Текущий выпуск Номер 4, 2025 Том 17

Все выпуски

Результаты поиска по 'numerical solution':
Найдено статей: 219
  1. Акиндинов Г.Д., Матюхин В.В., Криворотько О.И.
    Численное решение обратной задачи для уравнения гиперболической теплопроводности с малым параметром
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 245-258

    В данной работе приведен алгоритм численного решения обратной начально-краевой задачи для гиперболического уравнения с малым параметром перед второй производной по времени, которая состоит в нахождении начального распределения по заданному конечному. Данный алгоритм позволяет для заданной наперед точности получить решение задачи (в допустимых пределах точности). Данный алгоритм позволяет избежать сложностей, аналогичных случаю с уравнением теплопроводности с обращенным временем. Предложенный алгоритм позволяет подобрать оптимальный размер конечно-разностной схемы путем обучения на относительно больших разбиениях сетки и малом числе итераций градиентного метода. Предложенный алгоритм позволяет получить оценку для константы Липшица градиента целевого функционала. Также представлен способ оптимального выбора малого параметра при второй производной для ускорения решения задачи. Данный подход может быть применен и в других задачах с похожей структурой, например в решении уравнений состояния плазмы, в социальных процессах или в различных биологических задачах. Новизна данной работы заключается в разработке оптимальной процедуры выбора размера шага путем применения экстраполяции Ричардсона и обучения на малых размерах сетки для решения задач оптимизации с неточным градиентом в обратных задачах.

    Akindinov G.D., Matyukhin V.V., Krivorotko O.I.
    Numerical solving of an inverse problem of a hyperbolic heat equation with small parameter
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 245-258

    In this paper we describe an algorithm of numerical solving of an inverse problem on a hyperbolic heat equation with additional second time derivative with a small parameter. The problem in this case is finding an initial distribution with given final distribution. This algorithm allows finding a solution to the problem for any admissible given precision. Algorithm allows evading difficulties analogous to the case of heat equation with inverted time. Furthermore, it allows finding an optimal grid size by learning on a relatively big grid size and small amount of iterations of a gradient method and later extrapolates to the required grid size using Richardson’s method. This algorithm allows finding an adequate estimate of Lipschitz constant for the gradient of the target functional. Finally, this algorithm may easily be applied to the problems with similar structure, for example in solving equations for plasma, social processes and various biological problems. The theoretical novelty of the paper consists in the developing of an optimal procedure of finding of the required grid size using Richardson extrapolations for optimization problems with inexact gradient in ill-posed problems.

  2. Аристова Е.Н., Караваева Н.И.
    Бикомпактные схемы для HOLO-алгоритма решения уравнения переноса излучения совместно с уравнением энергии
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1429-1448

