Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'analytical-numerical method':
Найдено статей: 61
  1. Аристова Е.Н., Караваева Н.И.
    Бикомпактные схемы для HOLO-алгоритма решения уравнения переноса излучения совместно с уравнением энергии
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1429-1448

    Численное решение системы уравнений высокотемпературной радиационной газовой динамики (ВРГД) является вычислительно трудоемкой задачей, так как взаимодействие излучения с веществом нелинейно и нелокально. Коэффициенты поглощения излучения зависят от температуры, а поле температур определяется как газодинамическими процессами, так и переносом излучения. Обычно для решения системы ВРГД используется метод расщепления по физическим процессам, выделяется блок решения уравнения переноса совместно с уравнением баланса энергии вещества при известных давлениях и температурах. Построенные ранее разностные схемы, используемые для решения этого блока, обладают порядками сходимости не выше второго. Так как даже на современном уровне развития вычислительной техники имеются ограничения по памяти, то для решения сложных технических задач приходится применять не слишком подробные сетки. Это повышает требования к порядку аппроксимации разностных схем. В данной работе впервые реализованы бикомпактные схемы высокого порядка аппроксимации для алгоритма совместного решения уравнения переноса излучения и уравнения баланса энергии. Предложенный метод может быть применен для решения широкого круга практических задач, так как обладает высокой точностью и подходит для решения задач с разрывами коэффициентов. Нелинейность задачи и использование неявной схемы приводит к итерационному процессу, который может медленно сходиться. В данной работе используется мультипликативный HOLO-алгоритм — метод квазидиффузии В.Я. Гольдина. Ключевая идея HOLO-алгоритмов состоит в совместном решении уравнений высокого порядка (high order, HO) и низкого порядка (low order, LO). Уравнением высокого порядка (HO) является уравнение переноса излучения, которое решается в многогрупповом приближении, далее уравнение осредняется по угловой переменной и получается система уравнений квазидиффузии в многогрупповом приближении (LO1). Следующим этапом является осреднение по энергии, при этом получается эффективная одногрупповая система уравнений квазидиффузии (LO2), которая решается совместно с уравнением энергии. Решения, получаемые на каждом этапе HOLO-алгоритма, оказываются тесно связанными, что в итоге приводит к ускорению сходимости итерационного процесса. Для каждого из этапов HOLO-алгоритма предложены разностные схемы, построенные методом прямых в рамках одной ячейки и обладающие четвертым порядком аппроксимации по пространству и третьим порядком по времени. Схемы для уравнения переноса были разработаны Б.В. Роговым и его коллегами, схемы для уравнений LO1 и LO2 разработаны авторами. Предложен аналитический тест, на котором демонстрируются заявленные порядки сходимости. Рассматриваются различные варианты постановки граничных условий и исследовано их влияние на порядок сходимости по времени и пространству.

    Aristova E.N., Karavaeva N.I.
    Bicompact schemes for the HOLO algorithm for joint solution of the transport equation and the energy equation
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1429-1448

    The numerical solving of the system of high-temperature radiative gas dynamics (HTRGD) equations is a computationally laborious task, since the interaction of radiation with matter is nonlinear and non-local. The radiation absorption coefficients depend on temperature, and the temperature field is determined by both gas-dynamic processes and radiation transport. The method of splitting into physical processes is usually used to solve the HTRGD system, one of the blocks consists of a joint solving of the radiative transport equation and the energy balance equation of matter under known pressure and temperature fields. Usually difference schemes with orders of convergence no higher than the second are used to solve this block. Due to computer memory limitations it is necessary to use not too detailed grids to solve complex technical problems. This increases the requirements for the order of approximation of difference schemes. In this work, bicompact schemes of a high order of approximation for the algorithm for the joint solution of the radiative transport equation and the energy balance equation are implemented for the first time. The proposed method can be applied to solve a wide range of practical problems, as it has high accuracy and it is suitable for solving problems with coefficient discontinuities. The non-linearity of the problem and the use of an implicit scheme lead to an iterative process that may slowly converge. In this paper, we use a multiplicative HOLO algorithm named the quasi-diffusion method by V.Ya.Goldin. The key idea of HOLO algorithms is the joint solving of high order (HO) and low order (LO) equations. The high-order equation (HO) is the radiative transport equation solved in the energy multigroup approximation, the system of quasi-diffusion equations in the multigroup approximation (LO1) is obtained by averaging HO equations over the angular variable. The next step is averaging over energy, resulting in an effective one-group system of quasi-diffusion equations (LO2), which is solved jointly with the energy equation. The solutions obtained at each stage of the HOLO algorithm are closely related that ultimately leads to an acceleration of the convergence of the iterative process. Difference schemes constructed by the method of lines within one cell are proposed for each of the stages of the HOLO algorithm. The schemes have the fourth order of approximation in space and the third order of approximation in time. Schemes for the transport equation were developed by B.V. Rogov and his colleagues, the schemes for the LO1 and LO2 equations were developed by the authors. An analytical test is constructed to demonstrate the declared orders of convergence. Various options for setting boundary conditions are considered and their influence on the order of convergence in time and space is studied.

