Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Численное исследование турбулентного потока Тейлора – Куэтта
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 395-408В настоящей работе исследован турбулентный поток Тейлора – Куэтта с помощью двухмерного моделирования на базе осредненных уравнений Навье – Стокса (RANS) и нового двухжидкостного подхода к турбулентности при числах Рейнольдса в диапазоне от 1000 до 8000. Исследуется течение, обусловленное вращающимся внутренним и неподвижным внешним цилиндрами. Рассмотрен случай соотношения диаметров цилиндров 1:2. Известно, что возникающее круговое течение характеризуется анизотропной турбулентностью и математическое моделирование таких потоков является сложной задачей. Для описания таких потоков используются либо методы прямого моделирования, которые требуют больших вычислительных затрат, либо достаточно трудоемкие методы рейнольдсовых напряжений или же линейные RANS-модели со специальными поправками на вращение, которые способны описывать анизотропную турбулентность. В работе для сравнения различных подходов к моделированию турбулентности представлены численные результаты линейных RANS-моделей SARC, SST-RC, метода рейнольдсовых напряжений SSG/LRR-RSM-w2012, прямого моделирования турбулентности DNS, а также новой двухжидкостной модели. Показано, что недавно разработанная двухжидкостная модель адекватно описывает рассматриваемый поток. Помимо этого, двухжидкостная модель проста для численной реализации и имеет хорошую сходимость.
-
Вычислительный алгоритм решения нелинейной краевой задачи водородопроницаемости с динамическими граничными условиями и концентрационно-зависимым коэффициентом диффузии
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1179-1193Рассматривается нелинейная краевая задача водородопроницаемости, соответствующая следующему эксперименту. Нагретая до достаточно высокой температуры мембрана из исследуемого конструкционного материала служит перегородкой вакуумной камеры. После предварительного вакуумирования и практически полной дегазации на входной стороне создается постоянное давление газообразного (молекулярного) водорода. С выходной стороны в условиях вакуумирования с помощью масс-спектрометра определяется проникающий поток.
Принята линейная модель зависимости коэффициента диффузии растворенного атомарного водорода в объеме от концентрации, температурная зависимость в соответствии с законом Аррениуса. Поверхностные процессы растворения и сорбции-десорбции учтены в форме нелинейных динамических краевых условий (дифференциальные уравнения динамики поверхностных концентраций атомарного водорода). Математическая особенность краевой задачи состоит в том, что производные по времени от концентраций входят как в уравнение диффузии, так и в граничные условия с квадратичной нелинейностью. В терминах общей теории функционально-дифференциальных уравнений это приводит к так называемым уравнениям нейтрального типа и требует разработки более сложного математического аппарата. Представлен итерационный вычислительный алгоритм второго (повышенного) порядка точности решения соответствующей нелинейной краевой задачи на основе явно-неявных разностных схем. Явная составляющая применяется к более медленным подпроцессам, что позволяет на каждом шаге избегать решения нелинейной системы уравнений.
Приведены результаты численного моделирования, подтверждающие адекватность модели экспериментальным данным. Определены степени влияния вариаций параметров водородопроницаемости («производные») на проникающий поток и распределение концентрации атомов H по толщине образца, что важно, в частности, для задач проектирования защитных конструкций от водородного охрупчивания и мембранных технологий получения особо чистого водорода. Вычислительный алгоритм позволяет использовать модель и при анализе экстремальных режимов для конструкционных материалов (перепады давления, высокие температуры, нестационарный нагрев), выявлять лимитирующие факторы при конкретных условиях эксплуатации и экономить на дорогостоящих экспериментах (особенно это касается дейтерий-тритиевых исследований).
-
Биомеханика ДНК: вращательные колебания оснований
Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 319-328Просмотров за год: 3. Цитирований: 2 (РИНЦ).В данной работе изучаются вращательные колебания азотистых оснований, образующих центральную пару в коротком фрагменте ДНК, состоящем из трех пар оснований. Построен простой механический аналог фрагмента, в котором основания имитируются маятниками, а взаимодействия между основаниями — пружинками. Получен лагранжиан модельной системы и уравнения движения. Получены решения уравнений движения для однородного случая, когда рассматриваемый фрагмент ДНК состоит из одинаковых пар оснований: из пар аденин-тимин (AT) или гуанинцитозин (GC). Построены траектории модельной системы в конфигурационном пространстве.
-
Стехиометрия метаболических путей в динамике клеточных популяций
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 455-475Просмотров за год: 5. Цитирований: 1 (РИНЦ).Проанализированы проблемы соответствия кинетических моделей клеточного метаболизма описываемому ими объекту. Изложены основы стехиометрии полного метаболизма и его больших частей. Описана биоэнергетическая форма стехиометрии, основанная на универсальной единице восстановленности химических соединений (редоксон). Выведены уравнения материально-энергетического баланса (биоэнергетической стехиометрии) метаболических потоков, в том числе баланса протонов с высоким электрохимическим потенциалом μH+ и макроэргических соединений. Получены соотношения, выражающие выход биомассы, скорость потребления источника энергии для роста и другие физиологически важные величины через биохимические характеристики клеточной энергетики. Вычислены значения максимального энергетического выхода биомассы при использовании клетками различных источников энергии. Эти значения совпадают с экспериментальными данными.
