Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'популяция':
Найдено статей: 63
  1. Герасимов А.Н., Шпитонков М.И.
    Математическая модель системы «паразит – хозяин» с распределенным временем сохранения иммунитета
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 695-711

    Пандемия COVID-19 вызвала рост интереса к математическим моделям эпидемического процесса, так как только статистический анализ заболеваемости не позволяет проводить среднесрочное прогнозирование в условиях быстро меняющейся ситуации.

    Среди специфичных особенностей COVID-19, которые нужно учитывать в математических моделях, можно отметить гетерогенность возбудителя, неоднократные смены доминирующего варианта SARS-CoV-2 и относительную кратковременность постинфекционного иммунитета.

    В связи с этим были аналитически изучены решения системы дифференциальных уравнений для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета, а также проведены численные расчеты для динамики системы при средней длительности постинфекционного иммунитета порядка года.

    Для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета было доказано, что любое решение можно неограниченно продолжать по времени в положительную сторону без выхода за область определения системы.

    Для контактного числа $R_0 \leqslant 1$ все решения стремятся к единственномут ривиальному стационарному решению с нулевой долей инфицированных, а для $R_0 > 1$ кроме тривиального решения существует и нетривиальное стационарное решение с ненулевыми долями инфицированных и восприимчивых. Были доказаны существование и единственность нетривиального стационарного решения при $R_0 > 1$, а также доказано, что оно является глобальным аттрактором.

    Также для нескольких вариантов гетерогенности были вычислены собственные числа для скорости экспоненциальной сходимости малых отклонений от нетривиального стационарного решения.

    Получено, что при значениях контактного числа, соответствующих COVID-19, фазовая траектория имеет вид скручивающейся спирали с длиной периода порядка года.

    Это соответствует реальной динамике заболеваемости COVID-19, при которой после нескольких месяцев роста заболеваемости начинается период его падения. При этом второй волны заболеваемости меньшей амплитуды, что предсказывала модель, не наблюдалось, так как на протяжении 2020–2023 годов примерно каждые полгода появлялся новый вариант SARS-CoV-2, имеющий большую заразность, чем предыдущий, в результате чего новый вариант вытеснял предыдущий и становился доминирующим.

  2. Исследование логических детерминированных клеточноавтоматных моделей популяционной динамики позволяет выявлять детальные индивидуально-ориентированные механизмы функционирования экосистем. Выявление таких механизмов актуально в связи с проблемами, возникающими вследствие переэксплуатации природных ресурсов, загрязнения окружающей среды и изменения климата. Классические модели популяционной динамики имеют феноменологическую природу, так как являются «черными ящиками». Феноменологические модели принципиально затрудняют исследование локальных механизмов функционирования экосистем. Мы исследовали роль плодовитости и длительности восстановления ресурсов в механизмах популяционного роста, используя четыре модели экосистемы с одним видом. Эти модели являются логическими детерминированными клеточными автоматами и основаны на физической аксиоматике возбудимой среды с восстановлением. Было выявлено, что при увеличении времени восстановления ресурсов экосистемы происходит катастрофическая гибель популяции. Показано также, что большая плодовитость ускоряет исчезновения популяции. Исследованные механизмы важны для понимания механизмов устойчивого развития экосистем и сохранения биологического разнообразия. Обсуждаются перспективы представленного модельного подхода как метода прозрачного многоуровневого моделирования сложных систем.

    Просмотров за год: 16. Цитирований: 3 (РИНЦ).
  3. Башкирцева И.А., Перевалова Т.В., Ряшко Л.Б.
    Метод стохастической чувствительности в анализе динамических трансформаций в модели «две жертвы – хищник»
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1343-1356

