Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'численные решения':
Найдено статей: 327
  1. Плохотников К.Э.
    Об устойчивости гравитационной системы многих тел
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 487-511

    В работе под гравитационной системой понимается множество точечных тел, взаимодействующих согласно закону притяжения Ньютона и имеющих отрицательное значение полной энергии. Обсуждается вопрос об устойчивости (о неустойчивости) гравитационной системы общего положения путем прямого вычислительного эксперимента. Под гравитационной системой общего положения понимается система, у которой массы, начальные позиции и скорости тел выбираются случайными из заданных диапазонов. Для проведения вычислительного эксперимента разработан новый метод численного решения обыкновенных дифференциальных уравнений на больших интервалах времени. Предложенный метод позволил, с одной стороны, обеспечить выполнение всех законов сохранения путем подходящей коррекции решений, с другой — использовать стандартные методы численного решения систем дифференциальных уравнений невысокого порядка аппроксимации. В рамках указанного метода траектория движения гравитационной системы в фазовом пространстве собирается из частей, длительность каждой из которых может быть макроскопической. Построенная траектория, вообще говоря, является разрывной, а точки стыковки отдельных кусков траектории выступают как точки ветвления. В связи с последним обстоятельством предложенный метод отчасти можно отнести к классу методов Монте-Карло. Общий вывод проведенной серии вычислительных экспериментов показал, что гравитационные системы общего положения с числом тел 3 и более, вообще говоря, неустойчивы. В рамках предложенного метода специально рассмотрены частные случаи равенства нулю момента импульса гравитационной системы с числом тел 3 и более, а также задача движения двух тел. Отдельно рассмотрен случай численного моделирования динамики во времени Солнечной системы. С позиций вычислительного эксперимента на базе аналитических методов, а также прямых численных методов высокого порядка аппроксимации (10 и выше) устойчивость Солнечной системы ранее продемонстрирована на интервале в пять и более миллиардов лет. В силу ограничений на имеющиеся вычислительные ресурсы устойчивость динамики планет Солнечной системы в рамках использования предлагаемого метода удалось подтвердить на срок десять миллионов лет. С помощью вычислительного эксперимента рассмотрен также один из возможных сценариев распада Солнечной системы.

  2. В работе изучается многомерное уравнение конвекции-диффузии с переменными коэффициентами и неклассическим граничным условием. Рассмотрены два случая: в первом случае первое граничное условие содержит интеграл от неизвестной функции по переменной интегрирования $x_\alpha^{}$, а во втором случае — интеграл от неизвестной функции по переменной интегрирования $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении переноса примеси вдоль русла рек. Для приближенного решения поставленной задачи предложена эффективная в плане экономичности, устойчивости и сходимости разностная схема — локально-одномерная разностная схема А.А. Самарского с порядком аппроксимации~$O(h^2+\tau)$. Ввиду того что уравнение содержит первую производную от неизвестной функции по пространственной переменной $x_\alpha^{}$, для повышения порядка точности локально-одномерной схемы используется известный метод, предложенный А.А. Самарским при построении монотонной схемы второго порядка точности по $h_\alpha^{}$ для уравнения параболического типа общего вида, содержащего односторонние производные, учитывающие знак $r_\alpha^{}(x,\,t)$. Для повышения до второго порядка точности по $h_\alpha^{}$ краевых условий третьего рода воспользовались уравнением в предположении, что оно справедливо и на границах. Исследование единственности и устойчивости решения проводилось с помощью метода энергетических неравенств. Получены априорные оценки решения разностной задачи в $L_2^{}$-норме, откуда следуют единственность решения, непрерывная и равномерная зависимость решения разностной задачи от входных данных, а также сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи в $L_2^{}$-норме со скоростью, равной порядку аппроксимации разностной схемы. Для двумерной задачи построен алгоритм численного решения, проведены численные расчеты тестовых примеров, иллюстрирующие полученные в работе теоретические результаты.

  3. Григорьева А.В., Максименко М.В.
    Метод обработки данных акустико-эмиссионного контроля для определения скорости и локации каждого сигнала
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1029-1040