-
Численное решение двумерной квазистатической задачи термопластичности: расчет остаточных термических напряжений при многопроходной сварке разнородных сталей
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 345-356Просмотров за год: 4. Цитирований: 6 (РИНЦ).Разработана двумерная математическая модель для оценки напряжений в сварных соединениях, формируемых при многопроходной сварке многослойных сталей. Основой модели является система уравнений, которая включает вариационное уравнение Лагранжа инкрементальной теории пластичности и вариационное уравнение теплопроводности, выражающее принцип М. Био. Вариационно-разностным методом решается задача теплопроводности для расчета нестационарного температурного поля, а затем на каждом шаге по времени – квазистатическая задача термопластичности. Разностная схема построена на треугольных сетках, что дает некоторое повышение точности при описании положения границ раздела структурных элементов.
-
Долгосрочная макромодель мировой динамики на основе эмпирических данных
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 883-891Просмотров за год: 4. Цитирований: 3 (РИНЦ).В работе обсуждаются методические основы и проблемы моделирования мировой динамики. Излагаются подходы к построению новой имитационной модели глобального развития и первичные результаты моделирования. В основу построения модели положен эмпирический подход, основанный на анализе статистики основных социально-экономических показателей. На основании этого анализа выделены основные переменные. Для этих переменных составлены динамические уравнения (в непрерывно-дифференциальной форме). Связи между переменными подбирались исходя из динамики соответствующих показателей в прошлом и на основании экспертных оценок, при этом использовались эконометрические методы, основанные на регрессионном анализе. Были проведены расчеты по полученной системе динамических уравнений, результаты представлены в виде пучка траекторий для тех показателей, которые непосредственно наблюдаемы и по которым имеется статистика. Таким образом, имеется возможность оценить разброс траекторий и понять прогнозные возможности представленной модели.
-
Методы оценивания параметров случайных точечных полей с локальным взаимодействием
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 323-332В работе дается краткий обзор методов оценивания параметров случайных точечных процессов с локальным взаимодействием между точками. Показано, что общепринятый метод максимального псевдоправдоподобия является частным случаем методов оценивания, основанных на использовании вспомогательного марковского процесса, инвариантная мера которого является гиббсовским точечным полем с параметрами, подлежащими оцениванию. Предложено обобщение данного метода, приводящее к такому виду уравнений для получения оценок неизвестных параметров, который не может быть получен с помощью универсального метода Такача–Фикселя. Компьютерные эксперименты показывают, что новый метод позволяет получать оценки, качество которых выше, чем качество оценок широко используемого метода максимального правдоподобия.
Ключевые слова: гиббсовское точечное поле, оценивающая функция, псевдоправдоподобие, оценивание параметров.Просмотров за год: 3. -
Анализ респираторных реакций человека в условиях измененной газовой среды на математической модели
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 281-296Цель работы — обоснование и разработка методики прогноза динамики респираторных реакций человека на основе математического моделирования. Для достижения этой цели были поставлены и решены следующие задачи: разработаны и обоснованы общая структура и формализованное описание модели респираторной системы; построен и программно реализован алгоритм модели газообмена организма; проведены вычислительный эксперимент и проверка модели на адекватность на основе литературных данных и собственных экспериментальных исследований.
В данном варианте в комплексную модель вошел новый модифицированный вариант частной модели физико-химических свойств крови и кислотно-щелочного баланса. При разработке модели в основу формализованного описания была положена концепция разделения физиологической системы регуляции на активные и пассивные подсистемы регуляции. Разработка модели проводилась поэтапно. Комплексная модель газообмена состояла из следующих частных моделей: базовой биофизической модели системы газообмена; модели физико-химических свойств крови и кислотно-щелочного баланса; модели пассивных механизмов газообмена, разработанной на основе уравнений материального баланса Гродинза Ф.; модели химической регуляции, разработанной на основе многофакторной модели Грея Д.
При программной реализации модели расчеты выполнялись в среде программирования MatLab. Для решения уравнений использовался метод Рунге–Кутты–Фехлберга. При этом предполагается, что модель будет представлена в виде компьютерной исследовательской программы, позволяющей реализовать различные гипотезы о механизме наблюдаемых процессов. Рассчитаны предполагаемые величины основных показателей газообмена в условиях гиперкапнии и гипоксии. Результаты расчетов, как по характеру, так и количественно, достаточно хорошо согласуются с данными, полученными в исследованиях на испытателях. Проведенная проверка на адекватность подтвердила, что погрешность вычислений находится в пределах погрешности данных медико-биологических экспериментов. Модель можно использовать при теоретическом прогнозировании динамики респираторных реакций организма человека в условиях измененной газовой среды.