  2. Горр Г.В., Щетинина Е.К.
    Новая форма уравнений в моделировании движения тяжелого твердого тела
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 873-884

    В динамике тяжелого твердого тела с неподвижной точкой известны различные типы редуцированных уравнений. Поскольку уравнения Эйлера–Пуассона допускают три первых интеграла, то в первом подходе получение новых форм уравнений, как правило, основано на этих интегралах. С их помощью можно систему шести скалярных уравнений преобразовать к системе третьего порядка. Однако редуцированная система при указанном подходе будет иметь особенность в виде радикальных выражений относительно компонент вектора угловой скорости. Это обстоятельство препятствует эффективному применению численных и асимптотических методов исследования решения. Во втором подходе используют различные виды переменных задачи: углы Эйлера, переменные Гамильтона и другие. При таком подходе уравнения Эйлера–Пуассона редуцируются либо к системе дифференциальных уравнений второго порядка, либо к системе, для которой эффективны специальные методы. В статье применен метод нахождения приведенной системы, основанный на введении вспомогательной переменной. Эта переменная характеризует смешанное произведение вектора момента количества движения, вектора вертикали и единичного вектора барицентрической оси тела. Получена система четырех дифференциальных уравнений, два из которых являются линейными дифференциальными уравнениями. Данная система не имеет аналога и не содержит особенностей, что позволяет применять к ней аналитические и численные методы исследования. Указанная форма уравнений применена для анализа специального класса решений в случае, когда центр масс тела принадлежит барицентрической оси. Рассмотрен вариант, при котором сумма квадратов двух компонент вектора кинематического момента относительно небарицентрических осей постоянна. Доказано, что этот вариант имеет место только в решении В.А. Стеклова. Найденная форма уравнений Эйлера–Пуассона может быть применена к исследованию условий существования других классов решений. Определенная перспектива полученных уравнений состоит в записи всех решений, для которых центр масс лежит на барицентрической оси, в переменных данной статьи. Это позволяет провести классификацию решений уравнений Эйлера–Пуассона в зависимости от порядка инвариантных соотношений. Поскольку указанная в статье система уравнений не имеет особенностей, то она может рассматриваться при компьютерном моделировании с помощью численных методов.

    Gorr G.V., Shchetinina E.K.
    A new form of differential equations in modeling of the motion of a heavy solid
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 873-884

    The different types of the reduced equations are known in the dynamics a heavy rigid body with a fixed point. Since the Euler−Poisson’s equations admit the three first integrals, then for the first approach the obtaining new forms of equations are usually based on these integrals. The system of six scalar equations can be transformed to a third-order system with them. However, in indicated approach the reduced system will have a feature as in the form of radical expressions a relatively the components of the angular velocity vector. This fact prevents the effective the effective application of numerical and asymptotic methods of solutions research. In the second approach the different types of variables in a problem are used: Euler’s angles, Hamilton’s variables and other variables. In this approach the Euler−Poisson’s equations are reduced to either the system of second-order differential equations, or the system for which the special methods are effective. In the article the method of finding the reduced system based on the introduction of an auxiliary variable is applied. This variable characterizes the mixed product of the angular momentum vector, the vector of vertical and the unit vector barycentric axis of the body. The system of four differential equations, two of which are linear differential equations was obtained. This system has no analog and does not contain the features that allows to apply to it the analytical and numerical methods. Received form of equations is applied for the analysis of a special class of solutions in the case when the center of mass of the body belongs to the barycentric axis. The variant in which the sum of the squares of the two components of the angular momentum vector with respect to not barycentric axes is constant. It is proved that this variant exists only in the Steklov’s solution. The obtained form of Euler−Poisson’s equations can be used to the investigation of the conditions of existence of other classes of solutions. Certain perspectives obtained equations consists a record of all solutions for which the center of mass is on barycentric axis in the variables of this article. It allows to carry out a classification solutions of Euler−Poisson’s equations depending on the order of invariant relations. Since the equations system specified in the article has no singularities, it can be considered in computer modeling using numerical methods.

