Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Квантильные меры формы для распределений с тяжелыми хвостами
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1041-1077Современная литература содержит многочисленные примеры применения распределений с тяжелыми хвостами для прикладных исследований сложных систем. Моделирование экстремальных данных обычно ограничено небольшим набором форм распределений, которые исторически применяются в данной области прикладных исследований. Расширение набора форм возможно посредством сопоставления мер форм распределений. В работе на примере бета-распределения второго рода показано, что неопределенность моментов тяжелохвостых бета-распределений ограничивает применимость классических методов моментов для исследования их форм. На данном этапе сохраняется актуальность построения методов сопоставления распределений с помощью квантильных мер формы, которые освобождены от ограничений на параметры формы. Цель работы состоит в компьютерном исследовании возможности построения пространства квантильных мер форм для проведения сравнения распределений с тяжелыми хвостами. На основе компьютерного моделирования проводится картирование реализаций распределений в пространстве параметрических, квантильных и информационных мер формы. Картирование распределений в пространстве только параметрических мер формы показало, что наложение множества распределений с тяжелыми хвостами в пространстве квантильных мер асимметрии и эксцесса не позволяет сопоставить формы распределений, принадлежащие разным типам распределений. Хорошо известно, что информационные меры содержат дополнительную информацию о мере формы распределений. В работе предложен квантильный коэффициент энтропии в качестве дополнительной независимой меры формы, построенной на отношении интервалов энтропийной и квантильной неопределенностей. На примере логнормального распределения и распределения Парето иллюстрируются возможности сравнения форм распределений с реализациями бета-распределения второго рода. В частности показано, что, несмотря на близость положений форм в трехмерном пространстве, формы реализаций логнормального распределения отсутствуют среди реализаций бета-распределения второго рода. Картирование положения устойчивых распределений в трехмерном пространстве квантильных мер форм позволило оценить параметры формы бета-распределения второго рода, для которого форма наиболее близка к форме распределения Леви. Из материала статьи следует, что отображение распределений в трехмерном пространстве квантильных мер форм значительно расширяет возможность сравнения форм для распределений с тяжелыми хвостами.
Ключевые слова: квантильные меры, распределение с тяжелыми хвостами, квантильные асимметрия и контрэксцесс, квантильный коэффициент энтропии, устойчивые распределения.
Quantile shape measures for heavy-tailed distributions
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1041-1077Currently, journal papers contain numerous examples of the use of heavy-tailed distributions for applied research on various complex systems. Models of extreme data are usually limited to a small set of distribution shapes that in this field of applied research historically been used. It is possible to increase the composition of the set of probability distributions shapes through comparing the measures of the distribution shapes and choosing the most suitable implementations. The example of a beta distribution of the second kind shown that the lack of definability of the moments of heavy-tailed implementations of the beta family of distributions limits the applicability of the existing classical methods of moments for studying the distributions shapes when are characterized heavy tails. For this reason, the development of new methods for comparing distributions based on quantile shape measures free from the restrictions on the shape parameters remains relevant study the possibility of constructing a space of quantile measures of shapes for comparing distributions with heavy tails. The operation purpose consists in computer research of creation possibility of space of the quantile’s measures for the comparing of distributions property with heavy tails. On the basis of computer simulation there the distributions implementations in measures space of shapes were been shown. Mapping distributions in space only of the parametrical measures of shapes has shown that the imposition of regions for heavy tails distribution made impossible compare the shape of distributions belonging to different type in the space of quantile measures of skewness and kurtosis. It is well known that shape information measures such as entropy and entropy uncertainty interval contain additional information about the shape measure of heavy-tailed distributions. In this paper, a quantile entropy coefficient is proposed as an additional independent measure of shape, which is based on the ratio of entropy and quantile uncertainty intervals. Also estimates of quantile entropy coefficients are obtained for a number of well-known heavy-tailed distributions. The possibility of comparing the distributions shapes with realizations of the beta distribution of the second kind is illustrated by the example of the lognormal distribution and the Pareto distribution. Due to mapping the position of stable distributions in the three-dimensional space of quantile measures of shapes estimate made it possible the shape parameters to of the beta distribution of the second kind, for which shape is closest to the Lévy shape. From the paper material it follows that the display of distributions in the three-dimensional space of quantile measures of the forms of skewness, kurtosis and entropy coefficient significantly expands the possibility of comparing the forms for distributions with heavy tails.
-
Численное решение третьей начально-краевой задачи для нестационарного уравнения теплопроводности с дробными производными
Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1345-1360В последнее время для описания различных математических моделей физических процессов широко используется дробно-дифференциальное исчисление. В связи с этим большое внимание уделяется уравнениям в частных производных дробного порядка, которые являются обобщением уравнений в частных производных целого порядка.
