Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'численное моделирование':
Найдено статей: 327
  1. Жлуктов С.В., Аксёнов А.А., Кураносов Н.С.
    Моделирование турбулентных сжимаемых течений в программном комплексе FlowVision
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 805-825

    В работе обсуждается возможность моделирования турбулентных сжимаемых течений газа с использованием моделей турбулентности $k-\varepsilon$ стандартная (KES), $k-\varepsilon$ FlowVision (KEFV) и SST $k-\omega$. Представлена новая версия модели турбулентности KEFV. Показаны результаты ее тестирования. Проведено численное исследование истечения сверхзвуковой перерасширенной струи из конического сопла в безграничное пространство. Результаты сравниваются с экспериментальными данными. Демонстрируется зависимость результатов от сетки. Демонстрируется зависимость результатов от турбулентности, задаваемой на входе в сопло. Делается вывод о том, что в двухпараметрических моделях турбулентности необходимо учитывать сжимаемость. Для этого подходит простой способ, предложенный Вилкоксом в 1994 г. В результате область применимости трех указанных двухпараметрических моделей заметно расширяется. Предлагаются конкретные значения констант, управляющих учетом сжимаемости в подходе Вилкокса. Эти значения рекомендуется задавать в моделях KES, KEFV и SST при моделировании сжимаемых течений.

    Дополнительно рассмотрен вопрос о том, как получать правильные характеристики сверхзвукового турбулентного течения с использованием двухпараметрических моделей турбулентности. Расчеты на разных сетках показали, что при задании ламинарного потока на входе в сопло и пристеночных функций на его поверхностях ядро потока остается ламинарным вплоть до 5-й бочки. Для получения правильных характеристик нужно либо на входе в расчетную область задавать два параметра, характеризующие турбулентность втекающего потока, либо задавать «затравочную» турбулентность в ограниченной области на выходе из сопла, охватывающей зону предполагаемого ламинарно-турбулентного перехода. Последняя возможность реализована в модели KEFV.

  2. Гогуев М.В., Кислицын А.А.
    Моделирование траекторий временных рядов с помощью уравнения Лиувилля
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 585-598

    Представлен алгоритм моделирования ансамбля траекторий нестационарных временных рядов. Построена численная схема аппроксимации выборочной плотности функции распределения в задаче с закрепленными концами, когда начальное распределение за заданное количество шагов переходит в определенное конечное распределение, так, что на каждом шаге выполняется полугрупповое свойство решения уравнения Лиувилля. Модель позволяет численно построить эволюционирующие плотности функций распределения при случайном переключении состояний системы, порождающей исходный временной ряд.

    Основная проблема, рассматриваемая в работе, связана с тем, что при численной реализации левосторонней разностной производной по времени решение становится неустойчивым, но именно такой подход отвечает моделированию эволюции. При выборе неявных устойчивых схем с «заходом в будущее» используется итерационный процесс, который на каждом своем шаге не отвечает полугрупповому свойству. Если же моделируется некоторый реальный процесс, в котором предположительно имеет место целеполагание, то желательно использовать схемы, которые порождают модель переходного процесса. Такая модель используется в дальнейшем для того, чтобы построить предиктор разладки, который позволит определить, в какое именно состояние переходит изучаемый процесс до того, как он действительно в него перешел. Описываемая в статье модель может использоваться как инструментарий моделирования реальных нестационарных временных рядов.

    Схема моделирования состоит в следующем. Из заданного временного ряда отбираются фрагменты, отвечающие определенным состояниям, например трендам с заданными углами наклона и дисперсиями. Из этих фрагментов составляются эталонные распределения состояний. Затем определяются эмпирические распределения длительностей пребывания системы в указанных состояниях и длительности времени перехода из состояния в состояние. В соответствии с этими эмпирическими распределениями строится вероятностная модель разладки и моделируются соответствующие траектории временного ряда.