    Просмотров за год: 6.
  3. Сухинов А.И., Чистяков А.Е., Проценко Е.А.
    Разностная схема для решения задач гидродинамики при больших сеточных числах Пекле
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 833-848

    В работе рассматриваются развитие и применение метода учета заполненности прямоугольных ячеек материальной средой, в частности жидкостью для повышения гладкости и точности конечно-разностного решения задач гидродинамики со сложной формой граничной поверхности. Для исследования возможностей предлагаемых разностных схем рассмотрены две задачи вычислительной гидродинамики — пространственно-двумерного течения вязкой жидкости между двумя соосными полуцилиндрами и переноса веществ между соосными полуцилиндрами. Аппроксимация задач по времени выполнена на основе схем расщепления по физическим процессам. Дискретизация операторов диффузии и конвекции выполнена на основе интегроинтерполяционного метода с учетом заполненности ячеек и без ее учета. Для решения задачи диффузии – конвекции при больших сеточных числах Пекле предложено использовать разностную схему, учитывающую функцию заполненности ячеек, и схему, построенную на основе линейной комбинации разностных схем «кабаре» и «крест» с весовыми коэффициентами, полученными в результате минимизации погрешности аппроксимации при малых числах Куранта. Для оценки точности численного решения в качестве эталона используется аналитическое решение, описывающее течение Куэтта – Тейлора. В случае непосредственного использования прямоугольных сеток (ступенчатой аппроксимации границ) относительная погрешность расчетов достигает 70 %, при тех же условиях использование предлагаемого метода позволяет уменьшить погрешность до 6%. Показано, что дробление прямоугольной сетки в 2–8 раз по каждому из пространственных направлений не приводит к такому же повышению точности, которой обладают численные решения, полученные с учетом заполненности ячеек. Предложенные разностные схемы, построенные на основе линейной комбинации разностных схем «кабаре» и «крест» с весовыми коэффициентами 2/3 и 1/3 соответственно, полученные в результате минимизации порядка погрешности аппроксимации, для задачи диффузии – конвекции обладают меньшей сеточной вязкостью и, как следствие, точнее описывают поведение решения в случае больших сеточных чисел Пекле.

    Sukhinov A.I., Chistyakov A.E., Protsenko E.A.
    Difference scheme for solving problems of hydrodynamics for large grid Peclet numbers
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 833-848

    The paper discusses the development and application of the accounting rectangular cell fullness method with material substance, in particular, a liquid, to increase the smoothness and accuracy of a finite-difference solution of hydrodynamic problems with a complex shape of the boundary surface. Two problems of computational hydrodynamics are considered to study the possibilities of the proposed difference schemes: the spatial-twodimensional flow of a viscous fluid between two coaxial semi-cylinders and the transfer of substances between coaxial semi-cylinders. Discretization of diffusion and convection operators was performed on the basis of the integro-interpolation method, taking into account taking into account the fullness of cells and without it. It is proposed to use a difference scheme, for solving the problem of diffusion – convection at large grid Peclet numbers, that takes into account the cell population function, and a scheme on the basis of linear combination of the Upwind and Standard Leapfrog difference schemes with weight coefficients obtained by minimizing the approximation error at small Courant numbers. As a reference, an analytical solution describing the Couette – Taylor flow is used to estimate the accuracy of the numerical solution. The relative error of calculations reaches 70% in the case of the direct use of rectangular grids (stepwise approximation of the boundaries), under the same conditions using the proposed method allows to reduce the error to 6%. It is shown that the fragmentation of a rectangular grid by 2–8 times in each of the spatial directions does not lead to the same increase in the accuracy that numerical solutions have, obtained taking into account the fullness of the cells. The proposed difference schemes on the basis of linear combination of the Upwind and Standard Leapfrog difference schemes with weighting factors of 2/3 and 1/3, respectively, obtained by minimizing the order of approximation error, for the diffusion – convection problem have a lower grid viscosity and, as a corollary, more precisely, describe the behavior of the solution in the case of large grid Peclet numbers.

