Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'характеристики':
Найдено статей: 226
  1. Любушин А.А., Фарков Ю.А.
    Синхронные компоненты финансовых временных рядов
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 639-655

    В статье предлагается метод совместного анализа многомерных финансовых временных рядов, основанный на оценке набора свойств котировок акций в скользящем временном окне и последующем усреднении значений свойств по всем анализируемым компаниям. Основной целью анализа является построение мер совместного поведения временных рядов, реагирующих на возникновение синхронной или когерентной составляющей. Когерентность поведения характеристик сложной системы является важным признаком, позволяющим оценить приближение системы к резким изменениям своего состояния. Фундаментом для поиска предвестников резких изменений является общая идея увеличения корреляции случайных флуктуаций параметров системы по мере ее приближения к критическому состоянию. Приращения временных рядов стоимостей акций имеют выраженный хаотический характер и обладают большой амплитудой индивидуальных помех, на фоне которых слабый общий сигнал может быть выделен лишь на основе его коррелированности в разных скалярных компонентах многомерного временного ряда. Известно, что классические методы анализа, основанные на использовании корреляций между соседними отсчетами, являются малоэффективными при обработке финансовых временных рядов, поскольку с точки зрения корреляционной теории случайных процессов приращения стоимости акций формально имеют все признаки белого шума (в частности, «плоский спектр» и «дельта-образную» автокорреляционную функцию). В связи с этим предлагается перейти от анализа исходных сигналов к рассмотрению последовательностей их нелинейных свойств, вычисленных во временных фрагментах малой длины. В качестве таких свойств используются энтропия вейвлет-коэффициентов при разложении в базис Добеши, показатели мультифрактальности и авторегрессионная мера нестационарности сигнала. Построены меры син- хронного поведения свойств временных рядов в скользящем временном окне с использованием метода главных компонент, значений модулей всех попарных коэффициентов корреляции и множественной спектральной меры когерентности, являющейся обобщением квадратичного спектра когерентности между двумя сигналами. Исследованы акции 16 крупных российских компаний с начала 2010 по конец 2016 годов. С помощью предложенного метода идентифицированы два интервала времени синхронизации российского фондового рынка: с середины декабря 2013 г. по середину марта 2014 г. и с середины октября 2014 г. по середину января 2016 г.

    Просмотров за год: 12. Цитирований: 2 (РИНЦ).
  2. В результате всесторонних теоретических исследований в работе создана достаточно подробная физико-математическая модель возмущенной области, образованной в нижнем D-слое ионосферы под действием направленного потока радиоизлучения от наземного стенда мегагерцового диапазона частот. Модель основана на рассмотрении широкого круга кинетических процессов с учетом их неравновесности и в двухтемпературном приближении для описания трансформации энергии радиолуча, поглощаемой электронами. В работе взяты исходные данные по радиоизлучению, достигнутые к настоящему времени на наиболее мощных радионагревных стендах. Кратко описаны их основные характеристики и принципы действия, а также особенности высотного распределения поглощаемой электромагнитной энергии радиолуча. Показана определяющая роль D-слоя ионосферы в поглощении энергии радиолуча. На основе теоретического анализа получены аналитические выражения для вклада различных неупругих процессов в распределение поглощаемой энергии, позволяющая достаточно полно и корректно описывать вклад каждого из учитываемых процессов. В работе учитывается более 60 компонент, для описания изменения концентраций использовалось около 160 реакций. Все реакции разбиты на пять групп в соответствии с их физическим содержанием: ионизационно-химический блок, блок возбуждения метастабильных электронных состояний, кластерный блок, блок возбуждения колебательных состояний и блок примесей. Блоки взаимосвязаны между собой и могут рассчитываться как совместно, так и раздельно. Показано, что в дневных и ночных условиях поведение параметров возмущенной области существенно различно при одной и той же плотности потока радиоизлучения: в дневных условиях максимум электронной концентрации и температуры приходиться на высоте ~ 45–55 км; в ночных — на высоты ~ 80 км, при этом температура тяжелых частиц быстро возрастает, что приводит к возникновению газодинамического течения. Поэтому был разработан специальный численный алгоритм для совместного решения двух основных задач рассматриваемой проблемы: кинетической и газодинамической. На основе высотного и временного поведения концентраций и температур алгоритм позволяет определить ионизацию и свечение ионосферы в видимом и ИК-диапазоне спектра, что дает возможность оценить влияние возмущенной области на радиотехнические и оптико-электронные средства, используемые в космической технике.

