Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'численное исследование':
Найдено статей: 259
  1. Фоновая социальная напряженность общества может быть количественно оценена по различным статистическим индикаторам. Модели, прогнозирующие динамику социальной напряженности, успешно применяются для описания различных социальных процессов. Когда количество рассматриваемых групп общества мало, динамику соответствующих индикаторов можно описать при помощи системы обыкновенных дифференциальных уравнений. При увеличении количества взаимодействующих элементов резко возрастает сложность задач, что существенно затрудняет их аналитическое исследование. Модель сплошной социальной стратификации получаетсяв результате перехода от дискретной цепочки взаимодействующих социальных слоев к их непрерывному распределению на некотором интервале, то есть перехода к модели сплошной среды. В этом случае напряженность распространяется локально, но в действительности элита общества влияет на все слои через средства массовой информации, а также интернет позволяет влиять всем группам на другие. Эти факторы можно учесть через слагаемое модели, описывающее негативное внешнее воздействие. В настоящей работе предложена модель сплошной социальной стратификации, описывающая динамику системы из двух социумов, связанных через процесс миграции населения. Предполагается, что из социального слоя системы-донора с наибольшей напряженностью происходит отток людей, переносящих свою напряженность в систему-акцептор, причем при миграции люди попадают в более бедные слои принимающего общества. Рассматриваетсяслуч ай пространственно однородных коэффициентов, что соответствует частному случаю небольшого социума. При помощи метода конечных объемов построена пространственнаяди скретизация задачи, корректно отражающая конечную скорость распространения напряженности в обществе. Выполнена проверка выбранной дискретизации путем сравненияч исленного решения с точными решениями вспомогательного уравнения нелинейной диффузии. Проведено численное исследование системы с миграцией при различных значениях параметров, проанализировано влияние интенсивности миграции на принимающее общество, найдены условия дестабилизации общества акцептора под влиянием миграции. Полученные в работе результаты могут быть применены при дальнейшем исследовании модели в случае пространственно неоднородных коэффициентов, что соответствует более реалистичной картине общества.

  2. В работе исследуется влияние быстрого локального выделения тепла вблизи обтекаемой сверхзвуковым потоком газа (воздуха) поверхности на область отрыва, возникающую при быстром его повороте. Данная поверхность состоит из двух плоскостей, образующих при пересечении тупой угол, так что при обтекании этой поверхности сверхзвуковой поток газа поворачивается на положительный угол, что формирует косой скачок уплотнения, взаимодействующий с пограничным слоем и вызывающий отрыв потока. Быстрый локальный нагрев газа над обтекаемой поверхностью моделирует протяженный искровой разряд субмикросекундной длительности, пересекающий поток. Газ, нагретый в зоне разряда, взаимодействует с областью отрыва. Течение можно считать плоским, поэтому численное моделирование проводится в двумерной постановке. Численное моделирование проведено для ламинарного режима течения с использованием солвера sonicFoam пакета программ OpenFOAM.

    В работе описан способ построения двумерной расчетной сетки с использованием шестигранных ячеек. Выполнено исследование сеточной сходимости. Приводится методика задания начальных профилей параметров течения на входе в расчетную область, позволяющая сократить время счета при уменьшении количества расчетных ячеек. Описан способ нестационарного моделирования процесса быстрого локального нагрева газа, заключающегося в наложении дополнительных полей повышенных значений давления и температуры, вычисленных из величины энергии, вложенной в набегающий сверхзвуковой поток газа, на соответствующие поля величин, предварительно полученные в стационарном случае. Параметры энерговклада в поток, соответствующие параметрам процесса инициирования электрического разряда, а также параметры набегающего потока близки к экспериментальным величинам.

    При анализе данных численного моделирования получено, что быстрый локальный нагрев приводит к возникновению газодинамического возмущения (квазицилиндрической ударной волны и нестационарного завихренного течения), которое при взаимодействии с областью отрыва приводит к смещению точки отрыва вниз по потоку. В работе рассмотрен вопрос о влиянии энергии, затраченной на локальный нагрев газа, и положения места нагрева относительно точки отрыва на величину максимального ее смещения.