  4. Кожевников В.С., Матюшкин И.В., Черняев Н.В.
    Анализ основного уравнения физико-статистического подхода теории надежности технических систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 721-735

    Проведена верификация физико-статистического подхода теории надежности для простейших случаев, показавшая его правомочность. Представлено аналитическое решение одномерного основного уравнения физико-статистического подхода в предположении стационарной скорости деградации. С математической точки зрения это уравнение является известным уравнением непрерывности, где роль плотности вещества играет плотность функции распределения изделий в фазовом пространстве его характеристик, а роль скорости жидкости играет интенсивность (скорость) деградационных процессов. Последняя связывает общий формализм с конкретикой механизмов деградации. С помощью метода характеристик аналитически рассмотрены случаи постоянной по координате, линейной и квадратичной скоростей деградации. В первых двух случаях результаты соответствуют физической интуиции. При постоянной скорости деградации форма начального распределения сохраняется, а само оно равномерно сдвигается от центра. При линейной скорости деградации распределение либо сужается вплоть до узкого пика (в пределе сингулярного), либо расширяется, при этом максимум сдвигается на периферию с экспоненциально растущей скоростью. Форма распределения также сохраняется с точностью до параметров. Для начального нормального распределения аналитически получены координаты наибольшего значения максимума распределения при его возвратном движении.

    В квадратичном случае формальное решение демонстрирует контринтуитивное поведение. Оно заключается в том, что решение однозначно определено лишь на части бесконечной полуплоскости, обращается в нуль вместе со всеми производными на границе и неоднозначно при переходе за границу. Если продолжить его на другую область в соответствии с аналитическим решением, то оно имеет двухгорбый вид, сохраняет количество вещества и, что лишено физического смысла, периодично во времени. Если продолжить его нулем, то нарушается свойство консервативности. Аномальности квадратичного случая дается объяснение, хотя и нестрогое, через аналогию движения материальной точки с ускорением, пропорциональным квадрату скорости. Здесь мы имеем дело с математическим курьезом. Для всех случаев приведены численные расчеты. Дополнительно рассчитываются энтропия вероятностного распределения и функция надежности, а также прослеживается их корреляционная связь.

    Kozhevnikov V.S., Matyushkin I.V., Chernyaev N.V.
    Analysis of the basic equation of the physical and statistical approach within reliability theory of technical systems
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 721-735

    Verification of the physical-statistical approach within reliability theory for the simplest cases was carried out, which showed its validity. An analytical solution of the one-dimensional basic equation of the physicalstatistical approach is presented under the assumption of a stationary degradation rate. From a mathematical point of view this equation is the well-known continuity equation, where the role of density is played by the density distribution function of goods in its characteristics phase space, and the role of fluid velocity is played by intensity (rate) degradation processes. The latter connects the general formalism with the specifics of degradation mechanisms. The cases of coordinate constant, linear and quadratic degradation rates are analyzed using the characteristics method. In the first two cases, the results correspond to physical intuition. At a constant rate of degradation, the shape of the initial distribution is preserved, and the distribution itself moves equably from the zero. At a linear rate of degradation, the distribution either narrows down to a narrow peak (in the singular limit), or expands, with the maximum shifting to the periphery at an exponentially increasing rate. The distribution form is also saved up to the parameters. For the initial normal distribution, the coordinates of the largest value of the distribution maximum for its return motion are obtained analytically.

    In the quadratic case, the formal solution demonstrates counterintuitive behavior. It consists in the fact that the solution is uniquely defined only on a part of an infinite half-plane, vanishes along with all derivatives on the boundary, and is ambiguous when crossing the boundary. If you continue it to another area in accordance with the analytical solution, it has a two-humped appearance, retains the amount of substance and, which is devoid of physical meaning, periodically over time. If you continue it with zero, then the conservativeness property is violated. The anomaly of the quadratic case is explained, though not strictly, by the analogy of the motion of a material point with an acceleration proportional to the square of velocity. Here we are dealing with a mathematical curiosity. Numerical calculations are given for all cases. Additionally, the entropy of the probability distribution and the reliability function are calculated, and their correlation is traced.

  5. Плохотников К.Э.
    Об устойчивости гравитационной системы многих тел
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 487-511

