147

    В работе приводится сравнительный анализ результатов, полученных при различных подходах к моделированию процесса артиллерийского выстрела. В этой связи дана постановка основной задачи внутренней баллистики и ее частного случая задачи Лагранжа в осредненных параметрах, где в рамках допущений термодинамического подхода впервые учтены распределения давления и скорости газа по заснарядному пространству для канала переменного сечения. Представлена также постановка задачи Лагранжа в рамках газодинамического подхода, учитывающего пространственное (одномерное и двумерное осесимметричное) изменение характеристик внутрибаллистического процесса. Для численного решения системы газодинамических уравнений Эйлера применяется метод контрольного объема. Параметры газа на границах контрольных объемов опреде- ляются с использованием автомодельного решения задачи о распаде произвольного разрыва. На базе метода Годунова предложена модификация схемы Ошера, позволяющая реализовать алгоритм численного расчета со вторым порядком точности по координате и времени. Проведено сравнение решений, полученных в рамках термодинамического и газодинамического подходов, при различных параметрах заряжания. Изучено влияние массы снаряда и уширения камеры на распределение внутрибаллистических параметров выстрела и динамику движения снаряда. Показано, что термодинамический подход, по сравнению с газодинамическим подходом, приводит к систематическому завышению расчетной дульной скорости снаряда во всем исследованном диапазоне изменения параметров, при этом различие по дульной скорости может достигать 35 %. В то же время расхождение результатов, полученных в рамках одномерной и двумерной газодинамических моделей выстрела в этом же диапазоне изменения параметров, составляет не более 1.3 %.

    Дана пространственная газодинамическая постановка задачи о противодавлении, описывающая изменение давления перед ускоряющимся снарядом при его движении по каналу ствола. Показано, что учет формы передней части снаряда в рамках двумерной осесимметричной постановки задачи приводит к существенному различию полей давления за фронтом ударной волны по сравнению с решением в рамках одномерной постановки задачи, где форму передней части снаряда учесть невозможно. Сделан вывод, что это может существенно повлиять на результаты моделирования баллистики выстрела при высоких скоростях метания.

  9. Плетнев Н.В., Двуреченский П.Е., Гасников А.В.
    Применение градиентных методов оптимизации для решения задачи Коши для уравнения Гельмгольца
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 417-444

    Статья посвящена изучению применения методов выпуклой оптимизации для решения задачи Коши для уравнения Гельмгольца, которая является некорректной, поскольку уравнение относится к эллиптическому типу. Задача Коши формулируется как обратная задача и сводится к задаче выпуклой оптимизации в гильбертовом пространстве. Оптимизируемый функционал и его градиент вычисляются с помощью решения краевых задач, которые, в свою очередь, корректны и могут быть приближенно решены стандартными численными методами, такими как конечно-разностные схемы и разложения в ряды Фурье. Экспериментально исследуются сходимость применяемого быстрого градиентного метода и качество получаемого таким образом решения. Эксперимент показывает, что ускоренный градиентный метод — метод подобных треугольников — сходится быстрее, чем неускоренный метод. Сформулированы и доказаны теоремы о вычислительной сложности полученных алгоритмов. Установлено, что разложения в ряды Фурье превосходят конечно-разностные схемы по скорости вычислений и улучшают качество получаемого решения. Сделана попытка использовать рестарты метода подобных треугольников после уменьшения невязки функционала вдвое. В этом случае сходимость не улучшается, что подтверждает отсутствие сильной выпуклости. Эксперименты показывают, что неточность вычислений более адекватно описывается аддитивной концепцией шума в оракуле первого порядка. Этот фактор ограничивает достижимое качество решения, но ошибка не накапливается. Полученные результаты показывают, что использование ускоренных градиентных методов оптимизации позволяет эффективно решать обратные задачи.

  10. Никитин И.С., Никитин А.Д.
    Мультирежимная модель и численный алгоритм расчета квазитрещин различного типа при циклическом нагружении
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 873-885

    На основе мультирежимной двухкритериальной модели усталостного разрушения предложен метод расчета зарождения и развития узкихлок ализованных зон поврежденности в образцах и элементах конструкций для различных режимов циклического нагружения. Такие узкие зоны повреждаемости можно рассматривать как квазитрещины двухтипов, соответствующих механизму нормального отрыва и сдвига. Проведена верификация модели путем численных экспериментов по воспроизведению левыхи правыхв етвей усталостных кривых для образцов из титановыхи алюминиевых сплавов, построенных по испытаниям при различных условиях и схемах циклического нагружения. Приведены примеры моделирования развития квазитрещин двухтипов (нормального отрыва и сдвига) при различных режимах циклического нагружения пластины с отверстием в качестве концентратора напряжений. При сложном напряженном состоянии в предлагаемой комплексной модели возможна естественная реализация любого из рассмотренных механизмов развития квазитрещин. Квазитрещины разных типов могут развиваться в разных частях образца, в том числе одновременно.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.