    Численное решение системы уравнений высокотемпературной радиационной газовой динамики (ВРГД) является вычислительно трудоемкой задачей, так как взаимодействие излучения с веществом нелинейно и нелокально. Коэффициенты поглощения излучения зависят от температуры, а поле температур определяется как газодинамическими процессами, так и переносом излучения. Обычно для решения системы ВРГД используется метод расщепления по физическим процессам, выделяется блок решения уравнения переноса совместно с уравнением баланса энергии вещества при известных давлениях и температурах. Построенные ранее разностные схемы, используемые для решения этого блока, обладают порядками сходимости не выше второго. Так как даже на современном уровне развития вычислительной техники имеются ограничения по памяти, то для решения сложных технических задач приходится применять не слишком подробные сетки. Это повышает требования к порядку аппроксимации разностных схем. В данной работе впервые реализованы бикомпактные схемы высокого порядка аппроксимации для алгоритма совместного решения уравнения переноса излучения и уравнения баланса энергии. Предложенный метод может быть применен для решения широкого круга практических задач, так как обладает высокой точностью и подходит для решения задач с разрывами коэффициентов. Нелинейность задачи и использование неявной схемы приводит к итерационному процессу, который может медленно сходиться. В данной работе используется мультипликативный HOLO-алгоритм — метод квазидиффузии В.Я. Гольдина. Ключевая идея HOLO-алгоритмов состоит в совместном решении уравнений высокого порядка (high order, HO) и низкого порядка (low order, LO). Уравнением высокого порядка (HO) является уравнение переноса излучения, которое решается в многогрупповом приближении, далее уравнение осредняется по угловой переменной и получается система уравнений квазидиффузии в многогрупповом приближении (LO1). Следующим этапом является осреднение по энергии, при этом получается эффективная одногрупповая система уравнений квазидиффузии (LO2), которая решается совместно с уравнением энергии. Решения, получаемые на каждом этапе HOLO-алгоритма, оказываются тесно связанными, что в итоге приводит к ускорению сходимости итерационного процесса. Для каждого из этапов HOLO-алгоритма предложены разностные схемы, построенные методом прямых в рамках одной ячейки и обладающие четвертым порядком аппроксимации по пространству и третьим порядком по времени. Схемы для уравнения переноса были разработаны Б.В. Роговым и его коллегами, схемы для уравнений LO1 и LO2 разработаны авторами. Предложен аналитический тест, на котором демонстрируются заявленные порядки сходимости. Рассматриваются различные варианты постановки граничных условий и исследовано их влияние на порядок сходимости по времени и пространству.

    Aristova E.N., Karavaeva N.I.
    Bicompact schemes for the HOLO algorithm for joint solution of the transport equation and the energy equation
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1429-1448

    The numerical solving of the system of high-temperature radiative gas dynamics (HTRGD) equations is a computationally laborious task, since the interaction of radiation with matter is nonlinear and non-local. The radiation absorption coefficients depend on temperature, and the temperature field is determined by both gas-dynamic processes and radiation transport. The method of splitting into physical processes is usually used to solve the HTRGD system, one of the blocks consists of a joint solving of the radiative transport equation and the energy balance equation of matter under known pressure and temperature fields. Usually difference schemes with orders of convergence no higher than the second are used to solve this block. Due to computer memory limitations it is necessary to use not too detailed grids to solve complex technical problems. This increases the requirements for the order of approximation of difference schemes. In this work, bicompact schemes of a high order of approximation for the algorithm for the joint solution of the radiative transport equation and the energy balance equation are implemented for the first time. The proposed method can be applied to solve a wide range of practical problems, as it has high accuracy and it is suitable for solving problems with coefficient discontinuities. The non-linearity of the problem and the use of an implicit scheme lead to an iterative process that may slowly converge. In this paper, we use a multiplicative HOLO algorithm named the quasi-diffusion method by V.Ya.Goldin. The key idea of HOLO algorithms is the joint solving of high order (HO) and low order (LO) equations. The high-order equation (HO) is the radiative transport equation solved in the energy multigroup approximation, the system of quasi-diffusion equations in the multigroup approximation (LO1) is obtained by averaging HO equations over the angular variable. The next step is averaging over energy, resulting in an effective one-group system of quasi-diffusion equations (LO2), which is solved jointly with the energy equation. The solutions obtained at each stage of the HOLO algorithm are closely related that ultimately leads to an acceleration of the convergence of the iterative process. Difference schemes constructed by the method of lines within one cell are proposed for each of the stages of the HOLO algorithm. The schemes have the fourth order of approximation in space and the third order of approximation in time. Schemes for the transport equation were developed by B.V. Rogov and his colleagues, the schemes for the LO1 and LO2 equations were developed by the authors. An analytical test is constructed to demonstrate the declared orders of convergence. Various options for setting boundary conditions are considered and their influence on the order of convergence in time and space is studied.

