Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Глобальный бифуркационный анализ системы Лесли – Говера с аддитивным эффектом Олли и функциональным откликом Холлинга
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 125-138В статье рассматриваются модели «хищник – жертва» и проводится глобальный бифуркационный анализ системы Лесли – Говера с аддитивным эффектом Олли и упрощенным функциональным откликом Холлинга III типа, которая моделирует динамику популяций хищников и их жертв в заданной экологической или биомедицинской системе. В данной системе используется наиболее распространенная математическая форма выражения эффекта (или закона) Олли через функцию роста жертвы. Закон Олли гласит, что существует вполне определенное соотношение между индивидуальной приспособленностью к условиям жизни и численностью либо плотностью индивидов данного вида, а именно: с увеличением численности популяции способность к выживанию и репродуктивная способность также увеличиваются. После алгебраических преобразований рациональную систему Лесли – Говера с аддитивным эффектом Олли и упрощенным функциональным откликом Холлинга III типа можно записать в виде квинтико-секстичной динамической системы, т.е. в виде системы с полиномами пятой и шестой степени. Используя информацию о ее особых точках и применяя наш бифуркационно-геометрический подход к качественному анализу, мы изучаем глобальные бифуркации предельных циклов квинтико-секстичной системы. Чтобы контролировать все бифуркации предельных циклов, особенно бифуркации кратных предельных циклов, необходимо знать свойства и комбинировать действия всех параметров, поворачивающих векторное поле системы. Это может быть сделано с помощью принципа окончания Уинтнера – Перко, согласно которому максимальное однопараметрическое семейство кратных предельных циклов заканчивается либо в особой точке, которая, как правило, имеет ту же кратность (цикличность), либо на сепаратрисном цикле, который также, как правило, имеет ту же кратность (цикличность). Этот принцип является следствием принципа естественного окончания, который был сформулирован для многомерных динамических систем Уинтнером, который изучал однопараметрические семейства периодических орбит ограниченной задачи трех тел и доказал, что в аналитическом случае любое однопараметрическое семейство периодических орбит может быть однозначно продолжено через любую бифуркацию, кроме бифуркации удвоения периода. Применяя планарный принцип Уинтнера – Перко, мы доказываем, что если цикличность фокуса в рассматриваемой системе равна трем, то система может иметь не более трех предельных циклов, окружающих одну особую точку.
-
Исследование образования комплекса флаводоксина и фотосистемы 1 методами прямого многочастичного компьютерного моделирования
Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 85-91Просмотров за год: 4. Цитирований: 2 (РИНЦ).С помощью компьютерной модели, основанной на методах многочастичного прямого моделирования и броуновской динамики, изучается кинетика образования комплекса между компонентами фотосинтетической электронтранспортной цепи — белком флаводоксином и мембранным комплексом фотосистемы 1. Моделируется броуновское движение нескольких сотен молекул флаводоксина, учитываются электростатические взаимодействия и сложная форма молекул. С помощью данной модели удалось воспроизвести экспериментальную немонотонную зависимость константы связывания флаводоксина с фотосистемой 1. Это говорит о том, что для описания такого вида зависимости достаточно учета только электростатических взаимодействий.
-
Стехиометрия метаболических путей в динамике клеточных популяций
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 455-475Просмотров за год: 5. Цитирований: 1 (РИНЦ).Проанализированы проблемы соответствия кинетических моделей клеточного метаболизма описываемому ими объекту. Изложены основы стехиометрии полного метаболизма и его больших частей. Описана биоэнергетическая форма стехиометрии, основанная на универсальной единице восстановленности химических соединений (редоксон). Выведены уравнения материально-энергетического баланса (биоэнергетической стехиометрии) метаболических потоков, в том числе баланса протонов с высоким электрохимическим потенциалом μH+ и макроэргических соединений. Получены соотношения, выражающие выход биомассы, скорость потребления источника энергии для роста и другие физиологически важные величины через биохимические характеристики клеточной энергетики. Вычислены значения максимального энергетического выхода биомассы при использовании клетками различных источников энергии. Эти значения совпадают с экспериментальными данными.
-
Математическая модель гидридного фазового перехода в частице порошка симметричной формы
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 569-584В статье предложена математическая модель фазового перехода на примере гидрирования/дегидрирования порошка металла. Рассматривается одна частица, форма которой обладает некоторой симметрией. Шар, цилиндр и плоская пластина являются частными случаями симметричных форм. Модель описывает как сценарий «сжимающегося ядра» (формирование слоя новой фазы на поверхности частицы с его последующим утолщением), так и сценарий «образования и роста зародышей», при которых сплошной слой не формируется до полного исчезновения старой фазы. Модель представляет собой неклассическую диффузионную краевую задачу со свободной границей и нелинейными граничными условими III рода. Предположения симметрии позволяют свести задачу к одной пространственной переменной. Модель апробирована на серии экспериментальных данных. Показано, что влияние формы частиц на кинетику несущественно. Также показано, что ансамбль частиц различных форм с распределением по размерам может быть аппроксимирован одной частицей «среднего» размера простой формы, что оправдывает использование в моделях упрощающих предположений.