    Данная работа посвящена исследованию проблемы моделирования и анализа сложных колебательных режимов, как регулярных, так и хаотических, в системах взаимодействующих популяций в присутствии случайных возмущений. В качестве исходной концептуальной детерминированной модели рассматривается вольтерровская система трех дифференциальных уравнений, описывающая динамику популяций жертв двух конкурирующих видов и хищника. Данная модель учитывает следующие ключевые биологические факторы: естественный прирост жертв, их внутривидовую и межвидовую конкуренцию, вымирание хищников в отсутствие жертв, скорость выедания жертв хищником, прирост популяции хищника вследствие выедания жертв, интенсивность внутривидовой конкуренции в популяции хищника. В качестве бифуркационного параметра используется скорость роста второй популяции жертв. На некотором интервале изменения этого параметра система демонстрирует большое разнообразие динамических режимов: равновесных, колебательных и хаотических. Важной особенностью этой модели является мультистабильность. В данной работе мы фокусируемся на изучении параметрической зоны тристабильности, когда в системе сосуществуют устойчивое равновесие и два предельных цикла. Такая биритмичность в присутствии случайных возмущений порождает новые динамические режимы, не имеющие аналогов в детерминированном случае. Целью статьи является детальное изучение стохастических явлений, вызванных случайными флуктуациями скорости роста второй популяции жертв. В качестве математической модели таких флуктуаций мы рассматриваем белый гауссовский шум. Методами прямого численного моделирования решений соответствующей системы стохастических дифференциальных уравнений выявлены и описаны следующие феномены: однонаправленные стохастические переходы с одного цикла на другой; триггерный режим, вызванный переходами между циклами; индуцированный шумом переход с циклов на равновесие, отвечающее вымиранию популяции хищника и второй жертвы. В статье представлены результаты анализа этих явлений с помощью показателей Ляпунова, выявлены параметрические условия переходов от порядка к хаосу и от хаоса к порядку. Для аналитического исследования таких вызванных шумом многоэтапных переходов были применены техника функций стохастической чувствительности и метод доверительных областей. В статье показано, как этот математический аппарат позволяет спрогнозировать интенсивность шума, приводящего к качественным трансформациям режимов стохастической популяционной динамики.

  4. В статье рассматриваются модели «хищник – жертва» и проводится глобальный бифуркационный анализ системы Лесли – Говера с аддитивным эффектом Олли и упрощенным функциональным откликом Холлинга III типа, которая моделирует динамику популяций хищников и их жертв в заданной экологической или биомедицинской системе. В данной системе используется наиболее распространенная математическая форма выражения эффекта (или закона) Олли через функцию роста жертвы. Закон Олли гласит, что существует вполне определенное соотношение между индивидуальной приспособленностью к условиям жизни и численностью либо плотностью индивидов данного вида, а именно: с увеличением численности популяции способность к выживанию и репродуктивная способность также увеличиваются. После алгебраических преобразований рациональную систему Лесли – Говера с аддитивным эффектом Олли и упрощенным функциональным откликом Холлинга III типа можно записать в виде квинтико-секстичной динамической системы, т.е. в виде системы с полиномами пятой и шестой степени. Используя информацию о ее особых точках и применяя наш бифуркационно-геометрический подход к качественному анализу, мы изучаем глобальные бифуркации предельных циклов квинтико-секстичной системы. Чтобы контролировать все бифуркации предельных циклов, особенно бифуркации кратных предельных циклов, необходимо знать свойства и комбинировать действия всех параметров, поворачивающих векторное поле системы. Это может быть сделано с помощью принципа окончания Уинтнера – Перко, согласно которому максимальное однопараметрическое семейство кратных предельных циклов заканчивается либо в особой точке, которая, как правило, имеет ту же кратность (цикличность), либо на сепаратрисном цикле, который также, как правило, имеет ту же кратность (цикличность). Этот принцип является следствием принципа естественного окончания, который был сформулирован для многомерных динамических систем Уинтнером, который изучал однопараметрические семейства периодических орбит ограниченной задачи трех тел и доказал, что в аналитическом случае любое однопараметрическое семейство периодических орбит может быть однозначно продолжено через любую бифуркацию, кроме бифуркации удвоения периода. Применяя планарный принцип Уинтнера – Перко, мы доказываем, что если цикличность фокуса в рассматриваемой системе равна трем, то система может иметь не более трех предельных циклов, окружающих одну особую точку.

  5. Пирутин С.К., Шанк М.А., Цзя Ш., Конюхов И.В., Тодоренко Д.А., Червицов Р.Н., Фурсова П.В., Кабашникова Л.Ф., Плюснина Т.Ю., Хрущев С.С., Ризниченко Г.Ю., Рубин А.Б.
    Комплексный анализ воздействия ионов меди на первичные процессы фотосинтеза Scenedesmus quadricauda по результатам измерений флуоресценции хлорофилла a в суспензии и на одиночных клетках
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 293-322