    Просмотров за год: 17.
  3. Андрущенко В.А., Ступицкий Е.Л.
    Численные исследования структуры возмущенных областей, образованных мощными взрывами на различных высотах. Обзор
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 97-140

    В основу обзора положены некоторые ранние работы авторов, представляющие определенный научный, методический и практический интерес; наибольшее внимание уделено работам последних лет, где выполнены достаточно подробные численные исследования не только одиночных, но также двойных и множественных взрывов в широком диапазоне высот и условий в окружающей среде. Так как в нижней атмосфере ударная волна мощного взрыва является одним из главных поражающих факторов, то в обзоре большое внимание уделено физическому анализу их распространения и взаимодействия. С помощью разработанных авторами трехмерных алгоритмов рассмотрены интересные с физической точки зрения эффекты интерференции и дифракции нескольких ударных волн в отсутствие и при наличии подстилающей поверхности различной структуры. Определены количественные характеристики в области их максимальных значений, что представляет известный практический интерес. Для взрывов в плотной атмосфере найдены некоторые новые аналитические решения на основе метода малых возмущений, удобные для приближенных расчетов. Для ряда условий показана возможность использования автомодельных свойств уравнений первого и второго рода для решения задач о развитии взрыва.

    На основе численного анализа показано принципиальное изменение в структуре развития возмущенной области при изменении высоты взрыва в диапазоне 100–120 км. На высотах более 120 км геомагнитное поле начинает влиять на развитие взрыва, поэтому даже для одиночного взрыва картина плазменного течения через несколько секунд становится существенно трехмерной. Для расчета взрывов на высотах 120–1000 км под руководством академика Холодова А. С. был разработан специальный трехмерный численный алгоритм на основе МГД-приближения. Были выполнены многочисленные расчеты и впервые получена достаточно подробная картина трехмерного течения плазмы взрыва с образованием через 5–10 с восходящей струи, направленной в меридиональной плоскости примерно по геомагнитному полю. После некоторой модификации данный алгоритм использовался для расчета двойных взрывов в ионосфере, разнесенных на некоторое расстояние. Взаимодействие между ними осуществлялось как плазменными потоками, так и через геомагнитное поле. Некоторые результаты приведены в данном обзоре и подробно изложены в оригинальных статьях.

  4. Пыреев А.О., Тарасов Ю.А.
    Применение технологий численного моделирования при проектировании систем отделения самовыходом
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 597-606

    В статье изложены основные положения методики расчета отделения полезной нагрузки (объектов различного назначения с собственным движительным комплексом) от подводного носителя методом самовыхода с использованием современных методов численной гидродинамики (CFD-технологий). Приводится описание метода отделения самовыходом, его достоинства и недостатки. Приводятся результаты исследования сходимости по сетке конечно-объемной модели по критерию «точность–время», а также результаты сопоставления расчета с экспериментом (валидации модели). Валидация модели проводилась по имеющимся данным экспериментального определения тяговых характеристик водометного движительного комплекса натурного образца в опытовом бассейне. Расчеты тяговых характеристик водометного движительного комплекса проводились с применением программного комплекса FlowVision версии 3.10. На основании сопоставления результатов расчетов для условий проведения экспериментов была определена погрешность расчетной модели водометного движительного комплекса, которая составила не более 5 % в диапазоне поступей работы водометного движительного комплекса, реализуемых в процессе отделения методом самовыхода. Полученное значение погрешности расчета тяговых характеристик используется для определения предельных расчетных значений скорости отделения объекта от носителя (минимальные и максимальные значения). Рассмотренная задача является значимой с научной точки зрения благодаря особенностям подхода к моделированию водометного движительного комплекса совместно с движением отделяемого объекта, а также с практической точки зрения благодаря возможности получения с высокой степенью достоверности параметров отделения объектов от подводных аппаратов методом самовыхода, условия работы которых предполагают движение в замкнутых объемах, уже на стадии проектирования.