Нагруженными дифференциальными уравнениями в литературе называют уравнения, содержащие значения решения или его производных на многообразиях меньшей размерности, чем размерность области определения искомой функции. В настоящее время широко используются численные методы для решения нагруженных уравнений в частных производных целого и дробного порядка, поскольку аналитические методы решения сложны в реализации. Достаточно эффективным методом численного решения такого рода задач является метод конечных разностей, или метод сеток.
Исследована начально-краевая задача в прямоугольнике $\overline{D}=\{(x,\,t)\colon 0\leqslant x\leqslant l,\;0\leqslant t\leqslant T\}$ для нагруженного дифференциального уравнения теплопроводности с композицией дробной производной Римана – Лиувилля и Капуто – Герасимова и с граничными условиями первого и третьего рода. С помощью метода энергетических неравенств получена априорная оценка в дифференциальной и в разностной форме. Полученные неравенства означают единственность решения и непрерывную зависимость решения от входных данных задачи. Получен разностный аналог для композиции дробной производной Римана – Лиувилля и Капуто – Герасимова порядка $(2-\beta )$ и построена разностная схема, аппроксимирующая исходную задачу с порядком $O\left(\tau +h^{2-\beta } \right)$. Доказана сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью, равной порядку аппроксимации разностной схемы.
Ключевые слова: краевая задача, априорная оценка, метод энергетических неравенств, аппроксимация, дробная производная Капуто – Герасимова, дробная производная Римана – Лиувилля.
Numerical solution of the third initial-boundary value problem for the nonstationary heat conduction equation with fractional derivatives
Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1345-1360Recently, to describe various mathematical models of physical processes, fractional differential calculus has been widely used. In this regard, much attention is paid to partial differential equations of fractional order, which are a generalization of partial differential equations of integer order. In this case, various settings are possible.
Loaded differential equations in the literature are called equations containing values of a solution or its derivatives on manifolds of lower dimension than the dimension of the definitional domain of the desired function. Currently, numerical methods for solving loaded partial differential equations of integer and fractional orders are widely used, since analytical solving methods for solving are impossible. A fairly effective method for solving this kind of problem is the finite difference method, or the grid method.
We studied the initial-boundary value problem in the rectangle $\overline{D}=\{(x,\,t)\colon 0\leqslant x\leqslant l,\;0\leqslant t\leqslant T\}$ for the loaded differential heat equation with composition fractional derivative of Riemann – Liouville and Caputo – Gerasimov and with boundary conditions of the first and third kind. We have gotten an a priori assessment in differential and difference interpretations. The obtained inequalities mean the uniqueness of the solution and the continuous dependence of the solution on the input data of the problem. A difference analogue of the composition fractional derivative of Riemann – Liouville and Caputo –Gerasimov order $(2-\beta )$ is obtained and a difference scheme is constructed that approximates the original problem with the order $O\left(\tau +h^{2-\beta } \right)$. The convergence of the approximate solution to the exact one is proven at a rate equal to the order of approximation of the difference scheme.
-
К вопросу об определении ядра концевого вихря
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 9-27Дается обзор критериев, используемых при идентификации концевых вихрей, сходящих с несущих поверхностей летательного аппарата. В качестве основного метода идентификации вихря используется $Q$-критерий, в соответствии с которым ядро вихря ограничено поверхностью, на которой норма тензора завихренности равна норме тензора сдвиговых деформаций. При этом внутри ядра вихря должны выполняться следующие условия: (i) ненулевое значение нормы тензора завихренности, (ii) геометрия ядра вихря должна удовлетворять условию галилеевой инвариантности. На основе аналитических моделей вихря дается определение понятия центра двумерного вихря как точки, в которой $Q$-распределение принимает максимальное значение и много больше нормы тензора сдвиговых деформаций (для осесимметричного 2D-вихря норма тензора сдвиговых деформаций в центре вихря стремится к нулю). Поскольку необходимость существования оси вихря обсуждается в работах различных авторов и выглядит достаточно естественным требованием при анализе концевых вихрей, упомянутые выше условия (i), (ii) дополнены условием (iii): ядро вихря в трехмерном потоке должно содержать ось вихря. Анализируются течения, имеющие в 2D-сечениях осевую симметрию, а также форму ядра вихря, отличающуюся от окружности (в частности, эллиптического вида). Показывается, что в этом случае с использованием $Q$-распределения можно не только определить область ядра вихря, но и выделить ось ядра вихря. Для иллюстрации введенных понятий используются результаты численного моделирования обтекания крыла конечного размаха на базе решения осредненных по Рейнольдсу стационарных уравнений Навье – Стокса (RANS). Замыкание уравнений Навье – Стокса осуществлялось с использованием модели турбулентности $k-\omega$.