    В работе под гравитационной системой понимается множество точечных тел, взаимодействующих согласно закону притяжения Ньютона и имеющих отрицательное значение полной энергии. Обсуждается вопрос об устойчивости (о неустойчивости) гравитационной системы общего положения путем прямого вычислительного эксперимента. Под гравитационной системой общего положения понимается система, у которой массы, начальные позиции и скорости тел выбираются случайными из заданных диапазонов. Для проведения вычислительного эксперимента разработан новый метод численного решения обыкновенных дифференциальных уравнений на больших интервалах времени. Предложенный метод позволил, с одной стороны, обеспечить выполнение всех законов сохранения путем подходящей коррекции решений, с другой — использовать стандартные методы численного решения систем дифференциальных уравнений невысокого порядка аппроксимации. В рамках указанного метода траектория движения гравитационной системы в фазовом пространстве собирается из частей, длительность каждой из которых может быть макроскопической. Построенная траектория, вообще говоря, является разрывной, а точки стыковки отдельных кусков траектории выступают как точки ветвления. В связи с последним обстоятельством предложенный метод отчасти можно отнести к классу методов Монте-Карло. Общий вывод проведенной серии вычислительных экспериментов показал, что гравитационные системы общего положения с числом тел 3 и более, вообще говоря, неустойчивы. В рамках предложенного метода специально рассмотрены частные случаи равенства нулю момента импульса гравитационной системы с числом тел 3 и более, а также задача движения двух тел. Отдельно рассмотрен случай численного моделирования динамики во времени Солнечной системы. С позиций вычислительного эксперимента на базе аналитических методов, а также прямых численных методов высокого порядка аппроксимации (10 и выше) устойчивость Солнечной системы ранее продемонстрирована на интервале в пять и более миллиардов лет. В силу ограничений на имеющиеся вычислительные ресурсы устойчивость динамики планет Солнечной системы в рамках использования предлагаемого метода удалось подтвердить на срок десять миллионов лет. С помощью вычислительного эксперимента рассмотрен также один из возможных сценариев распада Солнечной системы.

    Plokhotnikov K.E.
    On the stability of the gravitational system of many bodies
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 487-511

    In this paper, a gravitational system is understood as a set of point bodies that interact according to Newton's law of attraction and have a negative value of the total energy. The question of the stability (nonstability) of a gravitational system of general position is discussed by direct computational experiment. A gravitational system of general position is a system in which the masses, initial positions, and velocities of bodies are chosen randomly from given ranges. A new method for the numerical solution of ordinary differential equations at large time intervals has been developed for the computational experiment. The proposed method allowed, on the one hand, to ensure the fulfillment of all conservation laws by a suitable correction of solutions, on the other hand, to use standard methods for the numerical solution of systems of differential equations of low approximation order. Within the framework of this method, the trajectory of a gravitational system in phase space is assembled from parts, the duration of each of which can be macroscopic. The constructed trajectory, generally speaking, is discontinuous, and the points of joining of individual pieces of the trajectory act as branch points. In connection with the latter circumstance, the proposed method, in part, can be attributed to the class of Monte Carlo methods. The general conclusion of a series of computational experiments has shown that gravitational systems of general position with a number of bodies of 3 or more, generally speaking, are unstable. In the framework of the proposed method, special cases of zero-equal angular momentum of a gravitational system with a number of bodies of 3 or more, as well as the problem of motion of two bodies, are specially considered. The case of numerical modeling of the dynamics of the solar system in time is considered separately. From the standpoint of computational experiments based on analytical methods, as well as direct numerical methods of high-order approximation (10 and higher), the stability of the solar system was previously demonstrated at an interval of five billion years or more. Due to the limitations on the available computational resources, the stability of the dynamics of the planets of the solar system within the framework of the proposed method was confirmed for a period of ten million years. With the help of a computational experiment, one of the possible scenarios for the disintegration of the solar systems is also considered.

  6. Нефедова О.А., Спевак Л.Ф., Казаков А.Л., Ли М.Г.
    Применение метода нулевого поля для решения двумерного нелинейного уравнения теплопроводности
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1449-1467

    В работе рассмотрена краевая задача о движении тепловой волны для вырождающегося уравнения второго порядка параболического типа со степенной нелинейностью. Краевое условие задает уравнение движения на плоскости нулевого фронта тепловой волны, имеющего форму окружности. Предложен новый численно-аналитический алгоритм, в соответствии с которым решение строится по шагам по времени при разностной схеме дискретизации времени. На каждом шаге рассматривается краевая задача для уравнения Пуассона, к которому сводится исходное уравнение. Фактически она является обратной задачей Коши, в которой исходная граница области решения свободна от граничных условий, а на текущей границе (фронте волны) заданы два условия (Неймана и Дирихле). Решение этой задачи ищется в виде суммы частного решения уравнения Пуассона и решения соответствующего уравнения Лапласа, удовлетворяющего граничным условиям. Поскольку неоднородность зависит от искомой функции и ее производных, решение строится итерационно. Частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Обратная задача Коши для уравнения Лапласа решается методом нулевого поля применительно к круговым областям с круговыми отверстиями. Для таких задач этот метод применяется впервые. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Распараллеливание вычислений позволило эффективно реализовать алгоритм на высокопроизводительных вычислительных системах. На базе алгоритма была создана компьютерная программа. В качестве средства распараллеливания был выбран стандарт параллельного программирования OpenMP для языка программирования C++ как наиболее подходящий для вычислительных программ с параллельными циклами. Эффективность алгоритма и работоспособность программы были проверены сравнением результатов расчетов с известным точным решением, а также с численным решением, полученным авторами ранее с помощью метода граничных элементов. Проведенный вычислительный эксперимент показал хорошую сходимость итерационных процессов и более высокую точность нового алгоритма по сравнению с разработанным ранее. Анализ решений позволил определить наиболее подходящую систему радиальных базисных функций.