  5. Бруяка В.А.
    Моделирование течения тонкого слоя жидкости с учетом разрывов и шероховатости границ
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 795-806

    Рассматривается задача о течении жидкости в тонком слое между шероховатыми поверхностями с учетом их сближения и разрывов слоя в местах гребневого контакта микронеровностей. Пространство между поверхностями рассматривается как пористая среда с переменной проницаемостью, зависящей от микропрофиля шероховатости и степени сближения поверхностей. Для получения зависимости проницаемости от сближения поверхностей выполняется расчет течения жидкости на малом участке слоя (100 мкм), для которого микропрофиль шероховатости моделируется с помощью фрактальной функции Вейерштрасса – Мандельброта. Расчетной является трехмерная область, заполняющая пустоты между выступами и впадинами микропрофилей поверхностей, расположенных на некотором расстоянии друг от друга. Сближение поверхностей приводит к тому, что в местах пересечения гребней микронеровностей появляются разрывы расчетной области. При заданном сближении и граничных условиях рассчитывается расход жидкости и перепад давления, на основании которых вычисляется проницаемость эквивалентной пористой среды. Результаты расчетов проницаемости, полученные для различных сближений шероховатых поверхностей, аппроксимированы степенной функцией. Это позволяет рассчитывать характеристики течения в тонком слое переменной толщины, имеющем характерную длину на несколько порядков больше масштабов шероховатости. В качестве примера, иллюстрирующего практическое применение данной методики, получено решение задачи о течении жидкости в зазоре между заготовкой и матрицей при гидропрессовании в трехмерной постановке при условии линейного уменьшения проницаемости эквивалентного пористого слоя.

  6. Акимов С.В., Борисов Д.В.
    Моделирование центробежных насосов с использованием программного комплекса FlowVision
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 907-919

    В работе представлена методика моделирования центробежных насосов с использованием программного комплекса (ПК) FlowVision на примере магистрального нефтяного центробежного насоса НМ 1250-260. В качестве рабочего тела как при стендовых испытаниях, так и при численном моделировании используется вода. Расчет проводится в полной трехмерной постановке. Для учета утечек через уплотнения моделирование проводится вместе с корпусом насоса. С целью уменьшения требуемых вычислительных ресурсов в работе предлагается не моделировать течение в уплотнениях напрямую, а задавать утечки с помощью расхода. Влияние шероховатости поверхностей насоса учитывается в модели пристеночных функций. Модель пристеночных функций использует эквивалентную песочную шероховатость, и в работе применяется формула пересчета реальной шероховатости в эквивалентную песочную. Вращение рабочего колеса моделируется с помощью метода скользящих сеток: данный подход полностью учитывает нестационарное взаимодействие между ротором и диффузором насоса, что позволяет с высокой точностью разрешить рециркуляционные вихри, возникающие на режимах с низкой подачей.

    Разработанная методика позволила добиться высокой согласованности результатов моделирования с экспериментом на всех режимах работы насоса. Отклонение на номинальном режиме по КПД составляет 0,42%, по напору — 1,9%. Отклонение расчетных характеристик от экспериментальных растет по мере увеличения подачи и достигает максимума на крайней правой точке характеристики (до 4,8% по напору). При этом среднее арифметическое относительное отклонение между численным моделированием и экспериментом для КПД насоса по шести точкам составляет 0,39% при погрешности измерения КПД в эксперименте 0,72%, что удовлетворяет требованиям к точности расчетов. В дальнейшем данная методика может быть использована для проведения серии оптимизационных и прочностных расчетов, так как моделирование не требует существенных вычислительных ресурсов и учитывает нестационарный характер течения в насосе.

  7. Айнбиндер Р.М., Рассадин А.Э.
    О миграции популяции по экологической нише с пространственно неоднородной локальной емкостью
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 483-500