  3. Белотелов В.Н., Дарьина А.Н.
    Метод поиска касательных в задаче быстродействия для колесного мобильного робота
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 401-421

    Поиск оптимальной траектории движения является нетривиальной задачей, на решение которой направлено большое число исследований. Большинство этих исследований посвящено решению задачи в общем виде вне зависимости от модели движения объекта. В такой постановке поиск оптимальной траектории возможен только численными методами. Вместе с тем в некоторых случаях возможно нахождение оптимальной траектории в аналитическом виде. В данной статье рассмотрена задача быстродействия с фазовыми ограничениями для колесного мобильного робота, движущегося по горизонтальной плоскости. Математическая модель робота является кинематической. Фазовые ограничения соответствуют препятствиям на плоскости, заданным в виде непересекающихся кругов, которые требуется избегать при движении. Независимыми управляющими воздействиями являются скорости колес, которые ограничены по абсолютной величине. Такая постановка часто применяется в тех случаях, когда динамические переходные процессы несущественны, например при управлении медленно движущимися гусеничными или колесными устройствами, в которых приоритет отдается мощности двигателей, а не их скорости. В статье показывается, что оптимальная траектория движения из начальной точки в конечную в выбранной кинематической постановке представляет собой последовательность отрезков общих касательных к парам кругов и дуг окружностей этих кругов. Геометрически кратчайший путь между начальной и конечной точками также состоит из отрезков касательных и дуг окружностей, поэтому оптимальное по быстродействию движение соответствует одному из локальных минимумов при поиске кратчайшего пути. Предложен аналитический метод поиска оптимальной траектории движения, основанный на построении графа возможных траекторий, где ребрами являются прямолинейные отрезки и дуги, а вершинами — точки их соединений, и поиска кратчайшего (быстрейшего) пути на графе с помощью метода Дейкстры. Представлено обоснование метода. Приведены результаты численных экспериментов по нахождению оптимальной траектории.

    Belotelov V.N., Daryina A.N.
    Tangent search method in time optimal problem for a wheeled mobile robot
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 401-421

    Searching optimal trajectory of motion is a complex problem that is investigated in many research studies. Most of the studies investigate methods that are applicable to such a problem in general, regardless of the model of the object. With such general approach, only numerical solution can be found. However, in some cases it is possible to find an optimal trajectory in a closed form. Current article considers a time optimal problem with state limitations for a wheeled mobile differential robot that moves on a horizontal plane. The mathematical model of motion is kinematic. The state constraints correspond to the obstacles on the plane defined as circles that need to be avoided during motion. The independent control inputs are the wheel speeds that are limited in absolute value. Such model is commonly used in problems where the transients are considered insignificant, for example, when controlling tracked or wheeled devices that move slowly, prioritizing traction power over speed. In the article it is shown that the optimal trajectory from the starting point to the finishing point in such kinematic approach is a sequence of straight segments of tangents to the obstacles and arcs of the circles that limit the obstacles. The geometrically shortest path between the start and the finish is also a sequence of straight lines and arcs, therefore the time-optimal trajectory corresponds to one of the local minima when searching for the shortest path. The article proposes a method of search for the time-optimal trajectory based on building a graph of possible trajectories, where the edges are the possible segments of the tajectory, and the vertices are the connections between them. The optimal path is sought using Dijkstra’s algorithm. The theoretical foundation of the method is given, and the results of computer investigation of the algorithm are provided.

  4. Ильин В.Д.
    Ситуационное распределение ресурсов: обзор технологий решения задач на основе систем знаний
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 543-566