  3. Розенблат Г.М., Яшина М.В.
    Численно-аналитическое исследование движения маятника Максвелла
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 123-136

    В статье рассматривается задача об устойчивости вертикального положения маятника Максвелла при его периодических движениях вверх-вниз. Рассмотрены два типа переходных движений: остановка — происходит тогда, когда тело маятника в своем самом верхнем положении на нити (при его стандартном движении вверх) на мгновение останавливается; двухзвенный маятник — происходит тогда, когда вся нить с тела маятника выбрана (самое нижнее положение тела на нити при его стандартном движении вниз), и тело вынуждено вращаться относительно нити вокруг точки ее закрепления к телу. Показано, что при любых значениях параметров маятника это положение является неустойчивым в том смысле, что в системе возникают колебания нити около вертикали конечной амплитуды при сколь угодно малых начальных отклонениях. Кроме того, установлено, что никаких ударных явлений при движении маятника Максвелла не возникает, а сама модель этого маятника при часто используемых в литературе значениях его параметров является некорректной по Адамару. В настоящей работе показано, что вертикальное положение нитей маятника при указанных колебательных движениях тела вдоль нитей при любых невырожденных значениях параметров маятника Максвелла всегда является неустойчивым в указанном выше смысле. Причем обусловлена эта неустойчивость именно переходными движениями 2-го типа. В настоящей работе далее показано, что никаких скачков скоростей или ускорений (из-за которых могут происходить удары или рывки в натяжениях нитей) при указанных движениях рассматриваемой модели маятника Максвелла не происходит. На наш взгляд, наблюдаемые в экспериментах рывки обусловлены другими причинами, например техническим несовершенством приборов, на которых производились опыты. В работе показано, что при любых значениях параметров маятника это положение является неустойчивым в том смысле, что в системе возникают колебания нити около вертикали конечной амплитуды при сколь угодно малых начальных отклонениях.

  4. Беляев А.В.
    Стохастические переходы от порядка к хаосу в метапопуляционной модели с миграцией
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 959-973

    Данная работа посвящена исследованию проблемы моделирования и анализа динамических режимов, как регулярных, так и хаотических, в системах связанных популяций в присутствии случайных возмущений. В качестве исходной детерминированной популяционной модели рассматривается дискретная модель Рикера. В работе исследуется динамика двух популяций, связанных миграцией. Миграция пропорциональна разнице между плотностями двух популяций с коэффициентом связи, который отвечает за силу миграционного потока. Изолированные популяционные подсистемы, не учитывающие миграцию и моделируемые отображением Рикера, демонстрируют различные динамические режимы: равновесный, периодический и хаотический. В данной работе в качестве бифуркационного параметра используется коэффициент связи, а также фиксируются параметры естественного прироста популяций, при которых одна изп одсистем находится в равновесном режиме, а во второй преобладает хаотический режим. Связывание двух популяций посредством миграции порождает новые динамические режимы, не наблюдавшиеся в изолированной модели. Целью данной статьи является анализ динамических режимов корпоративной динамики при вариации интенсивности перетоков между популяционными подсистемами. В статье представлен бифуркационный анализа ттракторов детерминированной модели двух связанных популяций, выявлены зоны моно- и бистабильности, даны примеры регулярных и хаотических аттракторов. Основной акцент данной работы сделан на сравнении устойчивости динамических режимов к случайным возмущениям в коэффициенте интенсивности миграции. Методами прямого численного моделирования выявлены и описаны индуцированные шумом переходы с периодического аттрактора на хаотический. В статье представлены результаты анализа стохастических явлений с помощью показателя Ляпунова. Показано, что в рассматриваемой модели существует зона изменения бифуркационного параметра, при котором даже с увеличением интенсивности случайных возмущений не происходит переход от порядка к хаосу. Для аналитического исследования вызванных шумом переходов применены техника функции стохастической чувствительности и метод доверительных областей. В работе показано, как с помощью этого математического аппарата можно предсказать критическую интенсивность шума, вызывающую трансформацию периодического режима в хаотический.

  5. Нестерова А.В., Денисова Н.В., Минин С.М., Анашбаев Ж.Ж., Усов В.Ю.
    Определение поправочных коэффициентов при количественной оценке костных патологических очагов методом гамма-эмиссионной томографии
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 677-696