    С помощью комплекса биофизических и математических методов исследовано влияние ионов меди на первичные процессы фотосинтеза пресноводной микроводоросли Scenedesmus quadricauda. Проведена оценка воздействия меди (0,1–10 мкМ CuSO4) по индукционным кривым флуоресценции хлорофилла a, полученным как на суспензии клеток, так и на отдельных клетках водорослей после инкубации в световых и темных условиях. Установлено, что медь оказывает дозозависимое воздействие на фотосинтетический аппарат микроводорослей. Низкие (0,1 мкМ) концентрации CuSO4 по ряду параметров оказывают стимулирующие воздействие, тогда как концентрация 10 мкМ приводила к существенным нарушениям функционирования фотосистемы II. Анализ флуоресценции одиночных клеток оказался более чувствительным по сравнению с традиционными измерениями на суспензиях, позволив выявить гетерогенность реакции клеток на действие CuSO4. Анализ кинетики быстрой флуоресценции хлорофилла a (JIP-тест) показал, что наибольшую чувствительность к воздействию меди проявили параметры $\delta_{Ro}$ и $\varphi_{Ro}$, которые достоверно отличались от контроля при воздействии не только высокой, но и средней концентрации (1 мкМ). При инкубации с CuSO4 в световых условиях снижение фотохимической активности клеток было менее выражено, чем в условиях темновой инкубации. Нормирование данных по интенсивности начальной и максимальной флуоресценции на оптическую плотность суспензии при $\lambda = 455$ нм значительно повысило чувствительность метода и позволило более точно интерпретировать эти данные. Использование L1-регуляризации (LASSO) по методу наименьших углов (LARS) для спектральной мультиэкспоненциальной аппроксимации индукционной кривой позволило выявить ее временные характеристики. Результаты математической обработки полученных данных дают основание предположить, что действие ионов меди приводит к увеличению нефотохимического тушения флуоресценции, являющегося защитным механизмом рассеивания избыточной энергии возбуждения. Наблюдаемая гетерогенность реакций отдельных клеток водорослей на воздействие меди, по-видимому, является важным адаптационным механизмом, позволяющим популяции сохранять жизнеспособность в условиях стресса. Полученные данные подтверждают перспективность использования методов флуоресцентного анализа для ранней диагностики стрессовых воздействий тяжелых металлов на фотосинтезирующие организмы.

  6. Минкевич И.Г.
    Стехиометрия метаболических путей в динамике клеточных популяций
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 455-475

    Проанализированы проблемы соответствия кинетических моделей клеточного метаболизма описываемому ими объекту. Изложены основы стехиометрии полного метаболизма и его больших частей. Описана биоэнергетическая форма стехиометрии, основанная на универсальной единице восстановленности химических соединений (редоксон). Выведены уравнения материально-энергетического баланса (биоэнергетической стехиометрии) метаболических потоков, в том числе баланса протонов с высоким электрохимическим потенциалом μH+ и макроэргических соединений. Получены соотношения, выражающие выход биомассы, скорость потребления источника энергии для роста и другие физиологически важные величины через биохимические характеристики клеточной энергетики. Вычислены значения максимального энергетического выхода биомассы при использовании клетками различных источников энергии. Эти значения совпадают с экспериментальными данными.

    Просмотров за год: 5. Цитирований: 1 (РИНЦ).
  7. Переварюха А.Ю.
    Модели популяционного процесса с запаздыванием и сценарий адаптационного противодействия инвазии
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 147-161

    Изменения численности y образующихся популяций могут развиваться по нескольким динамическим сценариям. Для стремительных биологических инвазий оказывается важным фактор времени выработки реакции противодействия со стороны биотического окружения. Известны два классических эксперимента с разным завершением противоборства биологических видов. В опытах Гаузе с инфузориями вселенный хищник после кратких осцилляций полностью уничтожал свой ресурс, так его $r$-параметр для созданных условий стал избыточен. Собственная репродуктивная активность не регулировалась дополнительными факторами и в результате становилась критичной для вселенца. В экспериментах Утиды с жуками и выпущенными паразитическими осами виды сосуществовали. В ситуации, когда популяцию с высоким репродуктивным потенциалом регулируют несколько естественных врагов, могут возникать интересные динамические эффекты, наблюдавшиеся у фитофагов в вечнозеленом лесу Австралии. Паразитические перепончатокрылые, конкурируя между собой, создают для быстро размножающихся вредителей псиллид систему регуляции с запаздыванием, когда допускается быстрое увеличение локальной популяции, но не превышающее порогового значения численности вредителя. В работе предложена модель на основе дифференциального уравнения с запаздыванием, описывающая сценарий адаптационной регуляции для популяции с большим репродуктивным потенциалом при активном, но запаздывающем противодействии с пороговой регуляцией данного вновь возникшего воздействия. За кратким максимумом следует быстрое сокращение численности, но минимизация не становится критической для популяции. Показано, что усложнение функции регуляции биотического противодействия приводит к стабилизации динамики после прохождения минимума численности быстро размножающимся видом. Для гибкой системы переходные режимы «рост/кризис» ведут к поиску нового равновесия в эволюционном противостоянии.

