Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'эволюция':
Найдено статей: 75
  1. Евин И.А., Комаров В.В., Попова М.С., Марченко Д.К., Самсонова А.Ю.
    Дорожные сети городов
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 775-786

    Улично-дорожная сеть является основой инфраструктуры любой урбанистической территории. В данной статье сравниваются структурные характеристики (коэффициент сетчатости, коэффициент кластеризации) дорожных сетей центра Москвы (старая Москва), сформированных в результате самоорганизации, и сети дорог вблизи Ленинского проспекта (послевоенная Москва), которая формировалась в процессе централизованного планирования. Данные для построения дорожных сетей в виде первичных графов взяты из интернет-ресурса OpenStreetMap, позволяющего точно идентифицировать координаты перекрестков. По вычисленным характеристикам в зарубежных публикациях найдены города, дорожные сети которых имеют сходные с этими двумя районами Москвы структуры. С учетом двойственного представления дорожных сетей центров Москвы и Петербурга, изучались информационно-когнитивные свойства навигации по этим туристическим районам двух столиц. При построении двойственного графа исследуемых районов не принимались во внимание различия в типах дорог (одностороннее или двусторонне движение и т. п.). То есть построенные двойственные графы являются неориентированным. Поскольку дорожные сети в двойственном представлении описываются степенным законом распределения вершин по числу ребер (являются безмасштабными сетями), вычислены показатели степеней этих распределений. Показано, что информационная сложность двойственного графа центра Москвы превышает когнитивный порог в 8.1 бит, а этот же показатель для центра Петербурга ниже этого порога. Это объясняется тем, что дорожная сеть центра Петербурга создавалась на основе планирования и потому более проста для навигации. В заключение, с использованием методов статистической механики (метод расчета статистических сумм) для дорожных сетей некоторых российских городов, вычислялась энтропия Гиббса. Обнаружено, что с ростом размеров дорожных сетей их энтропия уменьшается. Обсуждаются задачи изучения эволюции сетей городской инфраструктуры различной природы (сети общественного транспорта, снабжения, коммуникации и т. д.), что позволит более глубоко исследовать и понять фундаментальные закономерности процесса урбанизации.

    Просмотров за год: 3.
  2. Андрущенко В.А., Моисеева Д.С., Моторин А.А., Ступицкий Е.Л.
    Моделирование физических процессов воздействия мощного ядерного взрыва на астероид
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 861-877

    В рамках проблемы предотвращения астероидно-кометной угрозы выполнен физический и теоретический анализ процессов воздействия различных факторов надповерхностного ядерного взрыва достаточно высокой энергии на астероид во внеатмосферных условиях космического пространства. Показано, что в соответствии с энергией и проницаемой способностью плазмы продуктов взрыва, рентгеновского и гамма-нейтронного излучения на поверхности астероида, обращенной к взрыву, образуется слоистая структура с разной плотностью энергии, зависящей от угловых координат. Для каждого слоя выяснен временной характер трансформации энергии внутри него и определены роли различных фото- и столкновительных процессов. Воздействие высокоскоростного потока плазмы носит эрозионный характер, при этом импульс плазмы передается астероиду. Показано, что в тонком слое поглощения рентгеновского излучения вещество астероида разогревается до высоких температур, и в результате его расширения формируется импульс отдачи, который не является определяющим из-за малой массы расширяющейся высокотемпературной плазмы. Расчеты показали, что основной импульс, полученный астероидом, связан с уносом разогретого слоя вещества, образованного нейтронным потоком (7.5 · 1014 г · см/с). Показано, что астероид с радиусом ~100 м приобретает при этом скорость ≈ 100 см/с. Расчеты выполнены с учетом затрат энергии взрыва на разрушение аморфной структуры вещества астероида (~1 эВ/атом = 3.8 · 1010 эрг/г) и на ионизацию в области высокотемпературного слоя. На основе аналогичного анализа получено приближенное выражение для оценки среднего размера осколков при возможном разрушении астероида ударными волнами, образующимися внутри него под действием импульсов давления. Выполнен физический эксперимент в лабораторных условиях, имитирующий фрагментацию каменного астероида и подтвердивший справедливость полученной зависимости от выбранных значений определенных параметров. В результате численных исследований воздействия взрыва, произведенных на различном расстоянии от поверхности астероида, показано, что учет реальной геометрии отколочного слоя дает оптимальную высоту для формирования максимального импульса астероида примерно в 1.5 раза большую, чем аналогичные оценки по упрощенной модели. Предложена двухэтапная концепция воздействия ядерных взрывов на астероид с использованием радиолокационных средств наведения. Проанализировано возможное влияние возникающих ионизационных помех на радиолокационное слежение за разлетом крупных осколков астероида в условиях пространственно-временной эволюции всех элементов исследуемой динамической системы.