    При обследовании методом однофотонной эмиссионной компьютерной томографии (ОФЭКТ) пациентам с заболеваниями костной системы вводится радиофармпрепарат (РФП), который специфическим образом накапливается в патологических очагах. Количественные оценки накопления РФП в очагах важны для определения стадии заболевания, прогнозирования его течения и разработки персонализированных терапевтических стратегий. Исследования точности количественных оценок обычно проводятся на основе клинических испытаний in vitro с использованием стандартизированного вещественного фантома NEMA IEC с шестью сферами, имитирующими патологические очаги разных размеров. Однако возможности проведения таких многопараметрических экспериментальных измерений ограничены из-за высокойстоимости и лучевой нагрузки на исследователей. В данной работе развит альтернативный подход на основе имитационного компьютерного моделирования in silico с использованием цифрового двойника фантома NEMA IEC. Компьютерные эксперименты могут проводиться без ограничений с разными сценариями. По аналогии с клиническими испытаниями в численном моделировании оценивался коэффициент восстановления (RCmax), равный отношению максимального значения полученного решения в очаге к его точной величине. Условия моделирования были ориентированы на параметры клинических обследований методом ОФЭКТ/КТ с 99mTc пациентов с заболеваниями и поражениями костной системы. Впервые выполнены исследования зависимости RCmax от величины отношения «очаг/фон» и влияния постфильтрации решения. В численных экспериментах были получены краевые артефакты на изображениях очагов, аналогичные тем, которые наблюдались при измерениях на реальном фантоме NEMA IEC и в клинической практике при обследовании пациентов. Краевые артефакты приводят к нестабильности поведения решения в итерационном процессе и к ошибкам в оценке накопления РФП в очагах. Показано, что постфильтрация снижает влияние этих артефактов, обеспечивая стабильное решение. Однако при этом существенно занижаются оценки решения в небольших очагах, поэтому предложено учитывать полученные в данной работе поправочные коэффициенты при количественной оценке активности в очагах диаметром менее 20 мм.

  6. Алмасри А., Цибулин В.Г.
    Мультистабильность для математической модели тритрофической системы на неоднородном ареале
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 923-939

    Рассматривается пространственно-временная модель тритрофической системы, описывающая взаимодействие жертвы, хищника и суперхищника в среде с неоднородным распределением ресурса. Учитываются всеядность суперхищника (Intraguild Predation, IGP), диффузия и направленная миграция (таксис), который моделируется с помощью логарифмической функции от ресурса и плотности жертвы. Основное внимание уделено анализу мультистабильности системы и роли косимметрии в формировании континуальных семейств стационарных решений. С использованием численно-аналитического подхода изучаются пространственно-однородные и неоднородные стационарные решения. Установлено, что при выполнении дополнительных соотношений между параметрами, характеризующими локальное взаимодействие хищников, и коэффициентами диффузии система обладает косимметрией, что приводит к возникновению семейства устойчивых стационарных решений, пропорциональных функции ресурса. Показано, что косимметрия не зависит от функции ресурса в случае неоднородной среды. Проведено исследование устойчивости стационарных распределений с помощью спектрального метода. Нарушение условий косимметрии приводит к разрушению семейства и появлению изолированных стационарных состояний, а также к длительным переходным процессам, отражающим память системы об исчезнувшем семействе. В зависимости от начальных условий и параметров в системе реализуются переходы к режимам с одним хищником (выживание хищника или суперхищника) или к сосуществованию хищников. Численные эксперименты на основе метода прямых (разностная схема по пространственной переменной и метод Рунге – Кутты для интегрирования по времени) подтверждают мультистабильность системы и иллюстрируют исчезновение семейства решений при разрушении косимметрии.

  7. Миньков Л.Л., Пикущак Е.В., Дик И.Г.
    Исследование влияния инжектирования воды на сепарационные характеристики гидроциклона
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 803-810

    В данной работе на основе численного моделирования исследуются особенности закрученного турбулентного течения монодисперсной суспензии в гидроциклоне с инжектором. Для описания турбулентного поля течения суспензии используется модель рейнольдсовых напряжений и модель смеси для описания параметров частиц в двумерном осесимметричном приближении. Особое внимание уделяется выяснению механизмов воздействия вида инжекции на перестройку гидродинамических полей и в конечном итоге на механизмы классификации. Показано, что тангенциальный способ инжекции сильнее влияет на сепарационную кривую по сравнению с радиальным способом.

  8. Проведен сравнительный анализ двух моделей пористой среды (Дарси и Бринкмана) на примере математического моделирования нестационарных режимов термогравитационной конвекции в пористой вертикальной цилиндрической полости с теплопроводной оболочкой конечной толщины в условиях конвективного охлаждения со стороны окружающей среды. Краевая задача математической физики, сформулированная в безразмерных переменных «функция тока — завихренность — температура», реализована численно неявным методом конечных разностей. Представлены результаты тестовых расчетов и влияния сеточных параметров, отражающие правомерность применения предлагаемого численного подхода. Установлены особенности класса сопряженных задач при использовании рассматриваемых моделей пористой среды.