Ключевые слова: гидрирование, дегидрирование, фазовый переход, математическое моделирование, симметрия формы.Просмотров за год: 2. Цитирований: 2 (РИНЦ). -
Долгосрочная макромодель мировой динамики на основе эмпирических данных
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 883-891Просмотров за год: 4. Цитирований: 3 (РИНЦ).В работе обсуждаются методические основы и проблемы моделирования мировой динамики. Излагаются подходы к построению новой имитационной модели глобального развития и первичные результаты моделирования. В основу построения модели положен эмпирический подход, основанный на анализе статистики основных социально-экономических показателей. На основании этого анализа выделены основные переменные. Для этих переменных составлены динамические уравнения (в непрерывно-дифференциальной форме). Связи между переменными подбирались исходя из динамики соответствующих показателей в прошлом и на основании экспертных оценок, при этом использовались эконометрические методы, основанные на регрессионном анализе. Были проведены расчеты по полученной системе динамических уравнений, результаты представлены в виде пучка траекторий для тех показателей, которые непосредственно наблюдаемы и по которым имеется статистика. Таким образом, имеется возможность оценить разброс траекторий и понять прогнозные возможности представленной модели.
-
О возможных преобразованиях в фитоценозах Азовского моря при потеплении
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 981-991Рассмотрены основные современные сценарии изменений гидрохимического и температурного режимов вод Азовского моря на долгосрочную перспективу. Предложены новые схемы моделей механизмов адаптации водорослей к изменениям гидрохимического режима и температуры среды. По сравнению с традиционными эколого-эволюционными схемами данные модели имеют относительно малую размерность, высокое быстродействие и позволяют проводить разнообразные расчеты на многолетнюю перспективу (эволюционно значимые времена). На основе математической эколого-эволюционной модели нижних трофических уровней экосистемы оценено влияние изменения указанных факторов среды на динамику биомасс и микроэволюцию азовских водорослей. В каждом сценарии расчеты производились на 100 лет, при этом устанавливались финальные значения переменных и параметров, не зависящие от выбора момента старта в модели. В процессе такого асимптотического компьютерного анализа обнаружено, что в результате потепления климата и температурной адаптации организмов происходит естественное увеличение среднегодовой биомассы теплолюбивых водорослей (Pyrrophyta и Cyanophyta). Однако для ряда диатомовых водорослей (Bacillariophyta), даже с учетом их температурной адаптации, среднегодовая биомасса может неожиданно уменьшиться. Вероятно, это явление связано с ужесточением конкуренции между видами с близкими температурными параметрами существования. Также было исследовано воздействие вариации химического состава стока р. Дон на динамику биогенных веществ и водорослей Азовского моря. Оказалось, что соотношение органических форм азота и фосфора в водах моря мало изменяется. Данное явление стабилизации будет иметь место для всех высокопродуктивных водоемов с низкой проточностью, так как обусловлено преимущественно автохтонным происхождением органического вещества.
Ключевые слова: математическая модель, Азовское море, температура вод, биогенные вещества, фитоценозы, механизмы адаптации.Просмотров за год: 11. -
Технология сбора исходных данных для построения моделей оценки функционального состояния человека по зрачковой реакции на изменение освещенности в решении отдельных задач обеспечения транспортной безопасности
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 417-427В данной статье решается задача разработки технологии сбора исходных данных для построения моделей оценки функционального состояния человека. Данное состояние оценивается по зрачковой реакции человека на изменение освещенности на основе метода пупиллометрии. Данный метод предполагает сбор и анализ исходных данных (пупиллограмм), представленных в виде временных рядов, характеризующих динамику изменения зрачков человека на световое импульсное воздействие. Анализируются недостатки традиционного подхода к сбору исходных данных с применением методов компьютерного зрения и сглаживания временных рядов. Акцентируется внимание на важности качества исходных данных для построения адекватных математических моделей. Актуализируется необходимость ручной разметки окружностей радужной оболочки глаза и зрачка для повышения точности и качества исходных данных. Описываются этапы предложенной технологии сбора исходных данных. Приводится пример полученной пупиллограммы, имеющей гладкую форму и не содержащей выбросы, шумы, аномалии и пропущенные значения. На основе представленной технологии разработан программно-аппаратный комплекс, представляющий собой совокупность специального программного обеспечения, имеющего два основных модуля, и аппаратной части, реализованной на базе микрокомпьютера Raspberry Pi 4 Model B, с периферийным оборудованием, реализующим заданный функционал. Для оценки эффективности разработанной технологии используются модели однослойного персептрона и коллектива нейронных сетей, для построения которых использовались исходные данные о функциональном состоянии утомления человека. Проведенные исследования показали, что применение ручной разметки исходных данных (по сравнению с автоматическими методами компьютерного зрения) приводит к снижению числа ошибок 1-го и 2-года рода и, соответственно, повышению точности оценки функционального состояния человека. Таким образом, представленная технология сбора исходных данных может эффективно использоваться для построения адекватных моделей оценки функционального состояния человека по зрачковой реакции на изменение освещенности. Использование таких моделей актуально в решении отдельных задач обеспечения транспортной безопасности, в частности мониторинга функционального состояния водителей.