  8. Ревуцкая О.Л., Фрисман Е.Я.
    Промысловое воздействие на динамику популяции с возрастной и половой структурой: оптимальный равновесный промысел и эффект гидры
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1107-1130

    На основе дискретной по времени математической модели изучено влияние избирательного промысла с постоянной долей изъятия на динамику численности популяции с возрастной и половой структурой. При построении модели предполагается, что рождаемость популяции зависит от соотношения численностей полов и количества формируемых пар. Регуляция роста численности осуществляется путем лимитирования выживаемости молоди, когда с увеличением численностей половозрастных классов уменьшается выживаемость неполовозрелых особей. Рассмотрены случаи, когда изъятие осуществляется только из младшего возрастного класса либо из группы половозрелых самок или самцов. Выявлено, что изъятие зрелых самцов или самок на оптимальном уровне оказывается ответственным за изменение соотношения самок и самцов (с учетом среднего размера гарема). Показано, что максимальное число добытых самцов достигается либо при такой доле изъятия, когда изымается их избыточное количество и устанавливается баланс полов, либо при такой оптимальной доле изъятия, при которой соотношение полов смещено в сторону размножающихся самок. Оптимальный промысел самок, при котором добывается их наибольшее количество, либо сохраняет ранее существующий дефицит взрослых самцов, либо ведет к избытку самцов, либо приводит к установлению баланса полов. Обнаружено, что в зависимости от популяционных параметров для всех рассмотренных вариантов промысла может наблюдаться эффект гидры, т. е. увеличение равновесной численности изымаемого половозрастного класса (сразу после размножения) с ростом доли изъятия. Избирательный промысел, вследствие которого возникает эффект гидры, приводит одновременно к увеличению численности оставшейся части популяции после размножения и росту количества добытых особей. При этом численность эксплуатируемой группы после воспроизводства может быть даже выше, чем без эксплуатации. Равновесный промысел с оптимальной долей изъятия хотя и обеспечивает добычу максимально возможного количества особей, однако приводит к снижению численности популяции. Эффект гидры отмечается при меньших величинах доли изъятия, чем оптимальная доля. Вместе с тем следствием эффекта гидры может оказаться более высокая численность половозрастной группы при оптимальной эксплуатации по сравнению с тем уровнем, который отмечался в отсутствии промысла.

  9. Беляев А.В.
    Стохастические переходы от порядка к хаосу в метапопуляционной модели с миграцией
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 959-973

    Данная работа посвящена исследованию проблемы моделирования и анализа динамических режимов, как регулярных, так и хаотических, в системах связанных популяций в присутствии случайных возмущений. В качестве исходной детерминированной популяционной модели рассматривается дискретная модель Рикера. В работе исследуется динамика двух популяций, связанных миграцией. Миграция пропорциональна разнице между плотностями двух популяций с коэффициентом связи, который отвечает за силу миграционного потока. Изолированные популяционные подсистемы, не учитывающие миграцию и моделируемые отображением Рикера, демонстрируют различные динамические режимы: равновесный, периодический и хаотический. В данной работе в качестве бифуркационного параметра используется коэффициент связи, а также фиксируются параметры естественного прироста популяций, при которых одна изп одсистем находится в равновесном режиме, а во второй преобладает хаотический режим. Связывание двух популяций посредством миграции порождает новые динамические режимы, не наблюдавшиеся в изолированной модели. Целью данной статьи является анализ динамических режимов корпоративной динамики при вариации интенсивности перетоков между популяционными подсистемами. В статье представлен бифуркационный анализа ттракторов детерминированной модели двух связанных популяций, выявлены зоны моно- и бистабильности, даны примеры регулярных и хаотических аттракторов. Основной акцент данной работы сделан на сравнении устойчивости динамических режимов к случайным возмущениям в коэффициенте интенсивности миграции. Методами прямого численного моделирования выявлены и описаны индуцированные шумом переходы с периодического аттрактора на хаотический. В статье представлены результаты анализа стохастических явлений с помощью показателя Ляпунова. Показано, что в рассматриваемой модели существует зона изменения бифуркационного параметра, при котором даже с увеличением интенсивности случайных возмущений не происходит переход от порядка к хаосу. Для аналитического исследования вызванных шумом переходов применены техника функции стохастической чувствительности и метод доверительных областей. В работе показано, как с помощью этого математического аппарата можно предсказать критическую интенсивность шума, вызывающую трансформацию периодического режима в хаотический.

  10. Будянский А.В., Цибулин В.Г.
    Моделирование пространственно-временной миграции близкородственных популяций
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 477-488

    Рассматривается модель распространения по ареалу конкурирующих за единый ресурс близкородственных популяций, записываемая в виде системы уравнений параболического типа. Анализируется случай переменной диффузии с миграционными потоками, зависящими от неравномерности распределения популяций и ресурсов. На основе метода прямых исследовано влияние миграции на формирование распределений популяций, изучены сценарии локального вытеснения и сосуществования видов. Найдены условия на параметры системы, при которых возникает непрерывное косимметричное семейство равновесий.

    Просмотров за год: 6. Цитирований: 9 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.