    Статья посвящена описанию процесса миграции некоторой популяции с учетом пространственной неоднородности локальной емкости экологической ниши. Предполагается, что эта пространственная неоднородность обусловлена различными природными или искусственными факторами. Математическая модель рассматриваемого процесса миграции представляет собой задачу Коши на прямой для некоторого квазилинейного уравнения в частных производных первого порядка, которому удовлетворяет линейная плотность численности рассматриваемой популяции. В данной работе найдено общее решение этой задачи Коши для произвольной зависимости локальной емкости экологической ниши от пространственной координаты. Это общее решение было применено для описания миграции рассматриваемой популяции в двух различных случаях: в случае зависимости локальной емкости экологической ниши от пространственной координаты в виде гладкой ступеньки и в случае холмообразной зависимости локальной емкости экологической ниши от пространственной координаты. В обоих случаях решение задачи Коши выражается через высшие трансцендентные функции. Наложением специальных соотношений на параметры модели эти высшие трансцендентные функции сводятся к элементарным функциям, что позволяет получить точные решения модели в явном виде, выраженные через элементарные функции. С помощью этих точных решений реализована обширная программа вычислительных экспериментов, показывающих, как начальная плотность популяции гауссовской формы рассеивается на рассмотренных двух видах пространственной неоднородности локальной емкости экологической ниши. Эти вычислительные эксперименты показали, что при прохождении и через ступенеобразную, и через холмообразную пространственную неоднородность локальной емкости экологической ниши с узкой, по сравнению с характерным пространственным масштабом этих неоднородностей, шириной гауссоиды ее начальной плотности система забывает свое начальное состояние. В частности, если интерпретировать исследуемую систему как популяцию, обитающую в протяженной спокойной прямолинейной реке вдоль ее русла, то можно утверждать, что при таком начальном условии после того, как течение этой реки пронесет рассматриваемую популяцию через область пространственной неоднородности локальной емкости экологической ниши, плотность численности популяции становится квазипрямоугольной функцией.

  8. Москалев П.В., Стебулянин М.М., Мягков А.С.
    Влияние пространственного разрешения на оптимальность пути мобильного робота в двумерных решеточных моделях
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1131-1148

    В данной работе исследуется влияние пространственного разрешения дискретизированного (решеточного) представления рабочего пространства на эффективность и корректность поиска оптимального пути в сложных условиях. Рассматриваются сценарии, характеризующиеся возможным наличием узких проходов, неоднородным распределением препятствий и зонами повышенных требований к безопасности в непосредственной окрестности от препятствий. Несмотря на широкое применение решеточных представлений рабочего пространства в робототехнике благодаря их совместимости с сенсорными данными и поддержке классических алгоритмов планирования траекторий, разрешение этих решеток оказывает существенное влияние как на достижимость цели, так и на показатели оптимального пути. Предлагается алгоритм, сочетающий анализ связности пространства, оптимизацию траектории и геометрическое уточнение безопасности. На первом этапе с помощью обобщения алгоритма Лиса (Leath) оценивается достижимость целевой точки путем выявления связной компоненты, содержащей стартовую позицию. При подтверждении достижимости целевой точки на втором этапе алгоритм A* применяется к узлам данной компоненты для построения пути, минимизирующего одновременно как длину пути, так и риск столкновения. На третьем этапе для узлов, расположенных в зонах безопасности, осуществляется уточненная оценка расстояния до препятствий с помощью комбинации алгоритмов Гилберта – Джонсона – Кирти (GJK) и расширяющегося многогранника (EPA). Экспериментальный анализ позволил выявить нелинейную зависимость вероятности существования и эффективности оптимального пути от параметров решетки. В частности, снижение пространственного разрешения решетки повышает вероятность потери связности и недостижимости цели, а увеличение ее пространственного разрешения влечет рост вычислительной сложности без пропорционального улучшения характеристик оптимального пути.

  9. По данным многолетнего (с 1978 по 1988 г.) гидробиологического мониторинга водных объектов бассейна реки Дон проведен расчет параметров ранговых распределений и индексов доминирования численностей видов фитопланктона. Рассчитаны границы исследуемых характеристик, соответствующие границам благополучия - неблагополучия состояния фитопланктонных сообществ. Найдены экологически допустимые уровни для основных абиотических факторов. Выяснен вклад каждого из анализируемых факторов в степень экологического неблагополучия.

    Просмотров за год: 1.
  10. Глякина А.В., Галзитская О.В., Балабаев Н.К.
    Исследование механических свойств иммуноглобулинсвязывающих доменов белков L и G методом молекулярной динамики
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 73-81

    Механическое разворачивание под действием внешних сил двух похожих по пространственной структуре, но отличающихся по аминокислотной последовательности иммуноглобулинсвязывающих доменов белков L и G исследуется методом молекулярной динамики с использованием явной модели растворителя. Рассчитаны механические характеристики этих белков. Показано, что на пути механического разворачивания обоих белков появляются промежуточные состояния. Проведенные расчеты выявили три существенно различающихся пути механического разворачивания белков L и G.

    Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.