Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'численные исследования':
Найдено статей: 266
  1. Митин А.Л., Калашников С.В., Янковский Е.А., Аксенов А.А., Жлуктов С.В., Чернышев С.А.
    Методические аспекты численного решения задач внешнего обтекания на локально-адаптивных сетках с использованием пристеночных функций
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1269-1290

    Работа посвящена исследованию возможности повышения эффективности решения задач внешней аэродинамики. Изучаются методические аспекты применения локально-адаптивных неструктурированных расчетных сеток и пристеночных функций для численного моделирования турбулентных течений около летательных аппаратов. Интегрируются осредненные по Рейнольдсу уравнения Навье–Стокса, которые замыкаются стандартной моделью турбулентности $k–\varepsilon$. Рассматривается обтекание крылового профиля RAE 2822 турбулентным дозвуковым потоком вязкого сжимаемого газа. Расчеты проводятся в программном ВГД-комплексе FlowVision. Анализируется эффективность применения технологии сглаживания диффузионных потоков и формулы Брэдшоу для турбулентной вязкости в качестве мер, повышающих точность решения аэродинамических задач на локально-адаптивных сетках. Результаты исследования показывают, что использование технологии сглаживания диффузионных потоков приводит к существенному уменьшению расхождений в величине коэффициента лобового сопротивления между результатами расчетов и экспериментальными данными. Кроме того, обеспечивается регуляризация распределения коэффициента поверхностного трения на криволинейной поверхности профиля. Эти результаты позволяют сделать вывод о том, что данная технология является эффективным способом повышения точности расчетов на локально-адаптивных сетках. Формула Брэдшоу для динамического коэффициента турбулентной вязкости традиционно используется в модели SST $k–\omega$. В настоящей работе исследуется возможность ее применения в стандартной $k–\varepsilon$-модели турбулентности. Результаты расчетов показывают, что, с одной стороны, данная формула обеспечивает хорошее согласование суммарных аэродинамических характеристик и распределения коэффициента давления по поверхности профиля с экспериментом. Помимо этого, она значительно повышает точность моделирования течения в пограничном слое и в следе. С другой стороны, использование формулы Брэдшоу при моделировании обтекания профиля RAE 2822 приводит к занижению коэффициента поверхностного трения. Поэтому в работе делается вывод о том, что практическое применение формулы Брэдшоу требует ее предварительной валидации и калибровки на надежных экспериментальных данных для рассматриваемого класса задач. Результаты работы в целом показывают, что при использовании рассмотренных технологий численное решение задач внешнего обтекания на локально-адаптивных сетках с применением пристеночных функций обеспечивает точность, приемлемую для оперативной оценки аэродинамических характеристик, а ПК FlowVision является эффективным инструментом решения задач предварительного аэродинамического проектирования, концептуального проектирования и оптимизации аэродинамических форм.

  2. Решитько М.А., Усов А.Б.
    Нейросетевой подход к исследованию задач оптимального управления
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 539-557

    В статье предлагается метод исследования задач оптимального управления с использованием нейронных сетей. Рассмотрение проводится на примере задачи контроля качества поверхностных вод. При моделировании системы контроля качества поверхностных вод используются теоретико-игровой и иерархический подходы. Исследуется случай динамической двухуровневой системы управления качеством поверхностных вод, включающий ведущего и нескольких ведомых. Рассмотрение ведется с точки зрения ведомых. В этом случае между ними возникает неантагонистическая игра, в которой строится равновесие Нэша. С математической точки зрения при этом решается задача оптимального управления при наличии фазовых ограничений. Для ее аналитического исследования в работе используется принцип максимума Понтрягина, на основе которого формулируются условия оптимальности. Для решения возникающих при этом систем дифференциальных уравнений используется обучаемая нейронная сеть прямого распространения (feedforward). Приводится обзор существующих методов решения подобных задач с помощью нейронных сетей и методов обучения нейронных сетей. Для оценки ошибки решения, получаемого с помощью нейронной сети, предлагается использовать метод анализа дефекта решения, адаптированный для нейронных сетей. Это позволяет получить количественную оценку ошибки численного решения. Приведены примеры использования нейросетевого подхода для решения модельной задачи оптимального управления и задачи контроля качества поверхностных вод. Полученные в этих примерах результаты сравниваются с точным решением и с результатами, полученными методом стрельбы. Во всех случаях величина ошибки оценивается методом анализа дефекта решения. Нейросетевым методом проводится также исследование системы контроля качества поверхностных вод для случаев, когда решение задачи другими методами получить не удалось (большой временной промежуток моделирования и случай нескольких агентов). В статье иллюстрируются возможность использования нейросетевого подхода для решения различных задач оптимального управления и дифференциальных игр, а также возможность количественной оценки точности решения. Полученные результаты численных экспериментов позволяют говорить о необходимости введения регулирующего органа для достижения устойчивого развития системы.