  3. Быков Н.В.
    Моделирование кластерного движения беспилотных транспортных средств в гетерогенном транспортном потоке
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1041-1058

    Одной из особенностей беспилотных автомобильных транспортных средств является их способность к организованному движению в форме кластеров: последовательности движущихся с единой скоростью транспортных средств. Влияние образования и движения этих кластеров на динамику транспортных потоков представляет большой интерес. В настоящей работе предложена качественная имитационная модель кластерного движения беспилотных транспортных средств в гетерогенной транспортной системе, состоящей из двух типов агентов (транспортных средств): управляемых человеком и беспилотных. В основу описания временной эволюции системы положены правила 184 и 240 для элементарных клеточных автоматов. Управляемые человеком транспортные средства перемещаются по правилу 184 с добавлением случайного торможения, вероятность которого зависит от расстояния до находящегося впереди транспортного средства. Для беспилотных транспортных средств используется комбинация правил, в том числе в зависимости от типа ближайших соседей, в некоторых случаях независимо от расстояния до них, что привносит в модель нелокальное взаимодействие. При этом учтено, что группа последовательно движущихся беспилотных транспортных средств может сформировать организованный кластер. Исследовано влияние соотношения типов транспортных средств в системе на характеристики транспортного потока при свободномд вижении на круговой однополосной и двухполосной дорогах, а также при наличии светофора. Результаты моделирования показали, что эффект образования кластеров имеет существенное влияние при свободномдвиж ении, а наличие светофора снижает положительный эффект приблизительно вдвое. Также исследовано движение кластеров из беспилотных автомобилей на двухполосных дорогах с возможностью перестроения. Показано, что учет при перестроении беспилотными транспортными средствами типов соседних транспортных средств (беспилотное или управляемое человеком) положительно влияет на характеристики транспортного потока.

  4. Конюхов А.В., Ростилов Т.А.
    Численное моделирование сходящихся сферических ударных волн с нарушенной симметрией
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 59-71

    На основе гидродинамического 3D-моделирования с использованием уравнения состояния газа твердых сфер Карнахана – Старлинга выполнено исследование развития периодических возмущений сходящейся сферической ударной волны, приводящих к ограничению кумуляции. Метод решения системы уравнений Эйлера на подвижных (сжимающихся) сетках позволяет с высокой точностью проследить эволюцию фронта сходящейся ударной волны в широком диапазоне изменения ее радиуса. Скорость сжатия расчетной сетки адаптируется к движению фронта ударной волны, при этом движение границ расчетной области выбирается из условия сверхзвуковой скорости ее движения относительно среды. Это приводит к тому, что решение на этапе сжатия определяется только начальными данными. Применена схема TVD второго порядка аппроксимации для реконструкции вектора консервативных переменных на границах расчетных ячеек в сочетании со схемой Русанова для расчета численного вектора потоков. Выбор обусловлен сильной тенденцией к проявлению в расчетах численной неустойчивости типа «карбункул», известной для других классов течений. Использование сжимающихся сеток позволило исследовать детальную картину течения на масштабе прекращения кумуляции, что невозможно в рамках метода геометрической динамики ударных волн Уизема (Whitham), применявшегося ранее другими авторами для расчета сходящихся ударных волн. Исследование показало, что ограничение кумуляции связанно с переходом от маховского взаимодействия сегментов сходящейся ударной волны к регулярному вследствие прогрессирующего роста отношения азимутальной скорости на фронте ударной волны к радиальной при уменьшении ее радиуса. Установлено, что это отношение представляется в виде произведения ограниченной осциллирующей функции радиуса и степенной функции радиуса с показателем степени, зависящим от начальной плотности упаковки в модели твердых сфер. Показано, что увеличение параметра плотности упаковки в модели твердых сфер приводит к значительному увеличению давлений, достигаемых в ударной волне с нарушенной симметрией. Впервые в расчете показано, что на масштабе прекращения кумуляции течение сопровождается формированием высокоэнергетичных вихрей, в которые вовлечено вещество, подвергшееся наибольшему ударно-волновому сжатию. Оказывая влияние на процессы тепло- и массопереноса в области наибольшего сжатия, это обстоятельство является важным для актуальных практических применений сходящихся ударных волн в целях инициирования реакций (детонации, фазовых переходов, управляемого термоядерного синтеза).