  3. Степанов Р.П., Кусюмов С.А., Кусюмов А.Н., Романова Е.В.
    К вопросу об определении ядра концевого вихря
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 9-27

    Дается обзор критериев, используемых при идентификации концевых вихрей, сходящих с несущих поверхностей летательного аппарата. В качестве основного метода идентификации вихря используется $Q$-критерий, в соответствии с которым ядро вихря ограничено поверхностью, на которой норма тензора завихренности равна норме тензора сдвиговых деформаций. При этом внутри ядра вихря должны выполняться следующие условия: (i) ненулевое значение нормы тензора завихренности, (ii) геометрия ядра вихря должна удовлетворять условию галилеевой инвариантности. На основе аналитических моделей вихря дается определение понятия центра двумерного вихря как точки, в которой $Q$-распределение принимает максимальное значение и много больше нормы тензора сдвиговых деформаций (для осесимметричного 2D-вихря норма тензора сдвиговых деформаций в центре вихря стремится к нулю). Поскольку необходимость существования оси вихря обсуждается в работах различных авторов и выглядит достаточно естественным требованием при анализе концевых вихрей, упомянутые выше условия (i), (ii) дополнены условием (iii): ядро вихря в трехмерном потоке должно содержать ось вихря. Анализируются течения, имеющие в 2D-сечениях осевую симметрию, а также форму ядра вихря, отличающуюся от окружности (в частности, эллиптического вида). Показывается, что в этом случае с использованием $Q$-распределения можно не только определить область ядра вихря, но и выделить ось ядра вихря. Для иллюстрации введенных понятий используются результаты численного моделирования обтекания крыла конечного размаха на базе решения осредненных по Рейнольдсу стационарных уравнений Навье – Стокса (RANS). Замыкание уравнений Навье – Стокса осуществлялось с использованием модели турбулентности $k-\omega$.

  4. Последние годы получило широкое распространение применение нейросетевых моделей для решения задач аэродинамики. В основном такие модели, обученные по некоторому набору ранее полученных решений, позволяют предсказывать решения новых задач и являются в некотором смысле алгоритмами интерполяции. Альтернативным подходом может служить построение нейросетевого оператора, представляющего собой нейросетевую модель, которая воспроизводит поведение численного метода решения задачи. Такая модель позволяет находить решение задачи итерациями. В работе рассматривается вариант построения такого оператора с применением нейронной сети типа UNet с пространственным механизмом внимания для решения задач обтекания на прямоугольной равномерной сетке, общей для обтекаемого тела и поля течения. Для уточнения полученного решения предлагается и исследуется механизм коррекции решения. Анализируется вопрос устойчивости такого алгоритма решения стационарной задачи, проводится сравнение с некоторыми другими вариантами его построения: прием с продвижением вперед (pushforward trick), позиционное встраивание. Рассматривается вопрос выбора набора итераций для формирования обучающей выборки. Оценивается поведение решения при многократном применении нейросетевого оператора.

    Демонстрация метода приводится для случая обтекания скругленной пластины турбулентным потоком воздуха с различными вариантами скругления при фиксированных параметрах набегающего потока с числом Рейнольдса $\text{Re} = 10^5$ и числом Маха $M = 0,15$. Поскольку течения с такими параметрами набегающего потока можно считать несжимаемыми, исследуются непосредственно только компоненты скорости. При этом нейросетевая модель, используемая для построения оператора, имеет общий декодер для обеих компонент скорости. Проводится сравнение полей течения и профилей скорости по нормали и по обводу тела, полученных нейросетевым оператором и численно. Анализ проводится как на пластине, так и на скруглении. Результаты моделирования подтверждают, что нейросетевой оператор позволяет находить решение с высокой точностью устойчивым образом.

  5. Печенюк А.В.
    Эталонное тестирование ПК FlowVision в задаче моделирования обтекания судна
    Компьютерные исследования и моделирование, 2014, т. 6, № 6, с. 889-899

    В области судостроения наиболее авторитетные рекомендации по тестированию и аттестации численных методов были выработаны в рамках международного семинара по проблемам численного моделирования обтекания судового корпуса вязким потоком, который раз в пять лет проходит поочередно в Гетеборге (Швеция) и Токио (Япония). На семинаре «Гетеборг–2000» были предложены три судовых корпуса с современной формой обводов, снабженные надежными экспериментальными данными. Среди них наиболее общий случай представляет контейнеровоз KCS — судно средней быстроходности с умеренной полнотой обводов. В работе изложены результаты численного исследования обтекания корпуса KCS с помощью ПК FlowVision, выполненного согласно стандартным процедурам семинара. Полученные результаты сопоставлены с данными эксперимента и результатами расчетов в других ведущих ПК.