-
Суррогатная нейросетевая модель для восстановления поля течения в серийных расчетах стационарных турбулентных течений с разрешением пристенной области
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1195-1216При моделировании турбулентных течений в практических приложениях часто приходится проводить серии расчетов для тел близкой топологии. Например, тел, отличающихся формой обтекателя. Применение сверточных нейронных сетей позволяет сократить количество расчетов серии, восстановив часть из них по уже проведенным расчетам. В работе предлагается метод, позволяющий применить сверточную нейронную сеть независимо от способа построения вычислительной сетки. Для этого проводится переинтерполяция поля течения на равномерную сетку вместе с самим телом. Геометрия тела задается с помощью функции расстояния со знаком и маскирования. Восстановление поля течения на основании части расчетов для схожих геометрий проводится с помощью нейронной сети типа UNet с пространственным механизмом внимания. Разрешение пристенной области, являющееся критически важным условием при турбулентном моделировании, производится на основании уравнений, полученных в методе пристенной декомпозиции.
Демонстрация метода приводится для случая обтекания скругленной пластины турбулентным потоком воздуха с различным скруглением при фиксированных параметрах набегающего потока с числом Рейнольдса $Re = 10^5$ и числом Маха $M = 0,15$. Поскольку течения с такими параметрами набегающего потока можно считать несжимаемыми, исследуются непосредственно только компоненты скорости. Проводится сравнение полей течения, профилей скорости и трения на стенке, полученных суррогатной моделью и численно. Анализ проводится как на пластине, так и на скруглении. Результаты моделирования подтверждают перспективность предлагаемого подхода. В частности, было показано, что даже в случае использования модели на максимально допустимых границах ее применимости трение может быть получено с точностью до 90%. Также в работе проводится анализ построенной архитектуры нейронной сети. Полученная суррогатная модель сравнивается с альтернативными моделями, построенными на основании вариационного автоэнкодера или метода главных компонент с использованием радиальных базисных функций. На основании этого сравнения демонстрируются преимущества предложенного метода.
-
Выбор оптимальных схем посадки лесных культур: компьютерный эксперимент
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 333-343Просмотров за год: 2. Цитирований: 2 (РИНЦ).В статье проанализированы результаты компьютерного эксперимента по оценке влияния пространственного размещения (схем посадки) деревьев на продукционный процесс и динамику почвенного плодородия в лесных плантациях. Для имитации роста плантаций нативной формы осины (Populus tremula L.) с коротким (30 лет) оборотом рубки использована система моделей EFIMOD и почвенно-климатические данные, соответствующие условиям лесной зоны Республики Марий Эл. По результатам модельных оценок, схемы посадки с расстоянием между деревьями в ряду 1–4 м и междурядьями 4–6 м характеризуются наибольшими показателями продукции биомассы, повышением почвенных запасов органического вещества и минимальными потерями азота почв за оборот рубки.
-
О границе упругопластических тел минимального объема
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 503-515Просмотров за год: 8.В статье изучаются упругопластические тела минимального объема. Часть границы всех рассматриваемых тел закреплена в одних и тех же точках пространства, на остальной части граничной поверхности заданы напряжения (загруженная поверхность). Форма загруженной поверхности может изменяться в пространстве, но при этом коэффициент предельной нагрузки, вычисленный в предположении, что тела заполнены упругопластической средой, не должен быть меньше фиксированного значения. Кроме того, предполагается, что все варьируемые тела содержат внутри себя некоторое эталонное многообразие ограниченного объема.
Поставлена следующая задача: какое максимальное количество полостей (или отверстий в двумерном случае) может иметь тело (пластина) минимального объема при сформулированных выше ограничениях? Установлено, что для того, чтобы задача была математически корректно сформулирована, необходимо потребовать выполнения двух дополнительных условий: площади отверстий должны превосходить малую константу, а общая длина контуров внутренних отверстий в оптимальной фигуре должна быть минимальна среди варьируемых тел. Таким образом, в отличие от большинства работ по оптимальному проектированию упругопластических систем, когда осуществляется параметрический анализ приемлемых решений при заданной топологии, в работе проводится поиск топологического параметра связности проектируемой конструкции.
Изучается случай, когда коэффициент предельной нагрузки для эталонного многообразия достаточно велик, а площади допустимых отверстий в варьируемых пластинах превосходят малую константу. Приводятся аргументы, подтверждающие, что в этих условиях оптимальная фигура является стержневой системой Максвелла или Мичелла. В качестве примеров представлены микрофотографии типичных для биологических систем костных тканей. Показано, что в системе Мичелла не может быть внутренних отверстий большой площади. В то же время в стержневом наборе Максвелла могут существовать значительные по площади отверстия. Приводятся достаточные условия, когда в оптимальной по объему сплошной пластинке можно образовать отверстия. Результаты допускают обобщения и на трехмерные упругопластичные конструкции.
Статья завершается формулировкой математических проблем, вытекающих из постановки новой задачи оптимального проектирования упругопластических систем.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"