On the identification of the tip vortex core
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 9-27An overview is given for identification criteria of tip vortices, trailing from lifting surfaces of aircraft. $Q$-distribution is used as the main vortex identification method in this work. According to the definition of Q-criterion, the vortex core is bounded by a surface on which the norm of the vorticity tensor is equal to the norm of the strain-rate tensor. Moreover, following conditions are satisfied inside of the vortex core: (i) net (non-zero) vorticity tensor; (ii) the geometry of the identified vortex core should be Galilean invariant. Based on the existing analytical vortex models, a vortex center of a twodimensional vortex is defined as a point, where the $Q$-distribution reaches a maximum value and it is much greater than the norm of the strain-rate tensor (for an axisymmetric 2D vortex, the norm of the vorticity tensor tends to zero at the vortex center). Since the existence of the vortex axis is discussed by various authors and it seems to be a fairly natural requirement in the analysis of vortices, the above-mentioned conditions (i), (ii) can be supplemented with a third condition (iii): the vortex core in a three-dimensional flow must contain a vortex axis. Flows, having axisymmetric or non-axisymmetric (in particular, elliptic) vortex cores in 2D cross-sections, are analyzed. It is shown that in such cases $Q$-distribution can be used to obtain not only the boundary of the vortex core, but also to determine the axis of the vortex. These concepts are illustrated using the numerical simulation results for a finite span wing flow-field, obtained using the Reynolds-Averaged Navier – Stokes (RANS) equations with $k-\omega$ turbulence model.
-
Верификация расчетных характеристик сверхзвуковых турбулентных струй
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 21-35В статье приводятся результаты верификационных расчетов в программном комплексе вычислительной аэро-, гидродинамики FlowVision характеристик сверхзвуковых турбулентных струй. Численное моделирование в статье охватывает несколько известных экспериментов по исследованию сверхзвуковых струй, находящихся в свободном доступе. Представленные тестовые случаи включают в себя тесты Сейнера с числом Маха на срезе $M = 2$ при расчетном $(n = 1)$ и нерасчетном $(n = 1.47)$ истечении из сопла в широком диапазоне температур газа. В работе также проведен численный эксперимент по распространению сверхзвуковой струи в спутном сверхзвуковом потоке $M = 2.2$. Для данного теста заданы параметры, определенные в эксперименте Putnam: степень понижения давления в сопле $\mathrm{NPR} = 8.12$ и полная температура $T = 317 \, \mathrm{K}$.
Показано сравнение расчетов FlowVision с экспериментальными и полученными в других расчетных кодах данными. Наилучшее совпадение с экспериментом Сейнера среди рассмотренных моделей турбулентности получено при использовании стандартной $k–\varepsilon$ модели турбулентности с установленной поправкой на сжимаемость по модели Wilcox. Достигнуто согласование с экспериментальными данными на дальнем следе до 7 % по скорости потока на оси сопла. Для струи в спутном потоке расчетная характеристика (число Маха) отличается на 3 % от экспериментальной.
В работе определены общие рекомендации к построению методики моделирования FlowVision сверхзвуковых турбулентных струй. В ходе исследования сходимости по сетке получены оптимальные размеры ячеек расчетной сетки: для расчетного истечения достаточно 40 ячеек по радиусу сопла и в области формирования струи, а для нерасчетных режимов необходимо не менее 80 ячеек по радиусу для точного моделирования ударно-волновой структуры вблизи выхода из сопла.
Влияние применяемых моделей турбулентности показано на примере расчета теста Сейнера. SST-модель турбулентности, применяемая в FlowVision, существенно занижает скорость на оси сопла, для расчета струй данная модель не рекомендуется даже для предварительных оценок. Стандартная $k–\varepsilon$ модель без учета сжимаемости также несколько занижает скорость газа. Модель турбулентности KEFV, разработанная для FlowVision, показывает хорошее согласование и несколько завышает «дальнобойность» струи. И наилучшее совпадение с экспериментом по исследуемым характеристикам турбулентных струй получено при расчетах на стандартной $k–\varepsilon$ модели с учетом сжимаемости, соответствующей модели Wilcox. Представленная методика может быть взята за основу при моделировании истечения из сверхзвуковых сопел более сложной геометрии.