  3. Бабаков А.В.
    Моделирование нестационарной структуры потока около спускаемого аппарата в условиях марсианской атмосферы
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 701-714

    В статье представлены результаты численного моделирования вихревого пространственного нестационарного движения среды, возникающего около боковой и донной поверхностей десантного модуля при его спуске в атмосфере Марса. Численное исследование проведено для высокоскоростного режима обтекания при различных углах атаки. Математическое моделирование осуществлено на основе модели Навье – Стокса и модели равновесных химических реакций для газового состава марсианской атмосферы. Результаты моделирования показали, что при рассматриваемых условиях движения спускаемого аппарата около его боковой и донной поверхностей реализуется нестационарное течение, имеющее ярко выраженный вихревой характер. Численные расчеты указывают на то, что в зависимости от угла атаки нестационарность и вихревой характер потока могут проявляться как на всей боковой и донной поверхностях аппарата, так и, частично, на их подветренной стороне. Для различных углов атаки приводятся картины вихревой структуры потока около поверхности спускаемого аппарата и в его ближнем следе, а также картины полей температуры и показателя адиабаты. Нестационарный характер обтекания подтверждается представленными временными зависимостями газодинамических параметров потока в различных точках поверхности аппарата. Проведенные параметрические расчеты позволили построить зависимости аэродинамических характеристик спускаемого аппарата от угла атаки. Математическое моделирование осуществляется на основе являющегося методом конечных объемов консервативного численного метода потоков, основанного на конечно-разностной записи законов сохранения аддитивных характеристик среды с использованием upwind-аппроксимаций потоковых переменных. Для моделирования возникающей при обтекании сложной вихревой структуры потока около спускаемого аппарата используются неравномерные вычислительные сетки, включающие до 30 миллионов конечных объемов с экспоненциальным сгущением к поверхности, что позволило выявить мелкомасштабные вихревые образования. Численные исследования проведены на базе разработанного комплекса программ, основанного на параллельных алгоритмах используемого численного метода и реализованного на современных многопроцессорных вычислительных системах. Приведенные в статье результаты численного моделирования получены при использовании до двух тысяч вычислительных ядер многопроцессорного комплекса.

  4. Худхур Х.М., Халил И.Х.
    Удаление шума из изображений с использованием предлагаемого алгоритма трехчленного сопряженного градиента
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 841-853

    Алгоритмы сопряженных градиентов представляют собой важный класс алгоритмов безусловной оптимизации с хорошей локальной и глобальной сходимостью и скромными требованиями к памяти. Они занимают промежуточное место между методом наискорейшего спуска и методом Ньютона, поскольку требуют вычисленияи хранения только первых производных и как правило быстрее методов наискорейшего спуска. В данном исследовании рассмотрен новый подход в задаче восстановления изображений. Он наследует одновременно методу сопряженных градиентов Флетчера – Ривза (FR) и трехкомпонентному методу сопряженных градиентов (TTCG), и поэтому назван авторами гибридным трехкомпонентным методом сопряженных градиентов (HYCGM). Новое направление спуска в нем учитывает текущее направления градиента, предыдущее направления спуска и градиент из предыдущей итерации. Показано, что новый алгоритм обладает свойствами глобальной сходимости и монотонности при использовании неточного линейного поиска типа Вулфа при некоторых стандартных предположениях. Для подтверждения эффективности предложенного алгоритма приводятся результаты численных экспериментов предложенного метода в сравнении с классическим методом Флетчера – Ривза (FR) и трехкомпонентным методом Флетчера – Ривза (TTFR).

