Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Применение дискретных методов многокритериальной оптимизации для построения модели цифрового предискажения сигнала усилителя мощности базовой станции
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 281-300Осуществление передачи сигналов сотовой связи — одна из ключевых задач современного мира. Для улучшения сигнала передаваемой информации необходимо чтобы сигнал не искажался при усилении мощности на базовой станции сотовой связи. Поставленную задачу можно решать самыми различными способами, однако одним из самых простых решений, которое широко используется в индустрии, является добавление нелинейных искажений, позволяющих линеаризовать работу усилителя и устранять интермодуляционные искажения в областях спектра, не используемых для передачи сигнала. В силу большой нагрузки и работы в реальном времени модель, осуществляющая данные искажения, не должна быть громоздкой и иметь большое количество адаптируемых параметров. В данной статье производится анализ современных работ по теме многокритериальной оптимизации и построения моделей для решения задачи предискажения сигнала при помощи данных методов. В статье показывается, что возможно найти структуру (сохранив производительность) и имеющую меньшее количество используемых ресурсов, быстрее, чем полный перебор по всему словарю из заданных параметров.
-
Компенсация собственных нелинейных помех на основе смешанного метода Ньютона
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1579-1592В статье исследуется одно из возможных решений задачи компенсации собственных помех (SIC, Self-Interference Cancellation), возникающей при проектировании полнодуплексных (IBFD, In-band Full-Duplex) систем связи. Подавление собственных помех осуществляется в цифровой области с помощью многослойных нелинейных моделей, которые адаптируются на основе метода градиентного спуска. Наличие локальных оптимумов и седловых точек при адаптации многослойных моделей делает невозможным использование методов второго порядка ввиду знаконеопределенности матрицы Гессе.
В данной работе предложено использовать смешанный метод Ньютона (MNM, mixed Newton method), который учитывает информацию о смешанных производных второго порядка функции потерь и, как следствие, обеспечивает высокую скорость сходимости по сравнению с традиционными методами первого порядка. Использование лишь только смешанных частных производных второго порядка при построении матрицы Гессе позволяет избежать проблемы «застревания» в седловых точках при использовании смешанного метода Ньютона для адаптации многослойных нелинейных компенсаторов собственных помех при проектировании полнодуплексных систем связи.
В качестве модели собственных нелинейных помех выбрана модель Гаммерштейна с комплексными параметрами. Данный выбор обусловлен тем, что модель эффективно описывает физические свойства, лежащие в основе формирования собственных помех. Благодаря свойству голоморфности выхода модели смешанный метод Ньютона обеспечивает свойство «отталкивания» от седловых точек в ландшафте функции потерь.
В работе приводятся кривые сходимости при адаптации модели Гаммерштейна смешанным методом Ньютона, а также при помощи классических подходов на основе метода градиентного спуска. Кроме того, приводится вывод предложенного метода, а также оценка вычислительной сложности.
-
Идентификация неоднородного вещества методами импульсной мультиэнергетической томографии
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 621-639В статье рассматриваются математические аспекты проблемы идентификации многокомпонентной рассеивающей среды по данным импульсного мультиэнергетического рентгеновского облучения. Задачи рентгеновской диагностики представляют значительный интерес как с теоретической, так и с практической точки зрения, а радиографические методыне заменимы при неразрушающем контроле изделий.
В рамках математической модели на основе нестационарного интегро-дифференциального уравнения переноса излучения сформулированы обратная задача нахождения коэффициента ослабления по излучению, известному на границе области, и задача идентификации вещества по найденным значениям коэффициента ослабления на дискретном наборе энергий облучения среды. Проведена предварительная обработка широкого списка веществ, представляющих интерес в компьютерной томографии, на предмет возможности их идентификации по приближенно заданному коэффициенту ослабления излучения, характеризующему среду. При анализе степени близости веществ в некоторой норме установлено, что множество всех возможных веществ, потенциально содержащихся в среде, распадается на конечное число непересекающихся кластеров. При достаточно малой длительности зондирующего сигнала рассеивающая составляющая выходящего из среды излучения асимптотически мала. Это обстоятельство позволяет свести обратную задачу для уравнения переноса излучения к задаче обращения преобразования Радона от коэффициента ослабления. Методами численного моделирования на специально разработанном цифровом фантоме анализируется возможность однозначной или частичной идентификации вещества при варьировании длительности зондирующего импульса и числа энергетических уровней облучения среды.