    Просмотров за год: 1. Цитирований: 5 (РИНЦ).
  6. В работе решается задача вычисления параметров случайного сигнала в условиях распределения Райса на основе принципа максимума правдоподобия в предельных случаях большого и малого значения отношения сигнала к шуму. Получены аналитические формулы для решения системы уравнений максимума правдоподобия для искомых параметров сигнала и шума как для однопараметрического приближения, когда рассчитывается только один параметр задачи — величина сигнала, в предположении априорной известности второго параметра — дисперсии шума, так и для двухпараметрической задачи, когда оба параметра априорно неизвестны. Непосредственное вычисление искомых параметров сигнала и шума по формулам позволяет избежать необходимости ресурсоемкого численного решения системы нелинейных уравнений и тем самым оптимизировать время компьютерной обработки сигналов и изображений. Представлены результаты компьютерного моделирования задачи, подтверждающие теоретические выводы. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации.

    Просмотров за год: 2.
  7. Русаков А.В., Бобырев А.Е., Бурменский В.А., Криксунов Е.А., Нуриева Н.И., Медвинский А.Б.
    Математическая модель озерного сообщества с учетом целочисленности размера популяции: хаотические и долгопериодные колебания
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 229-239

    В работе представлены результаты исследования целочисленной модели водного сообщества, состоящего из популяций зоопланктона, мирной и хищной рыбы. Рассматривается структура популяции гидробионтов по массе и по возрасту, а также описываются соответствующие такой структуре трофические взаимодействия между популяциями. Модель воспроизводит различные динамические режимы: стационарные и колебательные. Колебания численности рыбных популяций при этом могут быть регулярными и нерегулярными. Показано, что период регулярных колебаний может составлять десятки лет, а нерегулярные колебания численности рыбных популяций могут быть как хаотическими, так и нехаотическими. В результате анализа модели в пространстве параметров показано, что предсказуемость динамики рыбных популяций может быть затруднена не только в результате возникновения динамического хаоса, но и в результате конкуренции между различными динамическими режимами, возникающей при вариации параметров модели, в частности при изменениях скорости роста зоопланктона.

    Просмотров за год: 6.
  8. Батгэрэл Б., Никонов Э.Г., Пузынин И.В.
    Процедура вывода явных, неявных и симметричных симплектических схем для численного решения гамильтоновых систем уравнений
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 861-871

    При моделировании методами классической молекулярной динамики поведения системы частиц используются уравнения движения в ньютоновской и гамильтоновой формулировке. При использовании уравнений Ньютона для получения координат и скоростей частиц системы, состоящей из $N$ частиц, требуется на каждом временном шаге в трехмерном случае решить $3N$ обыкновенных дифференциальных уравнений второго порядка. Традиционно для решения уравнений движения молекулярной динамики в ньютоновской формулировке используются численные схемы метода Верле. Для сохранения устойчивости численных схем Верле на достаточно больших интервалах времени приходится уменьшать шаг интегрирования. Это приводит к существенному увеличению объема вычислений. В большинстве современных пакетов программ молекулярной динамики для численного интегрирования уравнений движения используют схемы метода Верле с контролем сохранения гамильтониана (энергии системы) по времени. Для уменьшения времени вычислений при молекулярно-динамических расчетах можно использовать два дополняющих друг друга подхода. Первый основан на совершенствовании и программной оптимизации существующих пакетов программ молекулярной динамики с использованием векторизации, распараллеливания, спецпроцессоров. Второй подход основан на разработке эффективных методов численного интегрирования уравнений движения. В работе предложена процедура построения явных, неявных и симметричных симплектических численных схем с заданной точностью аппроксимации относительно шага интегрирования для решения уравнений движения молекулярной динамики в гамильтоновой форме. В основе подхода для построения предложенной в работе процедуры лежат следующие положения: гамильтонова формулировка уравнений движения, использование разложения точного решения в ряд Тейлора, использование для вывода численных схем аппарата производящих функций для сохранения геометрических свойств точного решения. Численные эксперименты показали, что полученная в работе симметричная симплектическая схема третьего порядка точности сохраняет в приближенном решении основные свойства точного решения, является более устойчивой по шагу аппроксимации и более точно сохраняет гамильтониан системы на большом интервале интегрирования, чем численные схемы метода Верле второго порядка.

    Просмотров за год: 11.
  9. Фишер Ю.В., Щеляев А.Е.
    Верификация расчетных характеристик сверхзвуковых турбулентных струй
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 21-35

    В статье приводятся результаты верификационных расчетов в программном комплексе вычислительной аэро-, гидродинамики FlowVision характеристик сверхзвуковых турбулентных струй. Численное моделирование в статье охватывает несколько известных экспериментов по исследованию сверхзвуковых струй, находящихся в свободном доступе. Представленные тестовые случаи включают в себя тесты Сейнера с числом Маха на срезе $M = 2$ при расчетном $(n = 1)$ и нерасчетном $(n = 1.47)$ истечении из сопла в широком диапазоне температур газа. В работе также проведен численный эксперимент по распространению сверхзвуковой струи в спутном сверхзвуковом потоке $M = 2.2$. Для данного теста заданы параметры, определенные в эксперименте Putnam: степень понижения давления в сопле $\mathrm{NPR} = 8.12$ и полная температура $T = 317 \, \mathrm{K}$.