    Акустико-эмиссионный метод неразрушающего контроля является одним из эффективных и экономичных способов обследования сосудов высокого давления для поиска в них скрытых дефектов (трещин, расслоений и др.), а также единственным методом, чувствительным к развивающимся дефектам. Скорость распространения звука в объекте контроля и ее адекватное определение в локационной схеме имеют важнейшее значение для точности локации источника акустической эмиссии. Предложенный в статье метод обработки данных акустической эмиссии позволяет определить координаты источника и наиболее вероятную скорость для каждого сигнала. Метод включает в себя предварительную фильтрацию данных по амплитуде, по разности времен прихода, исключение электромагнитных помех. Далее к ним применяется комплекс численных методов для решения получившихся нелинейных уравнений, в частности метод Ньютона–Канторовича и общий итерационный процесс. Скорость распространения сигнала от одного источника принимается постоянной во всех направлениях. В качестве начального приближения берется центр тяжести треугольника, образованного первыми тремя датчиками, зафиксировавшими сигнал. Разработанный метод имеет важное практическое применение, и в статье приведен пример его апробации при калибровке акустико- эмиссионной системы на производственном объекте (абсорбере очистки углеводородного газа). Описаны критерии предварительной фильтрации данных. Полученные локации хорошо согласуются с местоположениями генерации сигналов, а вычисленные скорости четко отражают разделение акустической волны на волны Лэмба и Рэлея благодаря разноудаленности источников сигналов от датчиков. В статье построен график соответствия усредненной скорости сигнала и расстояния от его источника до ближайшего датчика. Основным достоинством разработанного метода можно считать его способность вычислять и отображать на общей схеме объекта местоположение сигналов, имеющих разные скорости, а не задавать единую скорость для всех сигналов акустической эмиссии в рамках одного расчета. Это позволяет увеличить степень свободы при вычислениях и тем самым увеличить их точность.

  4. Суров В.С.
    Об одной модификации узлового метода характеристик
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 29-44

    Представлен вариант обратного метода характеристик (МОМХ), в алгоритм которого введен дополнительный дробный временной шаг, что позволяет повысить точность вычислений за счет более точной аппроксимации характеристик. Приведены расчетные формулы модифицированного метода для уравнений односкоростной модели газожидкостной смеси, с помощью которого рассчитаны одномерные, а также плоские тестовые задачи, имеющие автомодельные решения. При решении многомерных задач исходная система уравнений расщепляется на ряд одномерных подсистем, для расчета которых применяется обратный метод характеристик с дробным временным шагом. С использованием предложенного метода рассчитаны: одномерная задача распада произвольного разрыва в дисперсной среде; двумерная задача взаимодействия однородного газожидкостного потока с препятствием с присоединенным ударным скачком, а также течение с центрированной волной разрежения. Результаты численных расчетов этих задач сопоставлены с автомодельными решениями и отмечено их удовлетворительное совпадение. На примере задачи Римана с ударным скачком приведено сравнение с рядом консервативных, неконсервативных первого и повышенного порядков точности схем, из которого, в частности, следует, что представленный метод расчета вполне конкурентоспособен. Несмотря на то что применение МОМХ требует в разы больших временных затрат по сравнению с оригинальным обратным методом характеристик (ОМХ), вычисления можно проводить с увеличенным временным шагом и в ряде случаев получать более точные результаты. Отмечено, что метод с дробным временным шагом имеет преимущества в случаях, когда характеристики системы криволинейные. По этой причине для уравнений Эйлера целесообразно использовать ОМХ вместо МОМХ, поскольку в этом случае характеристики в пределах временного шага мало отличаются от прямых линий.

  5. Рассматривается нелинейная колебательная система, описываемая обыкновенными дифференциальными уравнениями с переменными коэффициентами, в которой в явном виде выделяются члены, линейно зависящие от координат, скоростей и ускорений; нелинейные члены записываются в виде неявных функций от этих переменных. Для численного решения начальной задачи, описываемой такой системой дифференциальных уравнений, используется одношаговый метод Галёркина. На шаге интегрирования неизвестные функции представляются в виде суммы линейных функций, удовлетворяющих начальным условиям, и нескольких заданных корректирующих функций в виде полиномов второй и выше степеней с неизвестными коэффициентами. Дифференциальные уравнения на шаге удовлетворяются приближенно по методу Галёркина на системе корректирующих функций. Получаются алгебраические уравнения с нелинейными членами, которые на каждом шаге решаются методом итераций. Из решения в конце каждого шага определяются начальные условия на следующем шаге.

    Корректирующие функции берутся одинаковыми для всех шагов. В общем случае для расчетов на больших интервалах времени используются 4 или 5 корректирующих функций: в первом наборе — базовые степенные функции от 2-й до 4-й или 5-й степеней; во втором наборе — образованные из базовых функций ортогональные степенные полиномы; в третьем наборе — образованные из базовых функций специальные линейно независимые многочлены с конечными условиями, упрощающими «стыковку» решений на следующих шагах.

    На двух примерах расчета нелинейных колебаний систем с одной и с двумя степенями свободы выполнены численные исследования точности численного решения начальных задач на различных интервалах времени по методу Галёркина с использованием указанных наборов степенных корректирующих функций. Выполнены сравнения результатов, полученных по методу Галёркина и по методам Адамса и Рунге – Кутты четвертого порядка. Показано, что методом Галёркина можно получить достоверные результатына значительно больших интервалах времени, чем по методам Адамса и Рунге – Кутты.