    Просмотров за год: 1. Цитирований: 4 (РИНЦ).
  9. Степанцов М.Е.
    Дискретная математическая модель системы «власть–общество–экономика» на основе клеточного автомата
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 561-572

    Данная работа посвящена модификации ранее предлагавшегося автором дискретного варианта модели А. П. Михайлова «власть–общество». Эта модификация учитывает социально-экономическое развитие системы и коррупцию в ней по аналогии с непрерывной моделью «власть–общество–экономика–коррупция», но имеет в своей основе стохастический клеточный автомат, описывающий динамику распределения власти в иерархии. Новая версия модели построена путем введения в пространство состояний клетки ранее предлагавшегося клеточного автомата переменных, соответствующих численности населения, объему экономического производства, объему основных производственных фондов и уровню коррупции. Структура социально-экономических зависимостей в системе заимствована из модели Солоу и непрерывной детерминированной модели «власть–общество–экономика–коррупция», однако особенностью новой модели является ее гибкость, позволяющая рассматривать в ее рамках региональные различия во всех параметрах социально-экономического развития, различные модели производства и динамики народонаселения, а также транспортные связи между регионами. Построена имитационная система, включающая три уровня властной иерархии, пять регионов и 100 муниципалитетов, при помощи которой проведен ряд вычислительных экспериментов. В ходе этого исследования получены результаты, указывающие на изменение характера динамики распределения власти при повышении уровня коррупции. Если в отсутствие коррупции (аналогично предыдущей версии модели) распределение власти в иерархии асимптотически стремится к одному из стационарных состояний, то при наличии высокого уровня коррупции объем власти в системе испытывает нерегулярные колебательные изменения и лишь в дальнейшем также сходится к стационарному состоянию. Данные результаты можно содержательно интерпретировать как снижение стабильности властной иерархии при усилении коррупции.

    Просмотров за год: 8. Цитирований: 1 (РИНЦ).
  10. Красняков И.В., Брацун Д.А., Письмен Л.М.
    Математическое моделирование роста карциномы при динамическом изменении фенотипа клеток
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 879-902

    В работе предлагается двумерная хемомеханическая модель роста инвазивной карциномы в ткани эпителия. Каждая клетка ткани представляет собой эластичный многоугольник, изменяющий свою форму и размеры под действием сил давления со стороны ткани. Средние размер и форма клеток были откалиброваны на основе экспериментальных данных. Модель позволяет описывать динамические деформации в ткани эпителия как коллективную эволюцию клеток, взаимодействующих посредством обмена механическими и химическими сигналами. Общее направление роста опухоли задается линейным градиентом концентрации питательного элемента. Рост и деформация ткани осуществляются за счет механизмов деления и интеркаляции клеток. В модели предполагается, что карцинома представляет собой гетерогенное образование, составленное из клеток с разным фенотипом, которые выполняют в опухоли различные функции. Основным параметром, определяющим фенотип клетки, является степень ее адгезии к примыкающей ткани. Выделено три основных фенотипа раковых клеток: эпителиальный (Э) фенотип представлен внутренними клетками опухоли, мезенхимальный (М) фенотип представлен одиночными клетками, промежуточный фенотип представлен фронтальными клетками опухоли. При этом в модели предполагается, что фенотип каждой клетки при определенных условиях может динамически меняться за счет эпителиально-мезенхимального (ЭМ) и обратного к нему (МЭ) переходов. Для здоровых клеток выделен основной Э-фенотип, который представлен обычными клетками с сильной адгезией друг к другу. Предполагается, что здоровые клетки, которые примыкают к опухоли, под воздействием последней испытывают вынужденный ЭМ-переход и образуют М-фенотип здоровых клеток. Численное моделирование показало, что в зависимости от значений управляющих параметров, а также комбинации возможных фенотипов здоровых и раковых клеток эволюция опухоли может приводить к разнообразным структурам, отражающим самоорганизацию клеток опухоли. Проводится сравнение структур, полученных в численном эксперименте, с морфологическими структурами, ранее выявленными в клинических исследованиях карциномы молочной железы: трабекулярной, солидной, тубулярной и альвеолярной структурами, а также дискретными клетками с амебоидным поведением. Обсуждается возможный сценарий морфогенеза и типа инвазивного поведения для каждой структуры. Описан процесс метастазирования, при котором одиночная раковая клетка амебоидного фенотипа, перемещающаяся за счет интеркаляций в ткани здорового эпителия, делится и испытывает МЭ-переход с появлением вторичной опухоли.

    Просмотров за год: 46.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.