Ключевые слова: математическая модель, минутный объем дыхания, имитация, регуляция, дыхание, респираторная система, гипоксия, гиперкапния.Просмотров за год: 5. -
Электронный аналог однородной ДНК
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 789-798Известно, что внутренняя подвижность молекул ДНК играет важную роль в функционировании этих молекул. Этим объясняется большой интерес исследователей к изучению особенностей внутренней динамики ДНК. Сложность, трудоемкость и дороговизна проведения исследований в этой области стимулируют поиск и создание более простых физических аналогов, удобных для имитации различных динамических режимов, возможных в ДНК. Одно из направлений такого поиска связано с использованием механического аналога ДНК — цепочки связанных маятников. В этой модели маятники имитируют азотистые основания, горизонтальная нить, на которой подвешены маятники, имитирует сахаро-фосфатную цепочку, а гравитационное поле имитирует поле, наводимое второй нитью ДНК. Простота и наглядность — основные достоинства механического аналога. Однако модель становится слишком громоздкой в тех случаях, когда необходимо моделировать длинные (более тысячи пар оснований) последовательности ДНК. Другое направление связано с использованием электронного аналога молекулы ДНК, который лишен недостатков механической модели. В данной работе мы исследуем возможность использования в качестве электронного аналога джозефсоновскую линию. Мы рассчитали коэффициенты прямых и непрямых преобразований для простого случая однородной, синтетической ДНК, последовательность которой содержит только аденины. Внутренняя подвижности молекулы ДНК моделировалась уравнением синус-Гордона для угловых колебаний азотистых оснований, принадлежащих одной из двух полинуклеотидных цепей ДНК. При этом вторая полинуклеотидная цепь моделировалась как некоторое усредненное поле, в котором происходят эти колебания. Преобразование, позволяющее перейти от ДНК к электронному аналогу, было получено двумя способами. Первый включает две стадии: (1) переход от ДНК к механическому аналогу (цепочке связанных маятников) и (2) переход от механического аналога к электронному (линии Джозефсона). Второй способ прямой. Он включает только одну стадию — прямой переход от ДНК к электронному аналогу.
Ключевые слова: моделирование динамики ДНК, механический аналог ДНК, электронный аналог ДНК, линия Джозефсона.Просмотров за год: 9. -
Биогидрохимический портрет Белого моря
Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 125-160Биогидрохимический портрет Белого моря построен с помощью расчетов на CNPSi-модели по систематизированным среднемноголетним наблюдениям (среднемесячные гидрометеорологические, гидрохимические и гидробиологические параметры морской среды). Также в расчетах использована уточненная информация о выносе в морские акватории биогенных веществ со стоком основных рекритоков (Нива, Онега, Северная Двина, Мезень, Кемь, Кереть). Параметры морской среды — значения температуры, освещенности, прозрачности, биогенной нагрузки. Для девяти районов моря (заливы Кандалакшский, Онежский, Двинский, Мезенский, Соловецкие о-ва, Бассейн, Горло, Воронка, губа Чупа) характеристики портрета моря включают: изменение в течение года концентраций органических и минеральных соединений биогенных элементов (С, N, P, Si), биомассы организмов низших трофических звеньев (гетеротрофные бактерии, диатомовый фитопланктон, растительноядный и хищный зоопланктон) и другие показатели (скорости изменения концентраций веществ и биомасс организмов, внутренние и внешние потоки веществ, балансы отдельных веществ и биогенных элементов в целом). Расчетные по среднемноголетним данным показатели состояния морской среды (температура воды, соотношения минеральных фракций N < P) и доминирующего диатомового фитопланктона в море (обилие, продукция, биомасса, содержание хлорофилла а) сравнивали с результатами отдельных съемок (за 1972–1991 и 2007–2012 гг.) по районам моря. При очевидных отличиях способов оценки значений показателей (по наблюдениям — аналитические методы, а при расчетах на модели — вычисления по соответствующим уравнениям) отмечена близость расчетных показателей состояния фитопланктона приведенным в литературе данным по фитопланктону Белого моря. Так, литературные оценки годовой продукции диатомовых водорослей в Белом море находятся в пределах 1.5–3 млн т С (при продолжительности вегетации 180 сут), а по расчетам она составляет ~2 и 3.5 млн т С при принимаемых периодах вегетации в 150 и 180 сут соответственно.
Ключевые слова: экосистема Белого моря, биогенные вещества (БВ), гетеротрофный бактериопланктон, диатомовый фитопланктон, растительноядный и хищный зоопланктон, детрит, трофическая цепь, CNPSi-модель биотрансформации БВ, экологический портрет Белого моря, сравнение наблюдаемых и расчетных показателей диатомовых водорослей (обилие, продукция, биомасса, хлорофилл а).Просмотров за год: 15. Цитирований: 1 (РИНЦ).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"