  5. Никонов Э.Г., Павлуш М., Поповичова М.
    Двумерное макроскопическое и микроскопическое моделирование процессов взаимодействия воды и пористых материалов
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 77-86

    В различных областях науки, техники, защиты окружающей среды, в строительстве актуальными являются вопросы изучения процессов взаимодействия пористых материалов с веществами, находящимися в различных агрегатных состояниях. Особенно актуальными с точки зрения экологии и защиты окружающей среды являются исследования процессов взаимодействия пористых материалов с водой в жидкой и газообразной фазе. Поскольку в одном моле воды содержится 6.022140857 · 1023 молекул H2O, для описания свойств, например, водяного пара в поре в основном используются макроскопические подходы, рассматривающие водяной пар как сплошную среду в рамках аэродинамики. В данной работе построена и использовалась для моделирования макроскопическая двумерная диффузионная модель [Bitsadze, Kalinichenko, 1980] поведения водяного пара внутри изолированной поры. Наряду с макроскопической моделью в работе предложена микроскопическая модель поведения водяного пара внутри изолированной поры, построенная в рамках молекулярно-динамического подхода [Gould et al., 2005]. В данной модели на основе классической механики Ньютона описывается движение каждой молекулы воды, взаимодействующей как с другими молекулами воды, так и со стенками поры. Рассматривается эволюция системы «водяной пар – пора» с течением времени. В зависимости от внешних по отношению к поре условий система эволюционирует к различным состояниям равновесия, которые характеризуются различными значениями макроскопических характеристик, таких как температура, плотность, давление. Сравнение результатов молекулярно-динамического моделирования с результатами вычислений на основе макроскопической диффузионной модели и экспериментальными данными позволяет сделать вывод о необходимости сочетания макроскопического и микроскопического подхода для адекватного и более точного описания процессов взаимодействия водяного пара с пористыми материалами.

    Просмотров за год: 10.
  6. Бураго Н.Г., Никитин И.С.
    Алгоритмы сквозного счета для процессов разрушения
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 645-666

    В работе проведен краткий обзор имеющихся подходов к расчету разрушения твердых тел. Основное внимание уделено алгоритмам, использующим единый подход к расчету деформирования и для неразрушенного, и для разрушенного состояний материала. Представлен термодинамический вывод единых реологических соотношений, учитывающих упругие, вязкие и пластические свойства материалов и описывающих потерю способности сопротивления деформации по мере накопления микроповреждений. Показано, что рассматриваемая математическая модель обеспечивает непрерывную зависимость решения от входных параметров (параметров материальной среды, начальных и граничных условий, параметров дискретизации) при разупрочнении материала.

    Представлены явные и неявные безматричные алгоритмы расчета эволюции деформирования. Неявные схемы реализованы с использованием итераций метода сопряженных градиентов, при этом расчет каждой итерации в точности совпадает с расчетом шага по времени для двухслойных явных схем. Так что алгоритмы решения являются очень простыми.

    Приведены результаты решения типовых задач разрушения твердых деформируемых тел для медленных (квазистатических) и быстрых (динамических) процессов деформации. На основании опыта рас- четов даны рекомендации по моделированию процессов разрушения и обеспечению достоверности численных решений.

    Просмотров за год: 24.
  7. Долуденко А.Н., Куликов Ю.М., Савельев А.С.
    Хаотизация течения под действием объемной силы
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 883-912

    В предлагаемой статье приводятся результаты аналитического и компьютерного исследования хаотической эволюции регулярного поля скорости, возникающего под действием крупномасштабной гармонической вынуждающей силы. Авторами получено аналитическое решение для функции тока течения и ее производных величин (скорости, завихренности, кинетической энергии, энстрофии и палинстрофии). Проведено численное моделирование эволюции течения с помощью пакета программ OpenFOAM (на основе модели несжимаемой среды), а также двух собственных реализаций, использующих приближение слабой сжимаемости (схемы КАБАРЕ и схемы МакКормака). Расчеты проводились на последовательности вложенных сеток с 642, 1282, 2562, 5122, 10242 ячейками для двух характерных (асимптотических) чисел Рейнольдса Rea, характеризующих ламинарную и турбулентную эволюцию течения соответственно. Моделирование показало, что разрушение аналитического решения происходит в обоих случаях. Энергетические характеристики течения обсуждаются на основе кривых энергии, а также скоростей диссипации. Для самой подробной сетки эта величина оказывается на несколько порядков меньше своего гидродинамического (вязкого) аналога. Разрушение регулярной структуры течения наблюдается для любого из численных методов, в том числе на поздних стадиях ламинарной эволюции, когда полученные распределения близки к аналитическим значениям. Можно предположить, что предпосылкой к развитию неустойчивости выступает ошибка, накапливаемая в процессе счета. Эта ошибка приводит к неравномерностям в распределении завихренности и, как следствие, к появлению вихрей различной интенсивности, взаимодействие которых приводит к хаотизации течения. Для исследования процессов производства завихренности мы использовали две интегральные величины, определяемые на ее основе, — интегральные энстрофию ($\zeta$) и палинстрофию $(P)$. Постановка задачи с периодическими граничными условиями позволяет установить простую связь между этими величинами. Кроме того, $\zeta$ может выступать в качестве меры вихреразрешающей способности численного метода, а палинстрофия определяет степень производства мелкомасштабной завихренности.