Verification of calculated characteristics of supersonic turbulent jets
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 21-35Просмотров за год: 43.Verification results of supersonic turbulent jets computational characteristics are presented. Numerical simulation of axisymmetric nozzle operating is realized using FlowVision CFD. Open test cases for CFD are used. The test cases include Seiner tests with exit Mach number of 2.0 both fully-expanded and under-expanded $(P/P_0 = 1.47)$. Fully-expanded nozzle investigated with wide range of flow temperature (300…3000 K). The considered studies include simulation downstream from the nozzle exit diameter. Next numerical investigation is presented at an exit Mach number of 2.02 and a free-stream Mach number of 2.2. Geometric model of convergent- divergent nozzle rebuilt from original Putnam experiment. This study is set with nozzle pressure ratio of 8.12 and total temperature of 317 K.
The paper provides a comparison of obtained FlowVision results with experimental data and another current CFD studies. A comparison of the calculated characteristics and experimental data indicates a good agreement. The best coincidence with Seiner's experimental velocity distribution (about 7 % at far field for the first case) obtained using two-equation $k–\varepsilon$ standard turbulence model with Wilcox compressibility correction. Predicted Mach number distribution at $Y/D = 1$ for Putnam nozzle presents accuracy of 3 %.
General guidelines for simulation of supersonic turbulent jets in the FlowVision software are formulated in the given paper. Grid convergence determined the optimal cell rate. In order to calculate the design regime, it is recommended to build a grid, containing not less than 40 cells from the axis of symmetry to the nozzle wall. In order to calculate an off-design regime, it is necessary to resolve the shock waves. For this purpose, not less than 80 cells is required in the radial direction. Investigation of the influence of turbulence model on the flow characteristics has shown that the version of the SST $k–\omega$ turbulence model implemented in the FlowVision software essentially underpredicts the axial velocity. The standard $k–\varepsilon$ model without compressibility correction also underpredicts the axial velocity. These calculations agree well with calculations in other CFD codes using the standard $k–\varepsilon$ model. The in-home $k–\varepsilon$ turbulence model KEFV with compressibility correction a little bit overpredicts the axial velocity. Since, the best results are obtained using the standard $k–\varepsilon$ model combined with the Wilcox compressibility correction, this model is recommended for the problems discussed.
The developed methodology can be regarded as a basis for numerical investigations of more complex nozzle flows.
-
Клеточно-автоматные методы решения классических задач математической физики на гексагональной сетке. Часть 1
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 167-186Статья носит методический характер и посвящена решению трех классических уравнений математической физики (Лапласа, диффузии и волнового) простейшими численными схемами в формулировке клеточных автоматов (КА). Особое внимание уделяется законам сохранения вещества и неприятному эффекту избыточной гексагональной симметрии (ИГС).
Делается вывод о том, что по сравнению с классическими конечно-разностными методами, хотя локальная функция перехода (ЛФП) КА терминологически эквивалентна шаблону вычислительной двухслоевой явной схемы, различие состоит в замене матричных (direct) методов (например, метода прогонки для трехдиагональной матрицы) итерационными. Из этого следуют более жесткие требования к дискретизации условий для граничных КА-ячеек.
Для гексагональной сетки и консервативных граничных условий записана корректная ЛФП для граничных ячеек, справедливая, по крайней мере, для границ прямоугольной и круговой формы. Предложена идея разделения ЛФП на internal, boundary и postfix. На примере этой задачи заново осмыслено значение числа Куранта–Леви как соотношения скорости сходимости КА к решению задачи, данному на фиксированный момент времени, и скорости изменения самого решения в динамике.
Ключевые слова: клеточные автоматы с непрерывными значениями, гексагональная сетка, конечно-разностные методы, уравнения в частных производных.
Cellular automata methods in mathematical physics classical problems solving on hexagonal grid. Part 1
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 167-186Просмотров за год: 6.The paper has methodical character; it is devoted to three classic partial differential equations (Laplace, Diffusion and Wave) solution using simple numerical methods in terms of Cellular Automata. Special attention was payed to the matter conservation law and the offensive effect of excessive hexagonal symmetry.
It has been shown that in contrary to finite-difference approach, in spite of terminological equivalence of CA local transition function to the pattern of computing double layer explicit method, CA approach contains the replacement of matrix technique by iterative ones (for instance, sweep method for three diagonal matrixes). This suggests that discretization of boundary conditions for CA-cells needs more rigid conditions.
The correct local transition function (LTF) of the boundary cells, which is valid at least for the boundaries of the rectangular and circular shapes have been firstly proposed and empirically given for the hexagonal grid and the conservative boundary conditions. The idea of LTF separation into «internal», «boundary» and «postfix» have been proposed. By the example of this problem the value of the Courant-Levy constant was re-evaluated as the CA convergence speed ratio to the solution, which is given at a fixed time, and to the rate of the solution change over time.