-
Метод расчета электрических свойств насыщенных горных пород, учитывающий поверхностную проводимость
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1081-1088Просмотров за год: 4. Цитирований: 1 (РИНЦ).Предложен новый эффективный численный метод расчета электрических свойств горных пород с двухфазным насыщением типа «нефть–вода». Метод позволяет учитывать влияние поверхностной проводимости двойных электрических слоев, возникающих на контакте скелета породы с водным раствором в поровом пространстве. В основе метода лежит задача нахождения распределения электрического потенциала в трехмерной цифровой модели пористой среды высокого разрешения. Цифровая модель воспроизводит пространственную структуру поровых каналов на микроуровне и содержит элементы сетки объемного и поверхностного типов. Результаты расчетов показывают важность учета поверхностной проводимости.
-
Мониторинг распространения борщевика Сосновского с использованием алгоритма машинного обучения «случайный лес» в Google Earth Engine
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1357-1370Изучение спектрального отклика растений на основе данных, собранных с помощью дистанционного зондирования, имеет большой потенциал для решения реальных проблем в различных областях исследований. В этом исследовании мы использовали спектральные свойства для идентификации инвазивного растения — борщевика Сосновского — по спутниковым снимкам. Борщевик Сосновского — инвазивное растение, которое наносит много вреда людям, животным и экосистеме в целом. Мы использовали выборочные данные о геолокации мест произрастания борщевика в Московской области, собранные с 2018 по 2020 год, и спутниковые снимки Sentinel-2 для спектрального анализа с целью его обнаружения на снимках. Мы развернули модель машинного обучения Random Forest (RF) на облачной платформе Google Earth Engine (GEE). Алгоритм обучается на наборе данных, состоящем из 12 каналов спутниковых снимков Sentinel-2, цифровой модели рельефа и некоторых спектральных индексов, которые используются в алгоритме в качестве параметров. Используемый подход заключается в выявлении биофизических параметров борщевика Сосновского по его коэффициентам отражения с уточнением радиочастотной модели непосредственно по набору данных. Наши результаты наглядно демонстрируют насколько сочетание методов дистанционного зондирования и машинного обучения может помочь в обнаружении борщевика и контроле его инвазивного распространения. Наш подход обеспечивает высокую точность обнаружения очагов произрастания борщевика Сосновского, составляющую 96,93 %.
Ключевые слова: борщевик Сосновского, инвазивные растения, Google Earth Engine, машинное обучение, случайный лес. -
Стохастическая модель числа сторонников политического лидера в цифровом публичном пространстве
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 979-997В представленной статье мы исследуем процесс изменения рейтинга одобрения политического лидера под влиянием процессов, протекающих в цифровом публичном пространстве. Драйвером указанных изменений служит взаимодействие пользователей онлайн-площадок (информационных и новостных ресурсов, блогов, социальных сетей), в результате которого они могут обмениваться друг с другом мнениями и формулировать свою позицию в отношении политика. Помимо межличностного взаимодействия мы рассмотрим такие факторы, как информационное воздействие, выражающееся в создании информационного потока, имеющего заданную мощность и тональность (положительную или отрицательную, в контексте влияния на имидж политического лидера), а также наличие группы агентов (лидеров мнений), оказывающих поддержку политику или же, наоборот, негативно влияющих на его представление в медийном пространстве.
