Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'численный метод':
Найдено статей: 365
  1. Шушко Н.И., Барашов Е.Б., Красоткин С.А., Лемтюжникова Д.В.
    Новый алгоритм объединения решений подзадач в задаче коммивояжера
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 45-58

    Традиционные методы решения задачи коммивояжера не являются эффективными для задач высокой размерности из-за их высокой вычислительной сложности. Одним из эффективных способов решения этой проблемы является декомпозиционный подход, который включает в себя три основных этапа: кластеризацию вершин, решение подзадач внутри каждого кластера и последующее объединение полученных решений в итоговое. В данной статье основное внимание уделяется третьему этапу — объединению циклов решений подзадач, поскольку этому этапу не всегда уделяется должное внимание, что приводит к менее точному итоговому решению. В статье предлагается новый модифицированный алгоритм Сигала для объединения циклов. Для оценки его эффективности проводится сравнение с двумя алгоритмами объединения циклов: метод соединения средних точек ребер и алгоритм на основе близости центроидов кластеров. Исследуется зависимость качества решения подзадач на алгоритмы объединения циклов. Модифицированный алгоритм Сигала выполняет попарное объединение кластеров, минимизируя количество пересечений и общее расстояние. Метод центроидов ориентирован на соединение кластеров на основе близости центроидов, а алгоритм с использованием средних точек оценивает расстояние между средними точками ребер. Также были рассмотрены два типа кластеризации: алгоритмы k-means и affinity propagation. Для проверки эффективности предложенного алгоритма были проведены численные эксперименты на наборе данных TSPLIB с различным количеством городов. В исследовании анализируются ошибки, вызванные порядком объединения кластеров, качеством решения подзадач и количеством кластеров. Эксперименты показали, что модифицированный алгоритм Сигала демонстрирует наименьшую медиану итогового расстояния и наиболее устойчивые результаты по сравнению с другими методами. Результаты указывают на большую устойчивость качества конечного решения, полученным модифицированным алгоритмом Сигала, от последовательности объединения кластеров. Повышение качества решения подзадачи обычно приводит к линейному улучшению конечного решения, но используемый алгоритм объединения редко влияет на степень этого улучшения.

  2. Забелло К.К., Гарбарук А.В.
    Исследование точности метода решеточных уравнений Больцмана при расчете распространения акустических волн
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1069-1081

    В статье проводится систематическое исследование возможностей метода решеточных уравнений Больцмана (lattice Boltzmann method, LBM или РУБ) для описания распространения акустических волн. Рассмотрена задача о распространении возмущений от точечного гармонического источника акустических возмущений в неограниченном пространстве как в неподвижной среде (число Маха $M=0$), так и при наличии набегающего потока (число Маха $M=0{,}2$). Обе рассмотренные задачи имеют аналитическое решение в приближении линейной акустики, что позволяет количественно оценить точность численного метода.

    Численная реализация осуществлена с использованием двумерной модели скоростей D2Q9 и оператора столкновений Бхатнагара – Гросса – Крука (BGK). Источник колебаний задавался согласно схеме Gou, а возникающий от источника паразитный шум в моментах старших порядков убирался за счет использования процедуры регуляризации функций распределения. Для минимизации отражений от границ расчетной области использовался гибридный подход, основанный на совместном использовании характеристических граничных условий на основе инвариантов Римана и поглощающих PML-слоев (perfectly matched layer) с параболическим профилем затухания.

    В ходе работы проведен детальный анализ влияния вычислительных параметров метода на точность расчета. Исследована зависимость погрешности от толщины PML-слоя ($L_{\text{PML}}^{}$) и максимального коэффициента демпфирования ($\sigma_{\max}^{}$), безразмерной амплитуды источника ($Q'_0$) и шага расчетной сетки. Показано, что метод РУБ применим для моделирования распространения акустических волн и обладает вторым порядком точности. Установлено, что для достижения высокой точности расчета (относительная погрешность давления — не более $1\,\%$) достаточно пространственного разрешения в $20$ точек на длину волны ($\lambda$). Определены минимальные эффективные параметры PML-слоя: $\sigma_{\max}^{}\geqslant 0{,}02$ и $L_{\text{PML}}^{} \geqslant 2\lambda$, обеспечивающие отсутствие отражения от границ расчетной области. Также продемонстрировано, что при амплитудах источника $Q_0' \geqslant 0{,}1$ влияние нелинейных эффектов становится существенным по сравнению с другими источниками погрешности.

  3. Борисов А.В., Трифонов А.Ю., Шаповалов А.В.
    Влияние конвекции на двумерную динамику в нелокальной реакционно-диффузионной модели
    Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 55-61

    Численными методами исследовано формирование пространственных структур, описываемых скалярным уравнением Фишера–Колмогорова–Петровского–Пискунова с нелокальными конкурентными потерями и конвекцией, линейно зависящей от пространственных переменных. Показано, что при соответствующем выборе значений параметров уравнения, начальная функция, локализованная в окрестности точки, трансформируется в функцию, локализованную в окрестности кольца с симметрично расположенными на нем локальными максимумами. Радиус кольца и число максимумов зависят от конвекции.