  8. Черепанов В.В.
    Моделирование теплового поля неподвижных симметричных тел в разреженной низкотемпературной плазме
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 73-91

    В работе исследуется процесс самосогласованной релаксации области возмущений, созданных в разреженной бинарной низкотемпературной плазме неподвижным заряженным шаром или цилиндром с абсорбирующей поверхностью. Особенностью подобных задач является их самосогласованный кинетический характер, при котором нельзя отделить процессы переноса в фазовом пространстве и формирования электромагнитного поля. Представлена математическая модель, позволяющая описывать и анализировать состояние газа, электрическое и тепловое поле в окрестности тела. Многомерность кинетической формулировки создает определенные проблемы при численном решении, поэтому для задачи подобрана криволинейная система неголономных координат, которая минимизирует ее фазовое пространство, что способствует повышению эффективности численных методов. Для таких координат обоснована и проанализирована форма кинетического уравнения Власова. Для его решения использован вариант метода крупных частиц с постоянным форм-фактором. В расчетах применялась подвижная сетка, отслеживающая смещение в фазовом пространстве носителя функции распределения, что дополнительно уменьшило объем контролируемой области фазового пространства. Раскрыты ключевые детали модели и численного метода. Модель и метод реализованы в виде кода на языке Matlab. На примере решения задачи для шара показано наличие в возмущенной зоне существенного неравновесия и анизотропии в распределении частиц по скорости. По результатам расчетов представлены картины эволюции структуры функции распределения частиц, профилей основных макроскопических характеристик газа — концентрации, тока, температуры и теплового потока, характеристик электрического поля в возмущенной области. Установлен механизм разогрева притягивающихся частиц в возмущенной зоне и показаны некоторые важные особенности процесса формирования теплового потока. Получены результаты, хорошо объяснимые с физической точки зрения, что подтверждает адекватность модели и корректность работы программного инструмента. Отмечаются создание и апробация основы для разработки в перспективе инструментов решения и более сложных задач моделирования поведения ионизированных газов вблизи заряженных тел.

    Работа будет полезной специалистам в области математического моделирования, процессов тепло- и массообмена, физики низкотемпературной плазмы, аспирантам и студентам старших курсов, специализирующимся в указанных направлениях.

  9. Апонин Ю.М., Апонина Е.А.
    Принцип инвариантности Ла-Салля и математические модели эволюции микробных популяций
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 177-190

    Построена математическая модель эволюции микробных популяций при длительном непрерывном культивировании на протоке. Модель представляет собой обобщение целого ряда известных математических моделей эволюции, в которых учитываются такие факторы генетической изменчивости как хромосомные мутации, мутации плазмидных генов, перенос плазмид между клетками микроорганизмов, потери плазмид при делении клеток и др. Для общей модели эволюции построена функция Ляпунова и на основании теоремы Ла-Салля доказано существование в пространстве состояний математической модели ограниченного, положительно инвариантного и глобально притягивающего множества. Дано аналитическое описание этого множества. Обсуждаются перспективы применения численных методов для оценки числа, местоположения и последующего исследования предельных множеств в математических моделях эволюции на протоке.

    Просмотров за год: 8. Цитирований: 3 (РИНЦ).
  10. Фурсов Е.В., Косилов А.Т., Прядильщиков А.Ю.
    Влияние поверхности на особенности аморфизации системы Ni-Ag
    Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 263-269

    В рамках метода молекулярной динамики, с использованием многочастичного потенциаламежатомного взаимодействия, на модели свободной частицы Ni60Ag40 диаметром 40 Å, исследована структурная эволюция в процессе закалки. Проведен сравнительный анализ структурных перестроек для моделей частицы и массивного образца. Отмечено снижение температуры начала и конца превращений для частицы. Показано, что в образовании перколяционного кластера из взаимопроникающих и контактирующих между собой икосаэдров, для модели свободной частицы, задействовано на 10 % атомов больше, чем для модели массивного тела.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.