  5. Уткин П.С., Чупров П.А.
    Численное моделирование распространения зондирующих импульсов в плотной засыпке гранулированной среды
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1361-1384

    Необходимость моделирования высокоскоростных течений сжимаемых сред с ударными волнами при наличии плотных завес или слоев частиц со значительным объемным содержанием дисперсной фазы возникает при изучении различных процессов. В качестве примера можно привести диспергирование частиц из слоя за проходящей ударной волной или распространение волн горения в компактных зарядах гетерогенных взрывчатых веществ. Хотя данные направления успешно развиваются в течение последних нескольких десятков лет, соответствующие математические модели и вычислительные алгоритмы активно совершенствуются вплоть до настоящего времени, поскольку механизмы волновых процессов в двухфазной среде, реализующиеся в различных моделях, отличаются друг от друга.

    Статья посвящена численному исследованию распространения возмущений внутри плотной засыпки песка, вызванных последовательным воздействием ударной волны, падающей по нормали к поверхности засыпки из воздуха. Постановка задачи следует натурным опытам А.Т. Ахметова с соавторами. Целью работы является объяснение возможных причин усиления сигнала на датчике давления внутри засыпки, которое наблюдается в опытах при некоторых условиях. Математическая модель основана на одномерной системе уравнений Баера – Нунциато для описания плотных течений двухфазных сред с учетом межгранулярных напряжений в фазе частиц. Вычислительный алгоритм основан на методе Годунова для уравнений Баера – Нунциато.

    В статье описана волновая динамика вне засыпки частици внутри нее после воздействия на засыпку первого и второго импульсов давления из газа. Основными элементами течения внутри засыпки являются фильтрационная волна в газовой фазе и волна компактирования в фазе частиц. В результате интерференции волны компактирования, вызванной первым падающим импульсом давления и отраженной от стенки ударной трубы, и фильтрационной волны, вызванной вторым падающим импульсом, происходит усиление сигнала на датчике давления внутри засыпки. Таким образом, дано возможное объяснение данного нового эффекта, наблюдаемого в натурных экспериментах.

  6. Белотелов В.Н., Дарьина А.Н.
    Метод поиска касательных в задаче быстродействия для колесного мобильного робота
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 401-421

    Поиск оптимальной траектории движения является нетривиальной задачей, на решение которой направлено большое число исследований. Большинство этих исследований посвящено решению задачи в общем виде вне зависимости от модели движения объекта. В такой постановке поиск оптимальной траектории возможен только численными методами. Вместе с тем в некоторых случаях возможно нахождение оптимальной траектории в аналитическом виде. В данной статье рассмотрена задача быстродействия с фазовыми ограничениями для колесного мобильного робота, движущегося по горизонтальной плоскости. Математическая модель робота является кинематической. Фазовые ограничения соответствуют препятствиям на плоскости, заданным в виде непересекающихся кругов, которые требуется избегать при движении. Независимыми управляющими воздействиями являются скорости колес, которые ограничены по абсолютной величине. Такая постановка часто применяется в тех случаях, когда динамические переходные процессы несущественны, например при управлении медленно движущимися гусеничными или колесными устройствами, в которых приоритет отдается мощности двигателей, а не их скорости. В статье показывается, что оптимальная траектория движения из начальной точки в конечную в выбранной кинематической постановке представляет собой последовательность отрезков общих касательных к парам кругов и дуг окружностей этих кругов. Геометрически кратчайший путь между начальной и конечной точками также состоит из отрезков касательных и дуг окружностей, поэтому оптимальное по быстродействию движение соответствует одному из локальных минимумов при поиске кратчайшего пути. Предложен аналитический метод поиска оптимальной траектории движения, основанный на построении графа возможных траекторий, где ребрами являются прямолинейные отрезки и дуги, а вершинами — точки их соединений, и поиска кратчайшего (быстрейшего) пути на графе с помощью метода Дейкстры. Представлено обоснование метода. Приведены результаты численных экспериментов по нахождению оптимальной траектории.

