Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Иерархический метод математического моделирования стохастических тепловых процессов в сложных электронных системах
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 613-630В работе развивается иерархический метод математического и компьютерного моделирования интервально-стохастических тепловых процессов в сложных электронных системах различного назначения. Разработанная концепция иерархического структурирования отражает как конструктивную иерархию сложной электронной системы, так и иерархию математических моделей процессов теплообмена. Тепловые процессы, учитывающие разнообразные физические явления в сложных электронных системах, описываются системами стохастических, нестационарных и нелинейных дифференциальных уравнений в частных производных, и в силу этого их компьютерное моделирование наталкивается на значительные вычислительные трудности даже с применением суперкомпьютеров. Иерархический метод позволяет избежать указанных трудностей. Иерархическая структура конструкции электронной системы в общем случае характеризуется пятью уровнями: 1 уровень — активные элементы ЭС (микросхемы, электро-, радиоэлементы); 2 уровень — электронный модуль; 3 уровень — панель, объединяющая множество электронных модулей; 4 уровень — блок панелей; 5 уровень — стойка, установленная в стационарном или подвижном помещении. Иерархия моделей и моделирования стохастических тепловых процессов строится в порядке, обратном иерархической структуре конструкции электронной системы, при этом моделирование интервально-стохастических тепловых процессов осуществляется посредством получения уравнений для статистических мер. Разработанный в статье иерархический метод позволяет учитывать принципиальные особенности тепловых процессов, такие как стохастический характер тепловых, электрических и конструктивных факторов при производстве, сборке и монтаже электронных систем, стохастический разброс условий функционирования и окружающей среды, нелинейные зависимости от температуры факторов теплообмена, нестационарный характер тепловых процессов. Полученные в статье уравнения для статистических мер стохастических тепловых процессов представляют собой систему 14-ти нестационарных нелинейных дифференциальных уравнений первого порядка в обыкновенных производных, решение которых легко реализуется на современных компьютерах существующими численными методами. Рассмотрены результаты применения метода при компьютерном моделировании стохастических тепловых процессов в электронной системе. Иерархический метод применяется на практике при тепловом проектировании реальных электронных систем и создании современных конкурентоспособных устройств.
Ключевые слова: стохастический, тепловой процесс, статистические меры, математическое моделирование, электронные системы.Просмотров за год: 3. -
Нейросетевой анализ транспортных потоков городских агломераций на основе данных публичных камер видеообзора
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 305-318Адекватное моделирование сложной динамики городских транспортных потоков требует сбора больших объемов данных для определения характера соответствующих моделей и их калибровки. Вместе с тем оборудование специализированных постов наблюдения является весьма затратным мероприятием и не всегда технически возможно. Совокупность этих факторов приводит к недостаточному фактографическому обеспечению как систем оперативного управления транспортными потоками, так и специалистов по транспортному планированию с очевидными последствиями для качества принимаемых решений. В качестве способа обеспечить массовый сбор данных хотя бы для качественного анализа ситуаций достаточно давно применяется обзорные видеокамеры, транслирующие изображения в определенные ситуационные центры, где соответствующие операторы осуществляют контроль и управление процессами. Достаточно много таких обзорных камер предоставляют данные своих наблюдений в общий доступ, что делает их ценным ресурсом для транспортных исследований. Вместе с тем получение количественных данных с таких камер сталкивается с существенными проблемами, относящимися к теории и практике обработки видеоизображений, чему и посвящена данная работа. В работе исследуется практическое применение некоторых мейнстримовских нейросетевых технологий для определения основных характеристик реальных транспортных потоков, наблюдаемых камерами общего доступа, классифицируются возникающие при этом проблемы и предлагаются их решения. Для отслеживания объектов дорожного движения применяются варианты сверточных нейронных сетей, исследуются способы их применения для определения базовых характеристик транспортных потоков. Простые варианты нейронной сети используются для автоматизации при получении обучающих примеров для более глубокой нейронной сети YOLOv4. Сеть YOLOv4 использована для оценки характеристик движения (скорость, плотность потока) для различных направлений с записей камер видеонаблюдения.