    Показано сравнение расчетов FlowVision с экспериментальными и полученными в других расчетных кодах данными. Наилучшее совпадение с экспериментом Сейнера среди рассмотренных моделей турбулентности получено при использовании стандартной $k–\varepsilon$ модели турбулентности с установленной поправкой на сжимаемость по модели Wilcox. Достигнуто согласование с экспериментальными данными на дальнем следе до 7 % по скорости потока на оси сопла. Для струи в спутном потоке расчетная характеристика (число Маха) отличается на 3 % от экспериментальной.

    В работе определены общие рекомендации к построению методики моделирования FlowVision сверхзвуковых турбулентных струй. В ходе исследования сходимости по сетке получены оптимальные размеры ячеек расчетной сетки: для расчетного истечения достаточно 40 ячеек по радиусу сопла и в области формирования струи, а для нерасчетных режимов необходимо не менее 80 ячеек по радиусу для точного моделирования ударно-волновой структуры вблизи выхода из сопла.

    Влияние применяемых моделей турбулентности показано на примере расчета теста Сейнера. SST-модель турбулентности, применяемая в FlowVision, существенно занижает скорость на оси сопла, для расчета струй данная модель не рекомендуется даже для предварительных оценок. Стандартная $k–\varepsilon$ модель без учета сжимаемости также несколько занижает скорость газа. Модель турбулентности KEFV, разработанная для FlowVision, показывает хорошее согласование и несколько завышает «дальнобойность» струи. И наилучшее совпадение с экспериментом по исследуемым характеристикам турбулентных струй получено при расчетах на стандартной $k–\varepsilon$ модели с учетом сжимаемости, соответствующей модели Wilcox. Представленная методика может быть взята за основу при моделировании истечения из сверхзвуковых сопел более сложной геометрии.

    Просмотров за год: 43.
  10. Проведен сравнительный анализ двух численных методик моделирования нестационарных режимов термогравитационной конвекции и теплового поверхностного излучения в замкнутой дифференциально обогреваемой кубической полости. Рассматриваемая область решения имела две изотермические противоположные вертикальные грани, остальные стенки являлись адиабатическими. Поверхности стенок считались диффузно-серыми, т. е. их направленные спектральные степень черноты и поглощательная способность не зависят ни от угла, ни от длины волны, но могут зависеть от температуры поверхности. Относительно отраженного излучения использовались два предположения: 1) отраженное излучение является диффузным, т. е. интенсивность отраженного излучения в любой точке границы поверхности равномерно распределена по всем направлениям; 2) отраженное излучение равномерно распределено по каждой поверхности замкнутой области решения. Математическая модель, сформулированная как в естественных переменных «скорость–давление», так и в преобразованных переменных «векторный потенциал–вектор завихренности», реализована численно методом контрольного объема и методом конечных разностей соответственно. Следует отметить, что анализ радиационного теплообмена проведен с использованием метода сальдо в варианте Поляка.

    При решении краевой задачи в естественных переменных методом контрольного объема для аппроксимации конвективных слагаемых применялся степенной закон, для диффузионных слагаемых — центральные разности. Разностные уравнения движения и энергии разрешались на основе итерационного метода переменных направлений. Для поиска поля давления, согласованного с полем скорости, применялась процедура SIMPLE.

    В случае метода конечных разностей и преобразованных переменных для аппроксимации конвективных слагаемых применялась монотонная схема Самарского, для диффузионных слагаемых — центральные разности. Уравнения параболического типа разрешались на основе локально-одномерной схемы Самарского. Дискретизация уравнений эллиптического типа для компонент векторного потенциала проводилась с использованием формул симметричной аппроксимации вторых производных. При этом полученное разностное уравнение разрешалось методом последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов.

    В результате показано полное согласование полученных распределений скорости и температуры при различных значениях числа Рэлея, что отражает работоспособность представленных методик. Продемонстрирована эффективность использования преобразованных переменных и метода конечных разностей при решении класса нестационарных задач.

    Просмотров за год: 13. Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.