Математической основой представленного исследования является модель Кирмана, имеющая истоки в биологии и первоначально нашедшая свое применение в экономике. В рамках даннойм одели считается, что каждый участник находится в одном из двух возможных состояний, а также задается скачкообразный марковский процесс, описывающий переходы между этими состояниями. Для рассматриваемой нами задачи данными состояниями являются 0 или 1, в зависимости от того, является ли конкретный агент сторонником политика и одобряет его деятельность или же нет. Пользуясь аппаратом теории марковских процессов, мы находим его диффузионное приближение, известное как процесс Якоби. При помощи спектрального разложения для инфинитезимального оператора данного процесса мы имеем возможность найти аналитическое представление для плотности переходных вероятностей.
Анализируя вероятности, полученные указанным образом, можно оценить влияние отдельных факторов модели: мощность и тональность новостных сообщений, доступных для пользователей онлайн-пространства и релевантных для задач формирования рейтинга, а также численности сторонников или противников политика. Далее, пользуясь найденными собственными функциями и значениями, мы выводим выражения для оценки условных математических ожиданий рейтинга политика, что может служить основой для построения прогнозов, важных для задач формирования стратегии представления политического лидера в онлайн-среде.
Ключевые слова: рейтинг одобрения, политическое лидерство, информационное воздействие, стадное поведение, марковскийпр оцесс. -
Стохастическая оптимизация в задаче цифрового предыскажения сигнала
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 399-416В данной статье осуществляется сравнение эффективности некоторых современных методов и практик стохастической оптимизации применительно к задаче цифрового предыскажения сигнала (DPD), которое является важной составляющей процесса обработки сигнала на базовых станциях, обеспечивающих беспроводную связь. В частности, рассматривается два круга вопросов о возможностях применения стохастических методов для обучения моделей класса Винера – Гаммерштейна в рамках подхода минимизации эмпирического риска: касательно улучшения глубины и скорости сходимости данного метода оптимизации и относительно близости самой постановки задачи (выбранной модели симуляции) к наблюдаемому в действительности поведению устройства. Так, в первой части этого исследования внимание будет сосредоточено на вопросе о нахождении наиболее эффективного метода оптимизации и дополнительных к нему модификаций. Во второй части предлагается новая квази-онлайн-постановка задачи и, соответственно, среда для тестирования эффективности методов, благодаря которым результаты численного моделирования удается привести в соответствие с поведением реального прототипа устройства DPD. В рамках этой новой постановки далее осуществляется повторное тестирование некоторых избранных практик, более подробно рассмотренных в первой части исследования, и также обнаруживаются и подчеркиваются преимущества нового лидирующего метода оптимизации, оказывающегося теперь также наиболее эффективным и в практических тестах. Для конкретной рассмотренной модели максимально достигнутое улучшение глубины сходимости составило 7% в стандартном режиме и 5% в онлайн-постановке (при том что метрика сама по себе имеет логарифмическую шкалу). Также благодаря дополнительным техникам оказывается возможным сократить время обучения модели DPD вдвое, сохранив улучшение глубины сходимости на 3% и 6% для стандартного и онлайн-режимов соответственно. Все сравнения производятся с методом оптимизации Adam, который был отмечен как лучший стохастический метод для задачи DPD из рассматриваемых в предшествующей работе [Pasechnyuk et al., 2021], и с методом оптимизации Adamax, который оказывается наиболее эффективным в предлагаемом онлайн-режиме.
Ключевые слова: цифровое предыскажение, обработка сигнала, стохастическая оптимизация, онлайн-обучение. -
Цифровое моделирование геометрических и макрошероховатых параметров автомобильной дороги
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 837-844Просмотров за год: 1. Цитирований: 1 (РИНЦ).Предложено оригинальное представление статистической цифровой модели измерения макрошероховатости на локальном участке (до 15 м) состоящей из детерминированной (уклон), коррелированной (нормативные периодические составляющие и периодические отклонения от ровности) и собственно случайной (значения макрошероховатости) составляющих.