    Nefedova O.A., Spevak L.P., Kazakov A.L., Lee M.G.
    Solution to a two-dimensional nonlinear heat equation using null field method
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1449-1467

    The paper deals with a heat wave motion problem for a degenerate second-order nonlinear parabolic equation with power nonlinearity. The considered boundary condition specifies in a plane the motion equation of the circular zero front of the heat wave. A new numerical-analytical algorithm for solving the problem is proposed. A solution is constructed stepby- step in time using difference time discretization. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is considered. This problem is, in fact, an inverse Cauchy problem in the domain whose initial boundary is free of boundary conditions and two boundary conditions (Neumann and Dirichlet) are specified on a current boundary (heat wave). A solution of this problem is constructed as the sum of a particular solution to the nonhomogeneous Poisson equation and a solution to the corresponding Laplace equation satisfying the boundary conditions. Since the inhomogeneity depends on the desired function and its derivatives, an iterative solution procedure is used. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The inverse Cauchy problem for the Laplace equation is solved by the null field method as applied to a circular domain with a circular hole. This method is used for the first time to solve such problem. The calculation algorithm is optimized by parallelizing the computations. The parallelization of the computations allows us to realize effectively the algorithm on high performance computing servers. The algorithm is implemented as a program, which is parallelized by using the OpenMP standard for the C++ language, suitable for calculations with parallel cycles. The effectiveness of the algorithm and the robustness of the program are tested by the comparison of the calculation results with the known exact solution as well as with the numerical solution obtained earlier by the authors with the use of the boundary element method. The implemented computational experiment shows good convergence of the iteration processes and higher calculation accuracy of the proposed new algorithm than of the previously developed one. The solution analysis allows us to select the radial basis functions which are most suitable for the proposed algorithm.

  7. Самсонов К.Ю., Кабанов Д.К., Назаров В.Н., Екомасов Е.Г.
    Локализованные нелинейные волны уравнения синус-Гордона в модели с тремя протяженными примесями
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 855-868

    В работе с помощью аналитических и численных методов рассматривается задача о структуре и динамике связанных локализованных нелинейных волн в модели синус-Гордона с тремя одинаковыми притягивающими протяженными примесями, которые моделируются пространственной неоднородностью периодического потенциала. Найдены два возможных типа связанных нелинейных локализованных волн — бризерного и солитонного. Проведен анализ влияния параметров системы и начальных условий на структуру локализованных волн, их амплитуду и частоту. Связанные колебания локализованных волн бризерного типа, как и для случая точечных примесей, представляет собой сумму трех гармонических колебаний: синфазного, синфазно-антифазного и антифазного типа. Частотный анализ локализованных на примесях волн, которые были получены в ходе численного эксперимента, выполнялся с помощью дискретного преобразования Фурье. Для анализа локализованных волн бризерного типа применялся численный метод конечных разностей. Для проведения качественно анализа полученных численных результатов задача решалась аналитически для случая малых амплитуд локализованных на примесях колебаний. Показано, что при определенных параметрах примеси (глубина, ширина) можно получить локализованные волны солитонного типа. Найдены области значений параметров системы, в которых существуют локализованные волны определенного типа, а также область перехода от бризерных к солитонным типам колебаний. Были определены значения глубины и ширины примеси, при которых наблюдается переход от бризерного к солитонному типу локализованных колебаний. Были получены и рассмотрены различные сценарии колебаний солитонного типа с отрицательными и положительными значениями амплитуд на всех трех примесях, а также и смешанные случаи. Показано, что в случае расстояния между примесями много меньше единицы отсутствует переходная область, в которой зарождающийся бризер после потери энергии на излучение переходит в солитон. Показано, что рассмотренная модель может быть использована, например, для описания динамики волн намагниченности в мультислойных магнетиках.