-
Разработка и применение метода расщепления по физическим факторам для исследования течений несжимаемой жидкости
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 715-739Описано развитие метода расщепления по физическим факторам для исследования течений несжимаемой жидкости (МЕРАНЖ), прошедшее за последние 50 лет. Гибридная явная конечно-разностная схема метода основана на модифицированной схеме с центральными разностями (МСЦР) и модифицированной схеме с ориентированными разностями (MСОР) со специальным условием переключения в зависимости от знака скорости переноса и знаков первой и второй разностей переносимых функций. Показано применение данного метода для решения некоторых задач (пространственный поток около сферы и кругового цилиндра для случаев однородной и стратифицированной жидкостей в широком диапазоне безразмерных параметров задачи, включая переходные режимы обтекания (2D–3D-переход, ламинарно-турбулентный переход в пограничном слое); плоскостная задача течения жидкости со свободной поверхностью; динамика вихревой пары в воде; коллапс пятен в стратифицированной жидкости; моделирование воздухо-, тепло- и массопереноса в «чистых производственных помещениях»).
-
Моделирование термодесорбции и водородопроницаемости
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 679-703Просмотров за год: 3.В контексте проблем водородной и термоядерной энергетики ведутся интенсивные исследования свойств изотопов водорода. Математические модели позволяют уточнять физико-химические представления о взаимодействии водорода с конструкционными материалами, выделять лимитирующие факторы. Классических моделей диффузии часто недостаточно. Статья посвящена моделям и численному решению краевых задач термодесорбции и водородопроницаемости с учетом динамики нелинейных сорбционно-десорбционных процессов на поверхности и обратимого захвата атомов водорода в объеме. Алгоритмы основаны на разностных аппроксимациях. Представлены результаты компьютерного моделирования потока водорода из конструкционного материала.
-
Анализ индуцированного шумом разрушения режимов сосуществования в популяционной системе «хищник–жертва»
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 647-660Просмотров за год: 14. Цитирований: 4 (РИНЦ).Работа посвящена проблеме анализа близости популяционной системы к опасным границам, при пересечении которых в системе разрушается устойчивое сосуществование взаимодействующих популяций. В качестве причины такого разрушения рассматриваются случайные возмущения, неизбежно присутствующие в любой живой системе. Это исследование проводится на примере известной модели взаимодействия популяций хищника и жертвы, учитывающей как стабилизирующий фактор конкуренции хищника за отличные от жертвы ресурсы, так и дестабилизирующий фактор насыщения хищника. Для описания насыщения хищника используется трофическая функция Холлинга второго типа. Динамика системы исследуется в зависимости от коэффициента, характеризующего насыщение хищника, и коэффициента конкуренции хищника за отличные от жертвы ресурсы. В работе дается параметрическое описание возможных режимов динамики детерминированной модели, исследуются локальные и глобальные бифуркации и выделяются зоны устойчивого сосуществования популяций в равновесном и осцилляционном режимах. Интересной математической особенностью данной модели, впервые рассмотренной Базыкиным, является глобальная бифуркация рождения цикла из петли сепаратрисы. В работе исследуется воздействие шума на равновесный и осцилляционный режимы сосуществования популяций хищника и жертвы. Показано, что увеличение интенсивности случайных возмущений может привести к значительным деформациям этих режимов вплоть до их разрушения. Целью данной работы является разработка конструктивного вероятностного критерия близости этой стохастической системы к опасным границам. Основой предлагаемого математического подхода является техника функций стохастической чувствительности и метод доверительных областей — доверительных эллипсов, окружающих устойчивое равновесие, и доверительных полос вокруг устойчивого цикла. Размеры доверительных областей пропорциональны интенсивности шума и стохастической чувствительности исходных детерминированных аттракторов. Геометрическим критерием выхода популяционной системы из режима устойчивого сосуществования является пересечение доверительных областей и соответствующих сепаратрис детерминированной модели. Эффективность данного аналитического подхода подтверждается хорошим соответствием теоретических оценок и результатов прямого численного моделирования.