-
Прямые мультипликативные методы для разреженных матриц. Ньютоновские методы
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 679-703Рассматривается численно устойчивый прямой мультипликативный алгоритм решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество алгоритма состоит в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Решение системы линейных уравнений прямым мультипликативным алгоритмом — это, как и решение с помощью $LU$-разложения, просто другая схема реализации метода исключения Гаусса.
В данной работе этот алгоритм лежит в основе решения следующих задач.
Задача 1. Задание направления спуска в ньютоновских методах безусловной оптимизации путем интеграции одной из известных техник построения существенно положительно определенной матрицы. Такой подход позволяет ослабить или снять дополнительные специфические трудности, обусловленные необходимостью решения больших систем уравнений с разреженными матрицами, представленных в упакованном виде.
Задача 2. Построение новой математической формулировки задачи квадратичного программирования и новой формы задания необходимых и достаточных условий оптимальности. Они достаточно просты и могут быть использованы для построения методов математического программирования, например для поиска минимума квадратичной функции на многогранном множестве ограничений, основанного на решениях систем линейных уравнений, размерность которых не выше числа переменных целевой функции.
Задача 3. Построение непрерывного аналога задачи минимизации вещественного квадратичного многочлена от булевых переменных и новой формы задания необходимых и достаточных условий оптимальности для разработки методов их решения за полиномиальное время. В результате исходная задача сводится к задаче поиска минимального расстояния между началом координат и угловой точкой выпуклого многогранника (полиэдра), который является возмущением $n$-мерного куба и описывается системой двойных линейных неравенств с верхней треугольной матрицей коэффициентов с единицами на главной диагонали. Исследованию подлежат только две грани, одна из которых или обе содержат вершины, ближайшие к началу координат. Для их вычисления достаточно решить $4n – 4$ систем линейных уравнений и выбрать среди них все ближайшие равноудаленные вершины за полиномиальное время. Задача минимизации квадратичного полинома является $NP$-трудной, поскольку к ней сводится $NP$-трудная задача о вершинном покрытии для произвольного графа. Отсюда следует вывод, что $P = NP$, в основе построения которого лежит выход за пределы целочисленных методов оптимизации.
Ключевые слова: $NP$-трудные задачи, разреженные матрицы, ньютоновские методы, прямой мультипликативный алгоритм, направление спуска, новые математические формулировки, необходимые и достаточные условия оптимальности, минимизация псевдобулевой функции, псевдобулево программирование, линейное программирование.
Direct multiplicative methods for sparse matrices. Newton methods
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 679-703Просмотров за год: 7. Цитирований: 1 (РИНЦ).We consider a numerically stable direct multiplicative algorithm of solving linear equations systems, which takes into account the sparseness of matrices presented in a packed form. The advantage of the algorithm is the ability to minimize the filling of the main rows of multipliers without losing the accuracy of the results. Moreover, changes in the position of the next processed row of the matrix are not made, what allows using static data storage formats. Linear system solving by a direct multiplicative algorithm is, like the solving with $LU$-decomposition, just another scheme of the Gaussian elimination method implementation.
In this paper, this algorithm is the basis for solving the following problems:
Problem 1. Setting the descent direction in Newtonian methods of unconditional optimization by integrating one of the known techniques of constructing an essentially positive definite matrix. This approach allows us to weaken or remove additional specific difficulties caused by the need to solve large equation systems with sparse matrices presented in a packed form.
Problem 2. Construction of a new mathematical formulation of the problem of quadratic programming and a new form of specifying necessary and sufficient optimality conditions. They are quite simple and can be used to construct mathematical programming methods, for example, to find the minimum of a quadratic function on a polyhedral set of constraints, based on solving linear equations systems, which dimension is not higher than the number of variables of the objective function.
Problem 3. Construction of a continuous analogue of the problem of minimizing a real quadratic polynomial in Boolean variables and a new form of defining necessary and sufficient conditions of optimality for the development of methods for solving them in polynomial time. As a result, the original problem is reduced to the problem of finding the minimum distance between the origin and the angular point of a convex polyhedron, which is a perturbation of the $n$-dimensional cube and is described by a system of double linear inequalities with an upper triangular matrix of coefficients with units on the main diagonal. Only two faces are subject to investigation, one of which or both contains the vertices closest to the origin. To calculate them, it is sufficient to solve $4n – 4$ linear equations systems and choose among them all the nearest equidistant vertices in polynomial time. The problem of minimizing a quadratic polynomial is $NP$-hard, since an $NP$-hard problem about a vertex covering for an arbitrary graph comes down to it. It follows therefrom that $P = NP$, which is based on the development beyond the limits of integer optimization methods.