  6. Нефедова О.А., Спевак Л.Ф., Казаков А.Л., Ли М.Г.
    Применение метода нулевого поля для решения двумерного нелинейного уравнения теплопроводности
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1449-1467

    В работе рассмотрена краевая задача о движении тепловой волны для вырождающегося уравнения второго порядка параболического типа со степенной нелинейностью. Краевое условие задает уравнение движения на плоскости нулевого фронта тепловой волны, имеющего форму окружности. Предложен новый численно-аналитический алгоритм, в соответствии с которым решение строится по шагам по времени при разностной схеме дискретизации времени. На каждом шаге рассматривается краевая задача для уравнения Пуассона, к которому сводится исходное уравнение. Фактически она является обратной задачей Коши, в которой исходная граница области решения свободна от граничных условий, а на текущей границе (фронте волны) заданы два условия (Неймана и Дирихле). Решение этой задачи ищется в виде суммы частного решения уравнения Пуассона и решения соответствующего уравнения Лапласа, удовлетворяющего граничным условиям. Поскольку неоднородность зависит от искомой функции и ее производных, решение строится итерационно. Частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Обратная задача Коши для уравнения Лапласа решается методом нулевого поля применительно к круговым областям с круговыми отверстиями. Для таких задач этот метод применяется впервые. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Распараллеливание вычислений позволило эффективно реализовать алгоритм на высокопроизводительных вычислительных системах. На базе алгоритма была создана компьютерная программа. В качестве средства распараллеливания был выбран стандарт параллельного программирования OpenMP для языка программирования C++ как наиболее подходящий для вычислительных программ с параллельными циклами. Эффективность алгоритма и работоспособность программы были проверены сравнением результатов расчетов с известным точным решением, а также с численным решением, полученным авторами ранее с помощью метода граничных элементов. Проведенный вычислительный эксперимент показал хорошую сходимость итерационных процессов и более высокую точность нового алгоритма по сравнению с разработанным ранее. Анализ решений позволил определить наиболее подходящую систему радиальных базисных функций.

  7. Четырбоцкий А.Н., Четырбоцкий В.А.
    Модель мантийной конвекции в зоне полного цикла субдукции
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1385-1398

    Разработана численная 2D-модель погружения холодной океанической плиты в толщу верхней мантии Земли, где этапу начального погружения плиты предшествует установление режима термогравитационной конвекции мантийного вещества. Модельным приближением мантии выступает двумерный образ несжимаемой ньютоновской квазижидкости в декартовой системе координат, где вследствие высокой вязкости среды уравнения мантийной конвекции принимаются в стоксовском приближении. Полагается, что вместе с плитой в верхние слои мантии поступает просочившаяся сюда морская вода. С глубиной рост давления и температуры приводит к определенным потерям ее легких фракций и флюидов, потерям воды и газов водосодержащих минералов плиты, перестройке их кристаллической решетки и, как следствие, фазовым превращениям. Эти потери обусловливают рост плотности плиты и неравномерность распределения вдоль плиты напряжений (начальные участки плиты оказываются менее плотными), что в последствии вместе с воздействием на плиту мантийных течений вызывает ее фрагментацию. Рассматривается состояние мантийной конвекции, когда плита и ее отдельные фрагменты опустились на подошву верхней мантии. Разработаны вычислительные схемы решения уравнений модели. Расчеты мантийной конвекции выполнены в терминах приближения Стокса для завихренности и функции тока, а для расчетов состояния и погружения плиты использован SPH. Выполнен ряд вычислительных экспериментов. Показано, что вследствие воздействия на плиту мантийной конвекции и с развитием вдоль плиты неоднородного поля напряжений происходит ее фрагментация. Следуя уравнениям модели, оценивается время финальной стадии субдукции, т. е. времени выхода всей океанической плиты на дно верхней мантии. В геодинамике этот процесс определяется коллизией плит, следует непосредственно за субдукцией и рассматривается обычно в качестве конечного этапа цикла Уилсона (т. е. цикла развития складчатых поясов).