-
Математическое моделирование вихревого движения в астрофизических объектах на основе газодинамической модели
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 631-643Просмотров за год: 27.Рассматривается применение консервативного численного метода потоков для изучения вихревых структур в массивных, быстровращающихся компактных астрофизических объектах, находящихся в условиях самогравитации. Моделирование осуществляется для объектов с различной массой и скоростью вращения. Визуализируются картины вихревой структуры объектов. В расчетах используется газодинамическая модель, в которой газ принимается совершенным и невязким. Численная методика основана на конечно-разностной аппроксимации законов сохранения аддитивных характеристик среды для конечного объема. При этом используются upwind-аппроксимации плотностей распределения массы, компонент импульса и полной энергии. Для моделирования объектов, обладающих быстрым вращением, при эволюционном расчете осуществляется контроль сохранения компонент момента импульса, законы сохранения для которых не входят в систему основных уравнений. Эволюционный расчет осуществляется на основе параллельных алгоритмов, реализованных на вычислительном комплексе кластерной архитектуры. Алгоритмы основаны на стандартизованной системе передачи сообщений Message Passing Interface (MPI). При этом используются как блокирующие, так и неблокирующие процедуры обмена с контролем завершения операций. Осуществляется распараллеливание по пространству по двум или трем направле- ниям в зависимости от размера области интегрирования и параметров вычислительной сетки. Одновременно с распараллеливанием по пространству для каждой подобласти осуществляется распараллеливание по физическим факторам: расчет конвективного переноса и гравитационных сил реализуется параллельно на разных процессорах, что позволяет повысить эффективность алгоритмов. Показывается реальная возможность прямого вычисления гравитационных сил посредством суммирования взаимодействия между всеми конечными объемами в области интегрирования. Для методов конечного объема такой подход кажется более последовательным, чем решение уравнения Пуассона для гравитационного потенциала. Численные расчеты осуществлялись на вычислительном комплексе кластерной архитектуры с пиковой производительностью 523 TFlops. В расчетах использовалось до тысячи процессоров.
-
Моделирование физических процессов воздействия мощного ядерного взрыва на астероид
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 861-877В рамках проблемы предотвращения астероидно-кометной угрозы выполнен физический и теоретический анализ процессов воздействия различных факторов надповерхностного ядерного взрыва достаточно высокой энергии на астероид во внеатмосферных условиях космического пространства. Показано, что в соответствии с энергией и проницаемой способностью плазмы продуктов взрыва, рентгеновского и гамма-нейтронного излучения на поверхности астероида, обращенной к взрыву, образуется слоистая структура с разной плотностью энергии, зависящей от угловых координат. Для каждого слоя выяснен временной характер трансформации энергии внутри него и определены роли различных фото- и столкновительных процессов. Воздействие высокоскоростного потока плазмы носит эрозионный характер, при этом импульс плазмы передается астероиду. Показано, что в тонком слое поглощения рентгеновского излучения вещество астероида разогревается до высоких температур, и в результате его расширения формируется импульс отдачи, который не является определяющим из-за малой массы расширяющейся высокотемпературной плазмы. Расчеты показали, что основной импульс, полученный астероидом, связан с уносом разогретого слоя вещества, образованного нейтронным потоком (7.5 · 1014 г · см/с). Показано, что астероид с радиусом ~100 м приобретает при этом скорость ≈ 100 см/с. Расчеты выполнены с учетом затрат энергии взрыва на разрушение аморфной структуры вещества астероида (~1 эВ/атом = 3.8 · 1010 эрг/г) и на ионизацию в области высокотемпературного слоя. На основе аналогичного анализа получено приближенное выражение для оценки среднего размера осколков при возможном разрушении астероида ударными волнами, образующимися внутри него под действием импульсов давления. Выполнен физический эксперимент в лабораторных условиях, имитирующий фрагментацию каменного астероида и подтвердивший справедливость полученной зависимости от выбранных значений определенных параметров. В результате численных исследований воздействия взрыва, произведенных на различном расстоянии от поверхности астероида, показано, что учет реальной геометрии отколочного слоя дает оптимальную высоту для формирования максимального импульса астероида примерно в 1.5 раза большую, чем аналогичные оценки по упрощенной модели. Предложена двухэтапная концепция воздействия ядерных взрывов на астероид с использованием радиолокационных средств наведения. Проанализировано возможное влияние возникающих ионизационных помех на радиолокационное слежение за разлетом крупных осколков астероида в условиях пространственно-временной эволюции всех элементов исследуемой динамической системы.
-
Математическое моделирование магнитной системы методом регуляризации по А. Н. Тихонову
Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 165-175В данной работе решается задача поиска конструкции магнитной системы для создания магнитного поля с требуемыми характеристиками в заданной области. На основе анализа математической модели магнитной системы предлагается достаточно общий подход к решению нелинейной обратной задачи, которая описывается уравнением Фредгольма H(z) = ∫SIJ(s)G(z, s)ds, z ∈ S H, s ∈ S I . Необходимо определить распределение плотности тока J(s), а также расстановку источников тока для создания поля H(z). В работе предлагается метод решения этих задачс помощью регуляризованных итерационных процессов. На примере конкретной магнитной системы проводится численное исследование влияния различных факторов на характер создаваемого магнитного поля.