-
Прямые мультипликативные методы для разреженных матриц. Квадратичное программирование
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 407-420Рассматривается численно устойчивый прямой мультипликативный метод решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество метода состоит в расчете факторов Холесского для положительно определенной матрицы системы уравнений и ее решения в рамках одной процедуры, а также в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Решение системы линейных уравнений прямым мультипликативным алгоритмом — это, как и решение с помощью LU-разложения, просто другая схема реализации метода исключения Гаусса.
Расчет факторов Холесского для положительно определенной матрицы системы и ее решение лежит в основе построения новой математической формулировки безусловной задачи квадратичного программирования и новой формы задания необходимых и достаточных условий оптимальности, которые достаточно просты и в данной работе используются для построения новой математической формулировки задачи квадратичного программирования на многогранном множестве ограничений, которая представляет собой задачу поиска минимального расстояния между началом координат и точкой границы многогранного множества ограничений средствами линейной алгебры и многомерной геометрии.
Для определения расстояния предлагается применить известный точный метод, основанный на решении систем линейных уравнений, размерность которых не выше числа переменных целевой функции. Расстояния определяются построением перпендикуляров к граням многогранника различной размерности. Для уменьшения числа исследуемых граней предлагаемый метод предусматривает специальный порядок перебора граней. Исследованию подлежат только грани, содержащие вершину, ближайшую к точке безусловного экстремума, и видимые из этой точки. В случае наличия нескольких ближайших равноудаленных вершин исследуется грань, содержащая все эти вершины, и грани меньшей размерности, имеющие с первой гранью не менее двух общих ближайших вершин.
Ключевые слова: математическое программирование, квадратичное программирование, разреженные матрицы, прямой мультипликативный алгоритм, новые математические формулировки, необходимые и достаточные условия оптимальности, квадратичная задача, линейное программирование, многомерная геометрия.
Direct multiplicative methods for sparse matrices. Quadratic programming
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 407-420Просмотров за год: 32.A numerically stable direct multiplicative method for solving systems of linear equations that takes into account the sparseness of matrices presented in a packed form is considered. The advantage of the method is the calculation of the Cholesky factors for a positive definite matrix of the system of equations and its solution within the framework of one procedure. And also in the possibility of minimizing the filling of the main rows of multipliers without losing the accuracy of the results, and no changes are made to the position of the next processed row of the matrix, which allows using static data storage formats. The solution of the system of linear equations by a direct multiplicative algorithm is, like the solution with LU-decomposition, just another scheme for implementing the Gaussian elimination method.
The calculation of the Cholesky factors for a positive definite matrix of the system and its solution underlies the construction of a new mathematical formulation of the unconditional problem of quadratic programming and a new form of specifying necessary and sufficient conditions for optimality that are quite simple and are used in this paper to construct a new mathematical formulation for the problem of quadratic programming on a polyhedral set of constraints, which is the problem of finding the minimum distance between the origin ordinate and polyhedral boundary by means of a set of constraints and linear algebra dimensional geometry.
To determine the distance, it is proposed to apply the known exact method based on solving systems of linear equations whose dimension is not higher than the number of variables of the objective function. The distances are determined by the construction of perpendiculars to the faces of a polyhedron of different dimensions. To reduce the number of faces examined, the proposed method involves a special order of sorting the faces. Only the faces containing the vertex closest to the point of the unconditional extremum and visible from this point are subject to investigation. In the case of the presence of several nearest equidistant vertices, we investigate a face containing all these vertices and faces of smaller dimension that have at least two common nearest vertices with the first face.
-
Проблемно-моделирующая среда численного решения уравнения Больцмана на кластерной архитектуре для анализа газокинетических процессов в межэлектродном зазоре термоэмиссионных преобразователей
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 219-232Данная работа посвящена применению метода численного решения уравнения Больцмана для решения задачи моделирования поведения радионуклидов в полости межэлектродного зазора многоэлементного электрогенерирующего канала. Анализ газокинетических процессов термоэмиссионных преобразователей может быть использован для ресурсного обоснования конструкции электрогенерирующего канала. В работе рассматриваются две конструктивные схемы канала: с одно- и двусторонним выводом газообразных продуктов деления в вакуумно-цезиевую систему. Анализ проводился с использованием двумерного уравнения переноса второго порядка точности для решения левой части и проекционного метода для решения правой части — интеграла столкновений. В ходе работы был реализован программный комплекс, позволяющий производить расчет на кластерной архитектуре за счет использования алгоритма распараллеливания левой части уравнения, результаты анализа зависимости эффективности вычисления от числа параллельных узлов представлены в работе. С использованием программного комплекса были проведены расчеты и получены данные по распределениям давлений газообразных продуктов деления в полости зазора, рассмотрены различные варианты начальных давлений и потоков, обнаружена зависимость давления радионуклидов в области коллектора от давлений цезия на концах зазора. Полученные результаты качественно подтверждаются испытаниями в петлевом канале ядерного реактора.