-
Задачи численного моделирования динамики системы «почва–растение»
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 445-465Рассмотрены современные математические модели динамики системы «почва–растение», составляющими которых выступают: растение сельскохозяйственного назначения, микроорганизмы ризосферы (прикорневой зоны растений), элементы минерального питания растений их подвижной и неподвижной форм. На основании анализа принятых положений разработана модель, в которой учитываются взаимосвязи и определенный согласованный характер совместных изменений ее составляющих. В частности, динамика содержащихся в растениях элементов их минерального питания и динамика биомассы растений определяются текущим содержанием в ризосфере внесенных сюда удобрений и отмершими продуктами жизнедеятельности ризосферных элементов (отмершие корни растений, опавшие листья (опад) и т. д.). Полагаются пространственная неподвижность растений и пространственная подвижность микро- организмов, механизм которой определяется здесь диффузией. Предлагаются формальные соотношения влияния суммарного воздействия на динамику растений сорняков (они характеризуют отдельный вид растений) и вредителей (они характеризуют отдельный вид микроорганизмов), где учитываются взаимные переходы элементов минерального питания из подвижной их формы в неподвижную. Для системы, где каждая из составляющих представлена только одним видом (удобрение, ассоциация микроорганизмов и растения представлены только одним видом), выполнено аналитическое исследование. Для однолетних культур сельскохозяйственного назначения разработана адаптация модели распространения волны в системе «ресурс–потребитель» (волны Колмогорова–Петровского–Пискунова). Реализация модели выполнена на примере динамики роста яровой пшеницы Красноуфимская-100 на торфяной низинной почве, куда предварительно были внесены фосфорные и калийные удобрения. Цифровой материал представлен массивом экспериментальных распределений биомассы растений и элементов минерального питания. Специфика экспериментального материала обусловила переход к модели, которая является редукцией сформулированной общей модели. Ее составляющими выступают распределение биомассы растений и содержание в них элементов минерального питания. Оценка адекватности модельных и экспериментальных распределений показала хорошую степень их соответствия.
-
Пространственно-временные модели распространения информационно-коммуникационных технологий
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1695-1712В статье предложен пространственно-временной подход к моделированию диффузии информационно-коммуникационных технологий на основе уравнения Фишера – Колмогорова – Петровского – Пискунова, в котором кинетика диффузии описывается моделью Басса, широко применяемой для моделирования распространения инноваций на рынке. Для этого уравнения изучены его положения равновесия и на основе сингулярной теории возмущений получено приближенное решение в виде бегущей волны, т.е. решение, которое распространяется с постоянной скоростью, сохраняя при этом свою форму в пространстве. Скорость волны показывает, на какую величину за единичный интервал времени изменяется пространственная характеристика, определяющая данный уровень распространения технологии. Эта скорость существенно выше скорости, с которой происходит распространение за счет диффузии. С помощью построения такого автоволнового решения появляется возможность оценить время, необходимое субъекту исследования для достижения текущего показателя лидера.
Полученное приближенное решение далее было применено для оценки факторов, влияющих на скорость распространения информационно-коммуникационных технологий по федеральным округам Российской Федерации. Вк ачестве пространственных переменных для диффузии мобильной связи среди населения рассматривались различные социально-экономические показатели. Полюсы роста, в которых возникают инновации, обычно характеризуются наивысшими значениями пространственных переменных. Для России таким полюсом роста является Москва, поэтому в качестве факторных признаков рассматривались показатели федеральных округов, отнесенные к показателям Москвы. Наилучшее приближение к исходным данным было получено для отношения доли затрат на НИОКР в ВРП к показателю Москвы, среднего за период 2000–2009 гг. Было получено, что для УФО на начальном этапе распространения мобильной связи отставание от столицы составило менее одного года, для ЦФО, СЗФО — 1,4 года, для ПФО, СФО, ЮФО и ДВФО — менее двух лет, для СКФО — немногим более двух лет. Кроме того, получены оценки времени запаздывания распространения цифровых технологий (интранета, экстранета и др.), применяемых организациями федеральных округов РФ, относительно показателей Москвы.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