  7. Килин А.А., Артемова Е.М., Гаврилова А.М.
    Странный репеллер в динамике эллиптического профиля с присоединенным вихрем в идеальной жидкости
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1051-1067

    В данной работе рассматривается задача о плоскопараллельном движении эллиптического профиля с присоединенным точечным вихрем постоянной интенсивности в идеальной жидкости. Положение вихря относительно профиля считается неизменным во время движения. Течение жидкости вне тела считается потенциальным (за исключением особенности, соответствующей точечному вихрю), а обтекание тела является безциркуляционным. Рассмотрен случай общего положения, когда точечный вихрь не лежит на продолжениях полуосей эллипса. Рассматриваемая задача описывается системой шести дифференциальных уравнений первого порядка. После редукции по группе движений плоскости $E(2)$ она сводится к системе трех дифференциальных уравнений. В работе исследуется данная редуцированная система. Показано, что эта система допускает от одной до пяти неподвижных точек, которым соответствуют движения эллипса по разным окружностям. Основываясь на численных исследованиях фазового потока приведенной системы вблизи неподвижных точек, показано, что рассматриваемая система в общем случае не допускает инвариантной меры с гладкой положительно определенной плотностью. Найдены значения параметров, при которых одна из неподвижных точек редуцированной системы является неустойчивым узлофокусом. Показано, что при продолжении по параметрам из неустойчивой неподвижной точки через бифуркацию Андронова – Хопфа может родиться неустойчивый предельный цикл. В работе исследованы бифуркации данного предельного цикла при изменении положения точечного вихря относительно эллипса. С помощью построения параметрической бифуркационной диаграммы показано, что при изменении параметров системы предельный цикл претерпевает каскад бифуркаций удвоения периода, в результате которого рождается хаотический репеллер (аттрактор в обратном времени). Для численного анализа задачи использовался метод построения двумерного отображения Пуанкаре. Для поиска и анализа простых и странных репеллеров исследование проводилось в обратном времени.

  8. Шульц Д.С., Крайнов А.Ю.
    Математическое моделирование СВС процесса в гетерогенных реагирующих порошковых смесях
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 147-153

    В настоящей работе приводится математическая модель и результаты численного исследования распространения фронта горения СВС состава, когда скорость химического реагирования в каждой точке по длине образца СВС определяется из решения задачи диффузии и химического реагирования в реакционных ячейках. Получены зависимости скорости фронта горения от размера усредненного элемента гетерогенной структуры при различных значениях интенсивности диффузии. Данные зависимости качественно согласуются с экспериментальными зависимостями. В работе проведено исследование влияния энергии активации диффузии на скорость распространения фронта горения. Выявлено, что при увеличении энергии активации диффузии распространение фронта горения переходит в колебательный режим. Определена граница перехода от стационарного режима распространения фронта горения к колебательному режиму.

    Просмотров за год: 2. Цитирований: 5 (РИНЦ).
  9. Власенко В.Д., Верхотуров А.Д.
    Численное исследование упругих и прочностных характеристик материалов с покрытиями, полученных электроискровым легированием
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 671-678

    В работе численно исследовано влияние упругих и прочностных характеристик твердосплавных материалов с покрытиями из тугоплавких соединений, полученных электроискровым легированием, при воздействии температурных и силовых факторов при помощи метода конечных элементов.

    Просмотров за год: 3. Цитирований: 5 (РИНЦ).
  10. Пугач К.С.
    Доводка поля температур на выходе из малоэмисионной камеры сгорания методами трехмерного моделирования
    Компьютерные исследования и моделирование, 2014, т. 6, № 6, с. 901-909

    Рассмотрены особенности формирования поля температуры уходящих газов на выходе из малоэмиссионных камер сгорания (МЭКС) газотурбинных двигателей (ГТД). Показаны основные проблемы, связанные с их доводкой. Представлены результаты численных исследований влияния степени выгорания топлива по длине МЭКС на температурную неравномерность уходящих газов. Проведена оптимизация конструкции смесителя ввода воздуха на разбавление по количеству, форме и местоположению отверстий. Представлена методика разработки смесителя для камер сгорания подобного типа.

    Просмотров за год: 3. Цитирований: 2 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.