Ключевые слова: разреженный газ, смесь газов, уравнение Больцмана, консервативный проекционный метод, численное моделирование.
A problem-modeling environment for the numerical solution of the Boltzmann equation on a cluster architecture for analyzing gas-kinetic processes in the interelectrode gap of thermal emission converters
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 219-232Просмотров за год: 24.This paper is devoted to the application of the method of numerical solution of the Boltzmann equation for the solution of the problem of modeling the behavior of radionuclides in the cavity of the interelectric gap of a multielement electrogenerating channel. The analysis of gas-kinetic processes of thermionic converters is important for proving the design of the power-generating channel. The paper reviews two constructive schemes of the channel: with one- and two-way withdrawal of gaseous fission products into a vacuum-cesium system. The analysis uses a two-dimensional transport equation of the second-order accuracy for the solution of the left-hand side and the projection method for solving the right-hand side — the collision integral. In the course of the work, a software package was implemented that makes it possible to calculate on the cluster architecture by using the algorithm of parallelizing the left-hand side of the equation; the paper contains the results of the analysis of the dependence of the calculation efficiency on the number of parallel nodes. The paper contains calculations of data on the distribution of pressures of gaseous fission products in the gap cavity, calculations use various sets of initial pressures and flows; the dependency of the radionuclide pressure in the collector region was determined as a function of cesium pressures at the ends of the gap. The tests in the loop channel of a nuclear reactor confirm the obtained results.
-
Isotropic Multidimensional Catalytic Branching Random Walk with Regularly Varying Tails
Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1033-1039The study completes a series of the author’s works devoted to the spread of particles population in supercritical catalytic branching random walk (CBRW) on a multidimensional lattice. The CBRW model describes the evolution of a system of particles combining their random movement with branching (reproduction and death) which only occurs at fixed points of the lattice. The set of such catalytic points is assumed to be finite and arbitrary. In the supercritical regime the size of population, initiated by a parent particle, increases exponentially with positive probability. The rate of the spread depends essentially on the distribution tails of the random walk jump. If the jump distribution has “light tails”, the “population front”, formed by the particles most distant from the origin, moves linearly in time and the limiting shape of the front is a convex surface. When the random walk jump has independent coordinates with a semiexponential distribution, the population spreads with a power rate in time and the limiting shape of the front is a star-shape nonconvex surface. So far, for regularly varying tails (“heavy” tails), we have considered the problem of scaled front propagation assuming independence of components of the random walk jump. Now, without this hypothesis, we examine an “isotropic” case, when the rate of decay of the jumps distribution in different directions is given by the same regularly varying function. We specify the probability that, for time going to infinity, the limiting random set formed by appropriately scaled positions of population particles belongs to a set $B$ containing the origin with its neighborhood, in $\mathbb{R}^d$. In contrast to the previous results, the random cloud of particles with normalized positions in the time limit will not concentrate on coordinate axes with probability one.
Ключевые слова: catalytic branching random walk, spread of population.
Isotropic Multidimensional Catalytic Branching Random Walk with Regularly Varying Tails
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1033-1039The study completes a series of the author’s works devoted to the spread of particles population in supercritical catalytic branching random walk (CBRW) on a multidimensional lattice. The CBRW model describes the evolution of a system of particles combining their random movement with branching (reproduction and death) which only occurs at fixed points of the lattice. The set of such catalytic points is assumed to be finite and arbitrary. In the supercritical regime the size of population, initiated by a parent particle, increases exponentially with positive probability. The rate of the spread depends essentially on the distribution tails of the random walk jump. If the jump distribution has “light tails”, the “population front”, formed by the particles most distant from the origin, moves linearly in time and the limiting shape of the front is a convex surface. When the random walk jump has independent coordinates with a semiexponential distribution, the population spreads with a power rate in time and the limiting shape of the front is a star-shape nonconvex surface. So far, for regularly varying tails (“heavy” tails), we have considered the problem of scaled front propagation assuming independence of components of the random walk jump. Now, without this hypothesis, we examine an “isotropic” case, when the rate of decay of the jumps distribution in different directions is given by the same regularly varying function. We specify the probability that, for time going to infinity, the limiting random set formed by appropriately scaled positions of population particles belongs to a set $B$ containing the origin with its neighborhood, in $\mathbb{R}^d$. In contrast to the previous results, the random cloud of particles with normalized positions in the time limit will not concentrate on coordinate axes with probability one.