-
Математическое моделирование интервально стохастических тепловых процессов в технических системах при интервальной неопределенности определяющих параметров
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 501-520Просмотров за год: 15. Цитирований: 6 (РИНЦ).Математическое и компьютерное моделирование тепловых процессов в технических системах, проводимое в настоящее время, основано на допущении, согласно которому все параметры, определяющие тепловые процессы, полностью и однозначно известны и определены, то есть являются детерминированными. Между тем практика показывает, что параметры, определяющие тепловые процессы, носят неопределенный интервально стохастический характер, что, в свою очередь, обусловливает интервально стохастический характер тепловых процессов в технической системе. Это означает, что реальные значения температуры каждого элемента в технической системе будут случайным образом распределены внутри интервалов своего изменения. Поэтому детерминированный подход к моделированию тепловых процессов, при котором получаются конкретные значения температур элементов, не позволяет адекватно рассчитывать температурные распределения в технических системах. Интервально стохастический характер параметров, определяющих тепловые процессы, обусловливается тремя группами факторов: (a) статистическим технологическим разбросом параметров элементов при изготовлении и сборке системы; (b) случайным характером факторов, обусловленных функционированием технической системы (флуктуациями токов, напряжений, мощностями потребления, температурами и скоростями потоков охлаждающей жидкости и среды внутри системы; (c) случайностью параметров окружающей среды (температурой, давлением, скоростью). Интервально стохастическая неопределенность определяющих факторов в технических системах является неустранимой, поэтому пренебрежение ею приводит к ошибкам при проектировании технических систем. В статье развивается метод, позволяющий моделировать нестационарные нелинейные интервально стохастические тепловые процессы в технических и, в частности, электронных системах при интервальной неопределенности определяющих параметров. Метод основан на получении и последующем решении уравнений для нестационарных статистических мер (математических ожиданий, дисперсий, ковариаций) распределений температуры в технической системе при заданных интервалах изменения и статистических мерах определяющих параметров. Рассмотрено применение разработанного метода к моделированию интервально стохастического теплового процесса в конкретной электронной системе.
-
Приложение гибридного метода крупных частиц к расчету взаимодействия ударной волны со слоем газовзвеси
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1323-1338Для модельного неоднородного уравнения переноса с источником выполнен анализ устойчивости линейной гибридной схемы (комбинации противопоточной и центральной аппроксимаций). Получены условия устойчивости, зависящие от параметра гибридности, фактора интенсивности источника (произведения интенсивности на шаг по времени) и весового коэффициента линейной комбинации мощности источника на нижнем и верхнем временном слое. В нелинейном случае для уравнений движения неравновесной по скоростям и температурам газовзвеси расчетным путем подтвержден линейный анализ устойчивости. Установлено, что предельно допустимое число Куранта гибридного метода крупных частиц второго порядка точности по пространству и времени при неявном учете трения и теплообмена между газом и частицами не зависит от фактора интенсивности межфазных взаимодействий, шага расчетной сетки и времен релаксации фаз (K-устойчивость). В традиционном случае явного способа расчета источниковых членов для значений безразмерного фактора интенсивности больше 10 наблюдается катастрофическое (на несколько порядков) снижение предельно допустимого числа Куранта, при котором расчетный шаг по времени становится неприемлемо малым.
На основе базовых соотношений распада разрыва в равновесной гетерогенной среде получено асимптотически точное автомодельное решение задачи взаимодействия ударной волны со слоем газовзвеси, к которому сходится численное решение двухскоростной двухтемпературной динамики газовзвеси при уменьшении размеровди сперсных частиц.
Изучены динамика движения скачка уплотнения в газе и его взаимодействия с ограниченным слоем газовзвеси для различных размеров дисперсных частиц: 0.1, 2 и 20 мкм. Задача характеризуется двумя распадами разрывов: отраженной и преломленной ударными волнами на левой границе слоя, отраженной волной разрежения и прошедшим скачком уплотнения на правой контактной границе. Обсуждено влияние релаксационных процессов (безразмерных времен релаксации фаз) на характер течения газовзвеси. Для мелких частиц времена выравнивания скоростей и температур фаз малы, а зоны релаксации являются подсеточными. Численное решение в характерных точках с относительной точностью $O\, (10^{−4})$ сходится к автомодельным решениям.
Ключевые слова: гибридный метод крупных частиц, устойчивость, газовзвесь, релаксация, жесткость, автомодельное решение.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"