Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Диффузионная неустойчивость в трехкомпонентной модели типа «реакция–диффузия»
Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 135-146В данной работе проведено исследование возникновения диффузионной неустойчивости в системе из трех уравнений типа «реакция–диффузия». В общем виде получены условия как тьюринговской, так и волновой неустойчивостей. Выявлены качественные свойства, которыми должна обладать система для того, чтобы в ней могла произойти та или другая бифуркация. В численных экспериментах показано, что при выполнении соответствующих условий в нелинейной модели возникают структуры, которые предсказываются линейным анализом.
Diffusion instability in a threevariable reaction–diffusion model
Computer Research and Modeling, 2011, v. 3, no. 2, pp. 135-146Просмотров за год: 1. Цитирований: 7 (РИНЦ).Investigation of occurrence of diffusion instability in a set of three reaction–diffusion equations is carried out. In the general case the condition for both Turing and wave instabilities are obtained. Qualitative properties of the system, in which the bifurcation of each of the two types can take place, are clarified. In numerical experiments it is shown that if the corresponding conditions are met in the nonlinear model, spatiotemporal patterns are formed, which are predicted by linear analysis.
-
Контроль точности при ускоренном схемотехническом моделировании
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 365-370Разработан алгоритм ускоренного моделирования КМОП СБИС (Сверх Больших Интегральных Схем с Комплементарной логикой на транзисторах Металл-Окисел-Проводник) под управлением точности. Алгоритм обеспечивает возможность проведения параллельного числительного эксперимента в много процессорной вычислительной среде. Ускорение расчета осуществляется за счет применения блочно-матричной и структурной (DCCC) декомпозиций. Особенность подхода состоит в выборе моментов и способов обмена параметрами и в применении многоскоростных методов интегрирования в процессе расчета подсистем. Благодаря этому имеется возможность оценивать и контролировать погрешность по требуемым характеристикам.
Ключевые слова: декомпозированные системы обыкновенных дифференциальных уравнений (ОДУ), алгоритм ускоренного расчета систем ОДУ, контроль точности, КМОП СБИС, DCCC.
Accuracy control for fast circuit simulation
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 365-370Цитирований: 1 (РИНЦ).We developed an algorithm for fast simulation of VLSI CMOS (Very Large Scale Integration with Complementary Metal-Oxide-Semiconductors) with an accuracy control. The algorithm provides an ability of parallel numerical experiments in multiprocessor computational environment. There is computation speed up by means of block-matrix and structural (DCCC) decompositions application. A feature of the approach is both in a choice of moments and ways of parameters synchronization and application of multi-rate integration methods. Due to this fact we have ability to estimate and control error of given characteristics.
-
Формулы Фейнмана для решений уравнений типа Шредингера с полиномиальными потенциалами четвертого порядка
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 497-507В работе изучены условия существования фейнмановских интегралов в смысле аналитического продолжения от функционалов экспоненциального вида с полиномом четвертого порядка в показателе, построены их представления в виде гауссовских интегралов. Показано, что уравнение типа Шрёдингера в бесконечномерном пространстве в случае полиномиального потенциала четвертой степени имеет решение, которое описывается интегралом Фейнмана по траекториям в конфигурационном пространстве.
Feynman formulae for solutions of Schrodinger-type equations with fourth-power polinomial potentials
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 497-507The conditions for the existence of Feynman integrals in a sense of analytic continuation of the exponential functionals with a fourth-power polynomial in the index are studied, their presentations by Gaussian integrals are constructed in the paper. It is shown that the Schrodinger-type equation in the infinite-dimensional space in the case of fourth-power polynomial potential has a solution which is described by the Feynman path integral in configuration space.
-
Периодическая задача для уравнения Хилла в случае параметрического резонанса
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 27-43Найдены необходимые и достаточные условия существования решений нелинейной неавтономной периодической задачи для уравнения типа Хилла в случае параметрического резонанса. Характерной особенностью поставленной задачи является необходимость нахождения как искомого решения, так и соответствующей собственной функции, обеспечивающей разрешимость периодической задачи для уравнения типа Хилла в случае параметрического резонанса. Для построения решений периодической задачи для уравнения типа Хилла и соответствующей собственной функции в случае параметрического резонанса предложены итерационные схемы, построенные методу простых итераций, а также с использованием техники наименьших квадратов.
Ключевые слова: нелинейная неавтономная периодическая краевая задача, уравнение типа Хилла, случай параметрического резонанса, метод простых итераций.
Periodic boudary-value problem for Hill's equation in the case of parametric resonance
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 27-43Просмотров за год: 1.Necessary and sufficient conditions for the existence of solutions of nonlinear nonautonomous periodic problem for Hill’s equation in the case of parametric resonance. A characteristic feature of the task is the need of finding, as desired solution, and the corresponding eigenfunction, which ensures solvability of the periodic problem for Hill’s equation in the case of parametric resonance. To construct solutions of the periodic problem for Hill’s equation and the corresponding eigenfunction in the case of parametric resonance proposed iterative scheme, based on the method of simple iterations with used list-square technics.