    В обзоре представлены обновленные технологии решения двух классов линейных задач распределения ресурсов при динамично изменяющихся характеристиках систем ситуационного управления и информированности экспертов (и/или обучаемых роботов), решающих задачи. Поиск решений выполняется в интерактивном режиме вычислительного эксперимента с использованием обновляемых систем знаний о задачах, рассматриваемых как конструктивные объекты (в соответствии с методологией формализации знаний о программируемых задачах, созданной в теории S-символов). Технологии ориентированы на реализацию в виде интернет-сервисов. К первому классу отнесены задачи распределения ресурсов, решаемые методом целевого перемещения решения. Ко второму — задачи распределения одного ресурса в иерархических системах с учетом приоритетов расходных статьей, решаемые (в зависимости от заданных обязательных и ориентирующих требований к решению) или методом интервального распределения (при этом входные данные и результат представлены числовыми сегментами), или методом целевого перемещения решения. Постановки задач определяются требованиями к решениям и спецификацией их применимости, которые задает эксперт на основе результатов анализа портретов целевой и достигнутой ситуации. В отличие от известных методов решения задач распределения ресурсов как задач линейного программирования метод целевого перемещения решения нечувствителен к малым изменениям данных и позволяет находить наилучшие приближения к реализуемым решениям при несовместности системы ограничений. В технологиях распределения одного ресурса сегментное представление данных и результатов позволяет более адекватно (по сравнению с точечным представлением) отражать состояние ресурсного пространства системы и повышает практическую применимость решений. Обсуждаемые в статье технологии программно реализованы и применялись для решения задач ресурсного обоснования решений, бюджетного проектирования с учетом приоритетов расходных статей и др. Технология распределения одного ресурса реализована в виде действующего интернет-сервиса планирования расходов. Методологическая состоятельность технологий подтверждена результатами сравнения с известными технологиями решения рассматриваемых задач.

    Ilyin V.D.
    Situational resource allocation: review of technologies for solving problems based on knowledge systems
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 543-566

    The article presents updated technologies for solving two classes of linear resource allocation problems with dynamically changing characteristics of situational management systems and awareness of experts (and/or trained robots). The search for solutions is carried out in an interactive mode of computational experiment using updatable knowledge systems about problems considered as constructive objects (in accordance with the methodology of formalization of knowledge about programmable problems created in the theory of S-symbols). The technologies are focused on implementation in the form of Internet services. The first class includes resource allocation problems solved by the method of targeted solution movement. The second is the problems of allocating a single resource in hierarchical systems, taking into account the priorities of expense items, which can be solved (depending on the specified mandatory and orienting requirements for the solution) either by the interval method of allocation (with input data and result represented by numerical segments), or by the targeted solution movement method. The problem statements are determined by requirements for solutions and specifications of their applicability, which are set by an expert based on the results of the portraits of the target and achieved situations analysis. Unlike well-known methods for solving resource allocation problems as linear programming problems, the method of targeted solution movement is insensitive to small data changes and allows to find feasible solutions when the constraint system is incompatible. In single-resource allocation technologies, the segmented representation of data and results allows a more adequate (compared to a point representation) reflection of the state of system resource space and increases the practical applicability of solutions. The technologies discussed in the article are programmatically implemented and used to solve the problems of resource basement for decisions, budget design taking into account the priorities of expense items, etc. The technology of allocating a single resource is implemented in the form of an existing online cost planning service. The methodological consistency of the technologies is confirmed by the results of comparison with known technologies for solving the problems under consideration.

  5. Борисов А.В., Трифонов А.Ю., Шаповалов А.В.
    Численное моделирование популяционной 2D-динамики с нелокальным взаимодействием
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 33-40

    Получены численные решения двумерного реакционно-диффузионного уравнения с нелокальной нелинейностью, описывающие формирование диссипативной структуры. Рассмотрены структуры, возникающие из начальных распределений с одним и несколькими центрами локализации. При изменении параметров уравнения решения описывают формирование расширяющихся кольцевых структур. Рассмотрены особенности образования и взаимодействия расширяющихся кольцеобразных структур в зависимости от характера нелокального взаимодействия.

    Borisov A.V., Trifonov A.Y., Shapovalov A.V.
    Numerical modeling of population 2D-dynamics with nonlocal interaction
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 33-40

    Numerical solutions for the two-dimensional reaction-diffusion equation with nonlocal nonlinearity are obtained. The solutions reveal formation of dissipative structures. Structures arising from initial distributions with one and several centers of localization are considered. Formation of extending circular structures is shown. Peculiarities of formation and interaction of extending circular structures depending on  nonlocal interaction are considered.