  8. Шушко Н.И., Барашов Е.Б., Красоткин С.А., Лемтюжникова Д.В.
    Новый алгоритм объединения решений подзадач в задаче коммивояжера
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 45-58

    Традиционные методы решения задачи коммивояжера не являются эффективными для задач высокой размерности из-за их высокой вычислительной сложности. Одним из эффективных способов решения этой проблемы является декомпозиционный подход, который включает в себя три основных этапа: кластеризацию вершин, решение подзадач внутри каждого кластера и последующее объединение полученных решений в итоговое. В данной статье основное внимание уделяется третьему этапу — объединению циклов решений подзадач, поскольку этому этапу не всегда уделяется должное внимание, что приводит к менее точному итоговому решению. В статье предлагается новый модифицированный алгоритм Сигала для объединения циклов. Для оценки его эффективности проводится сравнение с двумя алгоритмами объединения циклов: метод соединения средних точек ребер и алгоритм на основе близости центроидов кластеров. Исследуется зависимость качества решения подзадач на алгоритмы объединения циклов. Модифицированный алгоритм Сигала выполняет попарное объединение кластеров, минимизируя количество пересечений и общее расстояние. Метод центроидов ориентирован на соединение кластеров на основе близости центроидов, а алгоритм с использованием средних точек оценивает расстояние между средними точками ребер. Также были рассмотрены два типа кластеризации: алгоритмы k-means и affinity propagation. Для проверки эффективности предложенного алгоритма были проведены численные эксперименты на наборе данных TSPLIB с различным количеством городов. В исследовании анализируются ошибки, вызванные порядком объединения кластеров, качеством решения подзадач и количеством кластеров. Эксперименты показали, что модифицированный алгоритм Сигала демонстрирует наименьшую медиану итогового расстояния и наиболее устойчивые результаты по сравнению с другими методами. Результаты указывают на большую устойчивость качества конечного решения, полученным модифицированным алгоритмом Сигала, от последовательности объединения кластеров. Повышение качества решения подзадачи обычно приводит к линейному улучшению конечного решения, но используемый алгоритм объединения редко влияет на степень этого улучшения.

  9. Забелло К.К., Гарбарук А.В.
    Исследование точности метода решеточных уравнений Больцмана при расчете распространения акустических волн
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1069-1081

    В статье проводится систематическое исследование возможностей метода решеточных уравнений Больцмана (lattice Boltzmann method, LBM или РУБ) для описания распространения акустических волн. Рассмотрена задача о распространении возмущений от точечного гармонического источника акустических возмущений в неограниченном пространстве как в неподвижной среде (число Маха $M=0$), так и при наличии набегающего потока (число Маха $M=0{,}2$). Обе рассмотренные задачи имеют аналитическое решение в приближении линейной акустики, что позволяет количественно оценить точность численного метода.

    Численная реализация осуществлена с использованием двумерной модели скоростей D2Q9 и оператора столкновений Бхатнагара – Гросса – Крука (BGK). Источник колебаний задавался согласно схеме Gou, а возникающий от источника паразитный шум в моментах старших порядков убирался за счет использования процедуры регуляризации функций распределения. Для минимизации отражений от границ расчетной области использовался гибридный подход, основанный на совместном использовании характеристических граничных условий на основе инвариантов Римана и поглощающих PML-слоев (perfectly matched layer) с параболическим профилем затухания.

    В ходе работы проведен детальный анализ влияния вычислительных параметров метода на точность расчета. Исследована зависимость погрешности от толщины PML-слоя ($L_{\text{PML}}^{}$) и максимального коэффициента демпфирования ($\sigma_{\max}^{}$), безразмерной амплитуды источника ($Q'_0$) и шага расчетной сетки. Показано, что метод РУБ применим для моделирования распространения акустических волн и обладает вторым порядком точности. Установлено, что для достижения высокой точности расчета (относительная погрешность давления — не более $1\,\%$) достаточно пространственного разрешения в $20$ точек на длину волны ($\lambda$). Определены минимальные эффективные параметры PML-слоя: $\sigma_{\max}^{}\geqslant 0{,}02$ и $L_{\text{PML}}^{} \geqslant 2\lambda$, обеспечивающие отсутствие отражения от границ расчетной области. Также продемонстрировано, что при амплитудах источника $Q_0' \geqslant 0{,}1$ влияние нелинейных эффектов становится существенным по сравнению с другими источниками погрешности.

  10. Кривовичев Г.В.
    О расчете течений вязкой жидкости методом решеточных уравнений Больцмана
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 165-178

    Предложен модифицированный метод решеточных уравнений Больцмана для расчета течений вязкой ньютоновской жидкости. Модифицированный метод основан на использовании расщепления дифференциального оператора в уравнении Навье–Стокса и идее мгновенной максвеллизации функции распределения. При переходе от одного временного слоя к другому последовательно численно решаются задачи для системы решеточных кинетических уравнений и системы линейных уравнений диффузии. Эффективность предложенного метода по сравнению с обычным методом решеточных уравнений Больцмана показана при решении задачи о плоском течении в каверне в случае различных значений числа Рейнольдса и при различных разбиениях сетки.

    Цитирований: 8 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.