-
Задача аппроксимации радиационных коэффициентов материалов на заданном диапазоне энергии
Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 217-230В работе рассматривается вопрос о возможности создания материала, который имеет коэффициенты ослабления и рассеяния рентгеновского излучения близкие или совпадающие с этими же коэффициентами для другого, заранее заданного материала. Проведена компьютерная обработка данных о значении этих коэффициентов для большого набора различных веществ, изучена их зависимость от энергии излучения. Сделан вывод о возможности успешного решения поставленной задачи во многих случаях, а так же указаны основные трудности, которые могут при этом возникнуть. Приведены результаты расчетов, выполненных для ряда конкретных веществ.
Problem of material radiation coefficients approximation at a given energy band
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 217-230The problem of formation of a material, which has the coefficients of attenuations and scattering close or coinciding with the same coefficients for some other predetermined material was considered. A computer processing of values of these coefficients for a big set of various materials has been carried out and their dependence on radiation energy value was studied. The conclusion was drawn about probability of successful solution of the problem in many cases and difficulties, which may occur were pointed out. A set of computer calculations carried out for some specific materials is provided.
-
Модифицированный вариант метода решеточных уравнений Больцмана для расчета течений вязкой несжимаемой жидкости
Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 365-381Предложен модифицированный вариант метода решеточных уравнений Больцмана для расчета течений вязкой несжимаемой жидкости. Метод основан на использовании расщепления дифференциального оператора в уравнении Навье–Стокса и идее о мгновенной максвеллизации функций распределения. Метод основан на использовании явных схем и не приводит к сложностям при распараллеливании вычислений. С помощью метода фон Неймана показана устойчивость метода в широком диапазоне изменения входного параметра. Эффективность предложенного метода показана при решении задачи о плоском течении в каверне.
Ключевые слова: метод решеточных уравнений Больцмана, метод расщепления.
Modification of the lattice Boltzmann method for the computations of viscid incompressible fluid flows
Computer Research and Modeling, 2014, v. 6, no. 3, pp. 365-381Modification of the lattice Boltzmann method for computation of viscous incompressible fluid flows is proposed. The method is based on the splitting of differential operator in Navier–Stokes equation and on the idea of instantaneous Maxwellisation of distribution function. The method is based on explicit schemes and didn’t have any problems with parallelization of computations. The stability of the method is demonstrated using von Neumann method in a wide range of input parameter values. The efficiency of the method proposed is demonstrated on the solution of the problem of 2D lid-driven cavity flow.
Keywords: lattice Boltzmann method, splitting method.Цитирований: 5 (РИНЦ). -
Сплошные среды из тонких пластин
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 655-670Представлена фрактальная система из тонких шарнирно соединенных пластинок, которая может быть изучена методами механики сплошной среды с внутренними степенями свободы. Конструкция является трансформирующейся: в начальном положении это практически одномерное многообразие малого диаметра, после развертки система занимает значительный объем. Геометрия сплошной среды исследуется методом подвижного репера. На основе уравнений структуры Картана выводятся соотношения, позволяющие определить геометрию введенных многообразий. В доказательствах существенно используется тот факт, что составляющие фрактал пластинки являются тонкими, а их длина мала по сравнению с габаритами системы. Изучается механика введенных сплошных сред, если шарниры между пластинками являются идеальными жесткопластическими и выполнены из материалов с памятью формы. Опираясь на теоремы о предельных нагрузках, вычисляются внутреннее давление, необходимое для развертывания пакета в объемную конструкцию, а также затраты тепла для возврата системы в первоначальное состояние.
Ключевые слова: фрактальная система, тонкие пластинки, сплошная среда, репер Картана, предельная нагрузка, жесткопластическое тело, память формы.Просмотров за год: 2.The paper demonstrates a fractal system of thin plates connected with hinges. The system can be studied using the methods of mechanics of solids with internal degrees of freedom. The structure is deployable — initially it is close to a small diameter one-dimensional manifold that occupies significant volume after deployment. The geometry of solids is studied using the method of the moving hedron. The relations enabling to define the geometry of the introduced manifolds are derived based on the Cartan structure equations. The proof substantially makes use of the fact that the fractal consists of thin plates that are not long compared to the sizes of the system. The mechanics is described for the solids with rigid plastic hinges between the plates, when the hinges are made of shape memory material. Based on the ultimate load theorems, estimates are performed to specify internal pressure that is required to deploy the package into a three-dimensional structure, and heat input needed to return the system into its initial state.