Keywords: catalytic branching random walk, spread of population. -
Нахождение особых решений многомерных дифференциальных уравнений типа Клеро в частных производных с тригонометрическими функциями
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 33-42В работе изучается класс дифференциальных уравнений типа Клеро в частных производных первого порядка, которые представляют собой многомерное обобщение обыкновенного дифференциального уравнения Клеро на случай, когда искомая функция зависит от многих переменных. Известно, что общее решение дифференциального уравнения типа Клеро в частных производных представляет собой семейство интегральных (гипер-) плоскостей. Помимо общего решения, могут существовать частные решения, а в некоторых частных случаях удается найти особое (сингулярное) решение.
Целью работы является нахождение особых решений многомерных дифференциальных уравнений типа Клеро в частных производных первого порядка со специальной правой частью. В работе сформулирован критерий существования особого решения дифференциального уравнения типа Клеро в частных производных для случая, когда функция от производных представляет собой функцию от линейной комбинации частных производных. Получены сингулярные решения для данного типа дифференциальных уравнений с тригонометрическими функциями от линейной комбинации $n$-независимых переменных с произвольными коэффициентами. Показано, что задача нахождения особого решения сводится к решению системы трансцендентных уравнений, содержащих исходные тригонометрические функции. В статье описана процедура нахождения сингулярного решения уравнения типа Клеро, основная идея которой заключается в нахождении не частных производных искомой функции, как функций независимых переменных, а линейных комбинаций частных производных с некоторыми коэффициентами. Данный метод может быть применен для нахождения особых решений уравнений типа Клеро, для которых данная структура сохраняется.
Работа организована следующим образом. Введение содержит краткий обзор некоторых современных результатов, имеющих отношение к теме исследования уравнений типа Клеро. Вторая часть является основной, в ней сформулирована задача работы и описан метод поиска сингулярных решений дифференциальных уравнениях типа Клеро в частных производных со специальной правой частью. Основным результатом работы является нахождение сингулярных решений уравнений, содержащих тригонометрические функции, приведенные в основной части работы в качестве примеров, иллюстрирующих описанный ранее метод. В заключении сформулированы результаты работы и обсуждается направление дальнейших исследований.
Ключевые слова: дифференциальные уравнения в частных производных, дифференциальные уравнения типа Клеро, сингулярные (особые) решения, тригонометрические функции.
Singular solutions of the multidimensional differential Clairaut-type equations in partial derivatives with trigonometric functions
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 33-42We study the class of first order differential equations in partial derivatives of the Clairaut-type, which are a multidimensional generalization of the ordinary differential Clairaut equation to the case when the unknown function depends on many variables. It is known that the general solution of the Clairaut-type partial differential equation is a family of integral (hyper-) planes. In addition to the general solution, there can be particular solutions, and in some cases a special (singular) solution can be found.
The aim of the paper is to find a singular solution of the Clairaut-type equation in partial derivatives of the first order with a special right-hand side. In the paper, we formulate a criterion for the existence of a special solution of a differential equation of Clairaut type in partial derivatives for the case, when the function of the derivatives is a function of a linear combination of partial derivatives of unknown function. We obtain the singular solution for this type of differential equations with trigonometric functions of a linear combination of $n$-independent variables with arbitrary coefficients. It is shown that the task of finding a special solution is reduced to solving a system of transcendental equations containing initial trigonometric functions. The article describes the procedure for evaluation of a singular solution of Clairaut-type equation; the main idea is to find not partial derivatives of the unknown function, as functions of independent variables, but linear combinations of partial derivatives with some coefficients. This method can be used to find special solutions of Clairaut-type equations, for which this structure is preserved.
The work is organized as follows. The Introduction contains a brief review of some modern results related to the topic of the study of Clairaut-type equations. The Second part is the main one and it includes a formulation of the main task of the work and describes a method of evaluation of singular solutions for the Clairaut-type equations in partial derivatives with a special right-hand side. The main result of the work is to find singular solutions of the Clairaut-type equations containing trigonometric functions. These solutions are given in the main part of the work as an illustrating example for the method described earlier. In Conclusion, we formulate the results of the work and describe future directions of the research.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"