    Samsonov K.Y., Kabanov D.K., Nazarov V.N., Ekomasov E.G.
    Localized nonlinear waves of the sine-Gordon equation in a model with three extended impurities
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 855-868

    In this work, we use analytical and numerical methods to consider the problem of the structure and dynamics of coupled localized nonlinear waves in the sine-Gordon model with three identical attractive extended “impurities”, which are modeled by spatial inhomogeneity of the periodic potential. Two possible types of coupled nonlinear localized waves are found: breather and soliton. The influence of system parameters and initial conditions on the structure, amplitude, and frequency of localized waves was analyzed. Associated oscillations of localized waves of the breather type as in the case of point impurities, are the sum of three harmonic oscillations: in-phase, in-phase-antiphase and antiphase type. Frequency analysis of impurity-localized waves that were obtained during a numerical experiment was performed using discrete Fourier transform. To analyze localized breather-type waves, the numerical finite difference method was used. To carry out a qualitative analysis of the obtained numerical results, the problem was solved analytically for the case of small amplitudes of oscillations localized on impurities. It is shown that, for certain impurity parameters (depth and width), it is possible to obtain localized solitontype waves. The ranges of values of the system parameters in which localized waves of a certain type exist, as well as the region of transition from breather to soliton types of oscillations, have been found. The values of the depth and width of the impurity at which a transition from the breather to the soliton type of localized oscillations is observed were determined. Various scenarios of soliton-type oscillations with negative and positive amplitude values for all three impurities, as well as mixed cases, were obtained and considered. It is shown that in the case when the distance between impurities much less than one, there is no transition region where which the nascent breather, after losing energy through radiation, transforms into a soliton. It is shown that the considered model can be used, for example, to describe the dynamics of magnetization waves in multilayer magnets.

  8. Забелло К.К., Гарбарук А.В.
    Исследование точности метода решеточных уравнений Больцмана при расчете распространения акустических волн
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1069-1081

    В статье проводится систематическое исследование возможностей метода решеточных уравнений Больцмана (lattice Boltzmann method, LBM или РУБ) для описания распространения акустических волн. Рассмотрена задача о распространении возмущений от точечного гармонического источника акустических возмущений в неограниченном пространстве как в неподвижной среде (число Маха $M=0$), так и при наличии набегающего потока (число Маха $M=0{,}2$). Обе рассмотренные задачи имеют аналитическое решение в приближении линейной акустики, что позволяет количественно оценить точность численного метода.

    Численная реализация осуществлена с использованием двумерной модели скоростей D2Q9 и оператора столкновений Бхатнагара – Гросса – Крука (BGK). Источник колебаний задавался согласно схеме Gou, а возникающий от источника паразитный шум в моментах старших порядков убирался за счет использования процедуры регуляризации функций распределения. Для минимизации отражений от границ расчетной области использовался гибридный подход, основанный на совместном использовании характеристических граничных условий на основе инвариантов Римана и поглощающих PML-слоев (perfectly matched layer) с параболическим профилем затухания.

    В ходе работы проведен детальный анализ влияния вычислительных параметров метода на точность расчета. Исследована зависимость погрешности от толщины PML-слоя ($L_{\text{PML}}^{}$) и максимального коэффициента демпфирования ($\sigma_{\max}^{}$), безразмерной амплитуды источника ($Q'_0$) и шага расчетной сетки. Показано, что метод РУБ применим для моделирования распространения акустических волн и обладает вторым порядком точности. Установлено, что для достижения высокой точности расчета (относительная погрешность давления — не более $1\,\%$) достаточно пространственного разрешения в $20$ точек на длину волны ($\lambda$). Определены минимальные эффективные параметры PML-слоя: $\sigma_{\max}^{}\geqslant 0{,}02$ и $L_{\text{PML}}^{} \geqslant 2\lambda$, обеспечивающие отсутствие отражения от границ расчетной области. Также продемонстрировано, что при амплитудах источника $Q_0' \geqslant 0{,}1$ влияние нелинейных эффектов становится существенным по сравнению с другими источниками погрешности.

    Zabello K.K., Garbaruk A.V.
    Investigation of the accuracy of the lattice Boltzmann method in calculating acoustic wave propagation
    Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1069-1081

    The article presents a systematic investigation of the capabilities of the lattice Boltzmann method (LBM) for modeling the propagation of acoustic waves. The study considers the problem of wave propagation from a point harmonic source in an unbounded domain, both in a quiescent medium (Mach number $M=0$) and in the presence of a uniform mean flow ($M=0.2$). Both scenarios admit analytical solutions within the framework of linear acoustics, allowing for a quantitative assessment of the accuracy of the numerical method.

    The numerical implementation employs the two-dimensional D2Q9 velocity model and the Bhatnagar – Gross – Krook (BGK) collision operator. The oscillatory source is modeled using Gou’s scheme, while spurious high-order moment noise generated by the source is suppressed via a regularization procedure applied to the distribution functions. To minimize wave reflections from the boundaries of the computational domain, a hybrid approach is used, combining characteristic boundary conditions based on Riemann invariants with perfectly matched layers (PML) featuring a parabolic damping profile.