    Просмотров за год: 3. Цитирований: 5 (РИНЦ).
  6. Усенко В.А., Лобанов А.И.
    Метод потоковой релаксации для решения квазилинейных уравнений параболического типа
    Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 47-53

    Предложен численный метод решения квазилинейных уравнений параболического типа, основанный на аппроксимации потоков. Описана реализация метода на прямоугольной сетке. Приведены результаты численных расчетов. В отличие от применяемых методов для данного метода используется аппроксимация потоков на нерасширенном шаблоне. Для каждой итерации метода Ньютона возможно решение линейной задачи с помощью метода верхней релаксации (SOR). По сравнению с методами потоковой прогонки рассмотренный метод обладает большим потенциалом для использования на современных параллельных вычислительных комплексах.

    Usenko V.A., Lobanov A.I.
    Flow relaxation method in solving quasilinear parabolic equations
    Computer Research and Modeling, 2011, v. 3, no. 1, pp. 47-53

    This article proposes a numeric method of solution of quasilinear parabolic equations, based on the flux approximation, describes the implementation of the method on a rectangular grid and presents numerical results. Unlike methods used in common practice, this method uses an approximation of flows in non-dilated template. For each iteration of the Newton method it is possible to solve a linear problem using the method of upper relaxation (SOR). Compared with the methods of flux sweeping, the considered method has greater potential for use in modern parallel computing system.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
  7. Екомасов Е.Г., Гумеров А.М., Муртазин Р.Р.
    О возбуждении солитонов при взаимодействии кинков уравнения синус-Гордона с притягивающей примесью
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 509-520

    Исследованы аналитически и численно структура и свойства локализованных двух- и трех-кинковых решений уравнения синус-Гордона, возбуждаемых в области притягивающей примеси. Рассмотрены случаи одиночной и двойной пространственно протяженной примеси.

    Ekomasov E.G., Gumerov A.M., Murtazin R.R.
      Excitement of solitons in the interaction of kinks of sine-Gordon equation with attracting impurity  
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 509-520

    We investigate analytically and numerically the structure and properties of localized two- and three-kink solutions of the sine-Gordon equation, which are excited in the region of the attracting impurity. We have considered cases of single and double spatially extended impurity.

    Цитирований: 5 (РИНЦ).
  8. Чернов И.А., Ивашко Е.Е., Никитина Н.Н., Габис И.Е.
    Численная идентификация модели дегидрирования в грид-системе на базе BOINC
    Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 37-45

    В работе рассматривается обратная задача определения по экспериментальным данным параметров модели выделения водорода из порошка гидрида металла. Методом слепого поиска в пространстве параметров установлено, что задача имеет многочисленные физически разумные решения. Решения задачи получены с помощью высокопроизводительного численного моделирования в грид–системе на базе платформы BOINC.

    Chernov I.A., Ivashko E.E., Nikitina N.N., Gabis I.E.
    Numerical identification of the dehydriding model in a BOINC-based grid system
    Computer Research and Modeling, 2013, v. 5, no. 1, pp. 37-45

    In the paper we consider the inverse problem of evaluating kinetic parameters of the model of dehydriding of metal powder using experimental data. The «blind search» in the space of parameters revealed multiple physically reasonable solutions. The solutions were obtained using high–performance computational modeling based on BOINC–grid.

    Цитирований: 6 (РИНЦ).
  9. Карабан В.М., Сухоруков М.П.
    Математическая формулировка задачи регулирования температуры микросхемы в рамках трехмерной модели и метод ее решения
    Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 805-812

    В работе рассматриваются вопросы реализации трехмерной нелинейной нестационарной математической модели термостатирования и приводится численный метод ее решения.