    Просмотров за год: 3. Цитирований: 1 (РИНЦ).
  4. Дунюшкин Д.Ю.
    Метод формирования тестовых сигналов для корреляционной идентификации нелинейных систем
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 721-733

    Разработан и протестирован новый метод формирования тестовых сигналов для корреляционной идентификации нелинейных динамических систем методом Ли–Шетцена. Для коррекции моментных функций тестовых сигналов применен численный алгоритм оптимизации Гаусса–Ньютона. В экспериментах получены тестовые воздействия длиной до 40 000 точек, позволяющие определять ядра Винера 2-го порядка с линейным разрешением до 32 точек, ядра Винера 3-го порядка с линейным разрешением до 12 точек, ядра Винера 4-го порядка с линейным разрешением до 8 точек.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  5. Кривовичев Г.В.
    О расчете течений вязкой жидкости методом решеточных уравнений Больцмана
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 165-178

    Предложен модифицированный метод решеточных уравнений Больцмана для расчета течений вязкой ньютоновской жидкости. Модифицированный метод основан на использовании расщепления дифференциального оператора в уравнении Навье–Стокса и идее мгновенной максвеллизации функции распределения. При переходе от одного временного слоя к другому последовательно численно решаются задачи для системы решеточных кинетических уравнений и системы линейных уравнений диффузии. Эффективность предложенного метода по сравнению с обычным методом решеточных уравнений Больцмана показана при решении задачи о плоском течении в каверне в случае различных значений числа Рейнольдса и при различных разбиениях сетки.

    Цитирований: 8 (РИНЦ).
  6. Екомасов Е.Г., Гумеров А.М.
    Коллективное влияние примесей на динамику кинков уравнения синус-Гордона
    Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 403-412

    С помощью численных методов исследована динамика кинков модифицированного уравнения синус-Гордона в модели с локализованной пространственной модуляцией периодического потенциала (или примесью). Рассмотрен случай наличия двух одинаковых примесей. Показано, что возможно наблюдение коллективных эффектов влияния примесей, которые сильно зависят от расстояния между ними. Продемонстрировано наличие определенного критического значения расстояния между примесями, которое приводит к двум качественно различным сценариям динамического поведения кинка.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  7. Канунникова Е.А.
    Об аналитико-численном методе моделирования процессов теплопередачи в $p$-мерных областях сложной геометрии
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 865-873

    На основе аналитико-численного метода проводится численное моделирование $p$-мерных процессов теплопередачи в областяхсло жной геометрии, для которых применение традиционных методов затруднено. С помощью предлагаемого метода модель преобразуется к виду, удобному для численного исследования с применением традиционныхмет одов численного анализа. Приводятся результаты численныхэк спериментов, иллюстрирующие эффективность предлагаемого метода. Проводится сравнительный анализ полученныхре зультатов, вычислительных результатов другихав торов и аналитических зависимостей ряда методов, позволяющих найти точное решение для некоторых классов задач.

    Просмотров за год: 1.
  8. В работе рассматривается вопрос об улучшении качества изображений, получаемых в задаче томографии. Задача заключается в нахождении границ неоднородностей (включений) в сплошной среде по результатам просвечивания этой среды потоком излучения. Предложено нелинейное интегральное преобразование специального вида, которое позволяет улучшить качество изображений по сравнению с тем, которое получали авторы ряда работ ранее. Метод реализован численно с помощью компьютерного моделирования. Проведено несколько расчетов с использованием данных для конкретных материалов. Полученные при этом результаты представлены рисунками и графическими изображениями.

    Просмотров за год: 6.
  9. Свириденко А.Б., Зеленков Г.А.
    Взаимосвязь и реализация квазиньютоновских и ньютоновских методов безусловной оптимизации
    Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 55-78

    Рассмотрены ньютоновские и квазиньютоновские методы безусловной оптимизации, основанные на факторизации Холесского, с регулировкой шага и с конечно-разностной аппроксимацией первых и вторых производных. Для увеличения эффективности квазиньютоновских методов предложено модифицированное разложение Холесского квазиньютоновской матрицы, определяющее и решение проблемы масштабирования шагов при спуске, и аппроксимацию неквадратичными функциями, и интеграцию с методом доверительной окрестности. Предложен подход к увеличению эффективности ньютоновских методов с конечно-разностной аппроксимацией первых и вторых производных. Приведены результаты численного исследования эффективности алгоритмов.

    Просмотров за год: 7. Цитирований: 5 (РИНЦ).
  10. Кривовичев Г.В.
    Исследование устойчивости разностных схем метода решеточных уравнений Больцмана для моделирования диффузии
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 485-500

    В работе исследуется устойчивость разностных схем, применяемых в методе решеточных уравнений Больцмана для моделирования диффузии в одномерном случае для решеток D1Q2 и D1Q3. Разностные схемы строятся для системы линейных кинетических уравнений Бхатнагара–Гросса–Крука (БГК) относительно одночастичных функций распределения. Проведен краткий обзор работ других авторов. С использованием мультискейлингового разложения методом Чепмена–Энскога показано, что система уравнений БГК при малых числах Кнудсена сводится к линейному уравнению диффузии. Решение уравнения диффузии находится как сумма функций распределения. С использованием метода бегущих волн показана асимптотическая устойчивость решения задачи Коши для системы кинетических уравнений типа БГК во всем диапазоне времени релаксации. С помощью метода дифференциального приближения показана устойчивость разностной схемы для случая решетки D1Q2. Условие устойчивости получено в виде неравенства на значения времени релаксации. Исследуется возможность сведения анализа устойчивости разностных схем для системы уравнений БГК к анализу схем специального вида для уравнения диффузии в случае решетки D1Q3. Численное исследование устойчивости проводилось с помощью метода фон Неймана. В ходе анализа исследовались величины модулей собственных значений матрицы перехода в пространстве параметров разностной схемы. Показано, что в широком диапазоне изменения параметров модули собственных значений не превосходят единицы, что говорит об устойчивости схемы по начальным условиям.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.