    A detailed analysis is conducted to assess the influence of computational parameters on the accuracy of the method. The dependence of the error on the PML thickness ($L_{\text{PML}}^{}$) and the maximum damping coefficient ($\sigma_{\max}^{}$), the dimensionless source amplitude ($Q'_0$), and the grid resolution is thoroughly examined. The results demonstrate that the LBM is suitable for simulating acoustic wave propagation and exhibits second-order accuracy. It is shown that achieving high accuracy (relative pressure error below $1\,\%$) requires a spatial resolution of at least $20$ grid points per wavelength ($\lambda$). The minimal effective PML parameters ensuring negligible boundary reflections are identified as $\sigma_{\max}^{}\geqslant 0.02$ and $L_{\text{PML}}^{} \geqslant 2\lambda$. Additionally, it is shown that for source amplitudes $Q_0' \geqslant 0.1$, nonlinear effects become significant compared to other sources of error.

  9. Фирсов А.А., Исаенков Ю.И., Крупский М.Г., Рудаков В.Ю., Филимонова Е.А., Яранцев Д.А., Леонов С.Б.
    Неравновесная инициация объемного горения в двигателе внутреннего сгорания: моделирование и постановка эксперимента
    Компьютерные исследования и моделирование, 2014, т. 6, № 6, с. 911-922

    В данной работе представлены результаты экспериментального и расчетно-теоретического изучения влияния неравновесного химического возбуждения топливно-воздушной смеси на характеристики дизельного индикаторного процесса. Способом возбуждения является генерация высоковольтного стримерного разряда высокого давления непосредственно в камере сгорания на фазе сжатия топливно-воздушной смеси. Дано описание работы электро-разрядной системы, приведены результаты измерений и визуализации. Рассмотрена плазмо-химическая кинетика неравновесного воспламенения, и обсуждаются возможности построения редуцированной схемы описания химических процессов. Представлены результаты компьютерного моделирования газодинамических процессов, развивающихся на фоне горения, стимулированного электрическим разрядом в геометрической конфигурации, близкой к экспериментальной постановке.

     

    Firsov A.A., Isaenkov Yu.I., Krupskiy M.G., Rudakov V.Yu., Filimonova E.A., Yarantsev D.A., Leonov S.B.
    Nonequilibrium initiation of volumetric combustion in a combustion engine: modeling and experimental setup
    Computer Research and Modeling, 2014, v. 6, no. 6, pp. 911-922

    The paper presents results of experimental, computational and analytical study of the effect of nonequilibrium chemical activation of air-fuel mixture on effectiveness of Diesel process. The generation of a high-voltage multi-streamer discharge in combustion chamber at the compression phase is considered as the method of the activation. The description of electrical discharge system, results of measurement and visualization are presented. The plasma-chemical kinetics of nonequilibrium ignition is analyzed to establish a passway for a proper reduction of chemical kinetics scheme. The results of numerical simulation of gas dynamic processes at presence of plasma-assisted combustion in a geometrical configuration close to the experimental one are described.

    Просмотров за год: 3. Цитирований: 4 (РИНЦ).
  10. Канунникова Е.А.
    Об аналитико-численном методе моделирования процессов теплопередачи в $p$-мерных областях сложной геометрии
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 865-873

    На основе аналитико-численного метода проводится численное моделирование $p$-мерных процессов теплопередачи в областяхсло жной геометрии, для которых применение традиционных методов затруднено. С помощью предлагаемого метода модель преобразуется к виду, удобному для численного исследования с применением традиционныхмет одов численного анализа. Приводятся результаты численныхэк спериментов, иллюстрирующие эффективность предлагаемого метода. Проводится сравнительный анализ полученныхре зультатов, вычислительных результатов другихав торов и аналитических зависимостей ряда методов, позволяющих найти точное решение для некоторых классов задач.

    Kanunnikova E.A.
    On an analytic-numerical method to simulate heat transfer process on $p$-dimensional complex geometry domains
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 865-873

    The article presents an analytical-numerical method to simulate $p$-dimentional heat transfer processes on complex geometry domains when conventional methods are not applicable. The model is converted by the proposed method so that conventional numerical analysis methods is applied to the numerical research. The results of numerical experiments are given to demonstrate the effectiveness of the proposed method. The obtained results, other authors’ numerical results and exact analytical solutions, known for a class of problems, is compared.

    Просмотров за год: 1.
Страницы: предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.