    Karaban V.M., Sukhorukov M.P.
    The mathematical formulation of the temperature control chip within a three-dimensional model and the solution method
    Computer Research and Modeling, 2013, v. 5, no. 5, pp. 805-812

    The work deals the implementation of a three-dimensional mathematical model of the nonlinear time-varying temperature control and a numerical method of solving it.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
  10. Горр Г.В., Щетинина Е.К.
    Новая форма уравнений в моделировании движения тяжелого твердого тела
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 873-884

    В динамике тяжелого твердого тела с неподвижной точкой известны различные типы редуцированных уравнений. Поскольку уравнения Эйлера–Пуассона допускают три первых интеграла, то в первом подходе получение новых форм уравнений, как правило, основано на этих интегралах. С их помощью можно систему шести скалярных уравнений преобразовать к системе третьего порядка. Однако редуцированная система при указанном подходе будет иметь особенность в виде радикальных выражений относительно компонент вектора угловой скорости. Это обстоятельство препятствует эффективному применению численных и асимптотических методов исследования решения. Во втором подходе используют различные виды переменных задачи: углы Эйлера, переменные Гамильтона и другие. При таком подходе уравнения Эйлера–Пуассона редуцируются либо к системе дифференциальных уравнений второго порядка, либо к системе, для которой эффективны специальные методы. В статье применен метод нахождения приведенной системы, основанный на введении вспомогательной переменной. Эта переменная характеризует смешанное произведение вектора момента количества движения, вектора вертикали и единичного вектора барицентрической оси тела. Получена система четырех дифференциальных уравнений, два из которых являются линейными дифференциальными уравнениями. Данная система не имеет аналога и не содержит особенностей, что позволяет применять к ней аналитические и численные методы исследования. Указанная форма уравнений применена для анализа специального класса решений в случае, когда центр масс тела принадлежит барицентрической оси. Рассмотрен вариант, при котором сумма квадратов двух компонент вектора кинематического момента относительно небарицентрических осей постоянна. Доказано, что этот вариант имеет место только в решении В.А. Стеклова. Найденная форма уравнений Эйлера–Пуассона может быть применена к исследованию условий существования других классов решений. Определенная перспектива полученных уравнений состоит в записи всех решений, для которых центр масс лежит на барицентрической оси, в переменных данной статьи. Это позволяет провести классификацию решений уравнений Эйлера–Пуассона в зависимости от порядка инвариантных соотношений. Поскольку указанная в статье система уравнений не имеет особенностей, то она может рассматриваться при компьютерном моделировании с помощью численных методов.

    Gorr G.V., Shchetinina E.K.
    A new form of differential equations in modeling of the motion of a heavy solid
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 873-884

    The different types of the reduced equations are known in the dynamics a heavy rigid body with a fixed point. Since the Euler−Poisson’s equations admit the three first integrals, then for the first approach the obtaining new forms of equations are usually based on these integrals. The system of six scalar equations can be transformed to a third-order system with them. However, in indicated approach the reduced system will have a feature as in the form of radical expressions a relatively the components of the angular velocity vector. This fact prevents the effective the effective application of numerical and asymptotic methods of solutions research. In the second approach the different types of variables in a problem are used: Euler’s angles, Hamilton’s variables and other variables. In this approach the Euler−Poisson’s equations are reduced to either the system of second-order differential equations, or the system for which the special methods are effective. In the article the method of finding the reduced system based on the introduction of an auxiliary variable is applied. This variable characterizes the mixed product of the angular momentum vector, the vector of vertical and the unit vector barycentric axis of the body. The system of four differential equations, two of which are linear differential equations was obtained. This system has no analog and does not contain the features that allows to apply to it the analytical and numerical methods. Received form of equations is applied for the analysis of a special class of solutions in the case when the center of mass of the body belongs to the barycentric axis. The variant in which the sum of the squares of the two components of the angular momentum vector with respect to not barycentric axes is constant. It is proved that this variant exists only in the Steklov’s solution. The obtained form of Euler−Poisson’s equations can be used to the investigation of the conditions of existence of other classes of solutions. Certain perspectives obtained equations consists a record of all solutions for which the center of mass is on barycentric axis in the variables of this article. It allows to carry out a classification solutions of Euler−Poisson’s equations depending on the order of invariant relations. Since the equations system specified in the article has no singularities, it can be considered in computer modeling using numerical methods.

    Просмотров за год: 6.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.