-
Аналитическое решение и компьютерное моделирование задачи расчета параметров распределения Райса в предельных случаях большого и малого отношения сигнала к шуму
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 227-242В работе решается задача вычисления параметров случайного сигнала в условиях распределения Райса на основе принципа максимума правдоподобия в предельных случаях большого и малого значения отношения сигнала к шуму. Получены аналитические формулы для решения системы уравнений максимума правдоподобия для искомых параметров сигнала и шума как для однопараметрического приближения, когда рассчитывается только один параметр задачи — величина сигнала, в предположении априорной известности второго параметра — дисперсии шума, так и для двухпараметрической задачи, когда оба параметра априорно неизвестны. Непосредственное вычисление искомых параметров сигнала и шума по формулам позволяет избежать необходимости ресурсоемкого численного решения системы нелинейных уравнений и тем самым оптимизировать время компьютерной обработки сигналов и изображений. Представлены результаты компьютерного моделирования задачи, подтверждающие теоретические выводы. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации.
Ключевые слова: функция плотности вероятности, распределение Райса, метод максимума правдоподобия, выборки измерений, отношение сигнала к шуму.
Analytical solution and computer simulation of the task of Rician distribution’s parameters in limiting cases of large and small values of signal-to-noise ratio
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 227-242Просмотров за год: 2.The paper provides a solution of a task of calculating the parameters of a Rician distributed signal on the basis of the maximum likelihood principle in limiting cases of large and small values of the signal-tonoise ratio. The analytical formulas are obtained for the solution of the maximum likelihood equations’ system for the required signal and noise parameters for both the one-parameter approximation, when only one parameter is being calculated on the assumption that the second one is known a-priori, and for the two-parameter task, when both parameters are a-priori unknown. The direct calculation of required signal and noise parameters by formulas allows escaping the necessity of time resource consuming numerical solving the nonlinear equations’ s system and thus optimizing the duration of computer processing of signals and images. There are presented the results of computer simulation of a task confirming the theoretical conclusions. The task is meaningful for the purposes of Rician data processing, in particular, magnetic-resonance visualization.
-
Нелинейная матричная краевая задача в случае параметрического резонанса
Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 821-833Найдены необходимые и достаточные условия существования решений нелинейной матричной краевой задачи для системы обыкновенных дифференциальных уравнений в случае параметрического резонанса. Построена сходящаяся итерационная схема для нахождения приближений к решению нелинейной матричной краевой задачи для системы обыкновенных дифференциальных уравнений в случае параметрического резонанса. В качестве примера применения построенной итерационной схемы найдены приближения к решениями периодической краевой задачи для уравнения типа Риккати с параметрическим возмущением. Для контроля точности найденных приближений к решениямперио дической краевой задачи для уравнения типа Риккати использованы невязки этих приближений.
Ключевые слова: нелинейная нетерова краевая задача, матричные дифференциальные уравнения, обобщенный оператор Грина, параметрический резонанс.
Nonlinear boudary value problem in the case of parametric resonance
Computer Research and Modeling, 2015, v. 7, no. 4, pp. 821-833Просмотров за год: 2.We construct necessary and sufficient conditions for the existence of solution of seminonlinear matrix boundary value problem for a parametric excitation system of ordinary differential equations. The convergent iteration algorithms for the construction of the solutions of the semi-nonlinear matrix boundary value problem for a parametric excitation system differential equations in the critical case have been found. Using the convergent iteration algorithms we expand solution of seminonlinear periodical boundary value problem for a parametric excitation Riccati type equation in the neighborhood of the generating solution. Estimates for the value of residual of the solutions of the seminonlinear periodical boundary value problem for a parametric excitation Riccati type equation are found.
-
Математическое моделирование эредитарного осциллятора
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1001-1021В работе рассматривается эредитарный осциллятор, который характеризуется осцилляционным уравнением с производными дробных порядков $\beta$ и $\gamma$ в смысле Герасимова–Капуто. С помощью преобразования Лапласа были получены аналитические решения и функция Грина, которые определяются через специальные функции типа Миттаг-Леффлера и обобщенной функции Райта. Доказано, что при фиксированных значениях $\beta = 2$ и $\gamma = 1$ найденное решение переходит в классическое решение для гармонического осциллятора. Согласно полученным решениям были построены расчетные кривые и фазовые траектории эредитарного колебательного процесса. Установлено, что в случае внешнего периодического воздействия на эредитарный осциллятор могут возникать эффекты, присущие классическим нелинейным осцилляторам.
Ключевые слова: эредитарность, фрактальный осциллятор, обобщенная функция Райта, фазовые траектории, резонанс.
Mathematical modeling of oscillator hereditarity
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1001-1021Просмотров за год: 4. Цитирований: 12 (РИНЦ).The paper considers hereditarity oscillator which is characterized by oscillation equation with derivatives of fractional order $\beta$ and $\gamma$, which are defined in terms of Gerasimova-Caputo. Using Laplace transform were obtained analytical solutions and the Green’s function, which are determined through special functions of Mittag-Leffler and Wright generalized function. It is proved that for fixed values of $\beta = 2$ and $\gamma = 1$, the solution found becomes the classical solution for a harmonic oscillator. According to the obtained solutions were built calculated curves and the phase trajectories hereditarity oscillatory process. It was found that in the case of an external periodic influence on hereditarity oscillator may occur effects inherent in classical nonlinear oscillators.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





